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Abstract—-We consider the problem of reconstructing the shape of a 2-D object from multiple partial
images related by scaled translations, in the presence of occlusion. Lindenbaum and Bruckstein have
considered this problem in the specific case of a translating object seen by small sensors, for application to
the understanding of insect vision. Their solution is limited by the fact that its run time is exponential in the
number of images and sensors. We generalize the problem to allow for arbitrary types of occlusion of
objects that translate and change scale. We show that this more general version of the problem can be
solved in time that is polynomial in the number of sensors, but that even the original problem posed by
Lindenbaum and Bruckstein is, in fact, NP-hard when the number of images is unbounded. Finally, we
consider the case where the object is known to be convex. We show that Lindenbaum and Bruckstein’s
version of the problem is then efficiently solvable even when many images are used, as is the general
problem in certain more restricted cases. ' 1998 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.

NP-complete 2-D shape recovery from multiple images Shape recovery with occlusion

1. INTRODUCTION One main motivation of our work has been to
generalize and improve upon the results of Linden-
baum and Bruckstein'”’ (L&B), who have previously
raised the problem of determining the shape of a 2-D
object from sparse measurements. They considered
the case of an unknown object that translates over
a set of small visual sensors. In their problem, every
sensor reports whenever the boundary of the object
passes within the sensor’s receptive field, providing
a thin slice of the unknown shape. L&B sought an
algorithm to combine measurements obtained from
the set of sensors during different translations of the
same object in order to recover its full 2-D shape.
Their primary motivations for considering this
problem were to model insect vision systems and to
solve industrial problems.

We view this situation as a special case of the
problem of shape recovery in the presence of occlu-
sion. The problem defined by L&B corresponds to
a situation in which an object is viewed through
a grating of narrow slits in a sequence of images
related by translation. In this case slices of the shape
of the object at the positions of the slits are seen
perfectly, but between the slits the object is occluded.
Moreover, the slits are too narrow to allow for

We consider the problem of reconstructing the shape
of a 2-D object using multiple partial images. We
assume that some portions of each image can be
identified as definitely belonging to the object, other
portions as definitely belonging to the background,
and the remainder which are ambiguous due to occlu-
sions or other uncertainty. In order to solve this
problem we must account for the fact that unknown
transformations relate the images to each other,
because the object or camera undergoes unknown
motions between frames. We also do not assume it is
possible to identify any specific local features that
could be matched between frames and thus used to
recover the unknown motion. Therefore, we must
make use of a relatively weak constraint, namely that
we can rule out motions which would assign the same
scene position to be figure in one frame and back-
ground in another. We show how to determine the set
of possible objects and motions consistent with this
constraint.
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extracting any features that remain invariant under
different translations of the object, since any local
feature identified in one view of the object is likely to
be occluded in other views. Consequently, combining
information from measurements obtained under
different translations of the same object cannot rely
on matching localized features. In this, L&B’s
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problem is related to an approach to recognition in
which the relative pose of a model and image are
determined, given a correspondence between regions
of the model and image but with no specific corres-
pondence between local geometric features.'>® We
generalize their problem by allowing for more arbit-
rary types of occlusions. In our formulation, the scene
need not be viewed through 1-D slits; any portions of
the object and background may be visible. And we
will allow for scale changes, in addition to transla-
tions, that may relate different images. We will also
indicate how one of our algorithms may be extended
to a wider range of possible image transformations.

R. BASRI et al.

Figure 1 illustrates the input to our and L&B’s
algorithms.

In our more general setting, the problem posed by
Lindenbaum and Bruckstein is also closely related
to that of tracking and building up a model of an
unknown object in the presence of occlusion. Imagine,
for example, that one has several pictures of a bird in
flight, as seen through the branches of a tree, against
the background of the sky. Portions of each image
are known to come from the bird. Where the sky
appears, we know that the bird’s shape is not present.
But where one sees branches, there may be either bird
or sky behind. By allowing for general patterns of

= Occluder (uncolored)

Fig. 1. Our algorithms assume that a series of images like the ones on the top must be related by scaled

translations. Here, arbitrary subsets of the figure are seen, some of the background is known, and

occluders hide portions of the scene, which may be figure or background. L&B’s algorithm assumes that

the images have the form shown on the bottom. in which the scene is only sensed along lines, where line

segments of the figure (along with the tangent direction at boundaries) are known. No scaling is allowed
in their formulation.
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figure/ background/occlusion we will account for this
type of viewing situation.

In addition to generalizing L&B’s problem, we also
provide insight into the computational complexity
of the problem. L&B developed an algorithm that
requires computation that is exponential in both the
number of images and the complexity of the descrip-
tion of each image. We provide an algorithm for our
more general problem that requires computation that
grows as a polynomial function of the image comple-
xity (but still exponential in the number of images);
this algorithm is practical when the number of images
used is small. We then show that it is apparently not
possible to produce a general algorithm that is poly-
nomial in the number of images. Specifically, we show
that even L&B’s more constrained version of the
problem is NP-hard. We then provide an algorithm
that is polynomial in the number of images for
a special case of the problem. The main restriction is
that the sensed object must be known to be convex.
This algorithm finds a shape consistent with the
images by running a linear program. The number
of variables in the program is linear in the number
of images. The number of linear constraints derived
is either linear or quadratic in the complexity and
number of images, for two different variations of the
problem. In general, the algorithm is practical in
many situations of interest.

The paper is divided as follows. In Section 2 we
formulate our problem and discuss past work. Then,
in Section 3 we introduce a solution with complexity
that is polynomial in the size of the individual image
representations, but remains exponential in the num-
ber of images. In Section 4 we show that the problem
is NP-hard in the number of images. Next, in
Section § we introduce an efficient solution for convex
shapes. Finally, we present the results of experiments
in Section 6.

2. PROBLEM FORMULATION AND BACKGROUND

We now formulate our problem more precisely, and
relate it to past work. First, we assume that we are
given m images, each of which is divided into figure,
background, and occlusions that may be either figure
or background. We think of the region due to the
figure as black, the background as white, and the
boundary between black and white regions as grey.
Occluded regions are uncolored. In order to make this
problem discretely representable, we assume that all
black and white image regions are given as polygons,
with a total of at most n sides and vertices. Each
vertex and side may be black, white, or grey. Note, for
example, that it is perfectly possible for all sides and
vertices to be grey, as when the entire image is divided
into black and white, with no occluded regions.

Next, we assume that the positions of the object in
the images are related by translations and changes
in scale, while the pattern of occlusions may be arbi-
trarily different between images. Our goal is to bound
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the set of feasible transformations relating the images,
and the corresponding set of possible object shapes.
A transformation will be feasible whenever it places
two images in a common reference frame in which
white and black regions do not intersect. This will
ensure that the same image point is not interpreted as
both figure and background. To rule out degenerate
transformations in which no portion of the object is
seen more than once, we may also bound the magni-
tude of the allowed transformation, or equivalently,
assume that figure may only lie in or within some
neighborhood of the image by assuming that it is
centered inside a frame of white. Our proof of
NP-hardness will apply even in the simpler case of
translation alone, without changes in scale.

This is identical to L&B’s problem formulation,
with two exceptions. First, they restricted themselves
entirely to images related by translations. And
secondly. they considered images in which figure
and background were visible along only narrow,
parallel slits. That is, they assumed that all of
the image was occluded except for a set of parallel
lines, which were completely colored in black
and white. They also assumed that the tangent
to the shape could be computed at the grey
points separating white and black portions of these
lines.

L&B then solved this problem by considering all
possible combinations of matches between two black
or two white line segments belonging to lines in differ-
ent images. For each possible set of matches, they ran
a linear program to find the feasible set of translations
that match the lines in this way. Unfortunately, the
number of ways of matching these lines is exponential
in both n (the number of line segments in each image)
and m (the number of images), leading to an algorithm
that is both exponential in these values.

The L&B problem is also closely related to our own
recent work on object recognition.®® In this work
we attempt to determine the pose of a known object
from an image in which the object may be partially
occluded. Both works share the assumption that no
specific local features can be identified in an image
and matched to a model, or to other images. Instead,
one can identify subsets of the object in images, and
must determine pose without specific correspond-
ences of local features. In the case of our recognition
work the object shape is completely known, which is
comparable to supposing, in the current problem, that
one of the images contains no occlusion. Our previous
work focuses on showing that with this assumption,
object pose can in many cases be uniquely determined
from a single image containing considerable occlu-
sion. We also show that pose can be efficiently
determined if we divide the object shape into convex
parts, and we will use this insight to provide an
efficient algorithm to solve the current problem when
the sensed object is convex.

The current problem contains the additional com-
plication that shape and relative pose must both be
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determined, using only partially occluded images. It is
simplified in other ways, however, because it assumes
that images are related by scaled translation only. In
our previous recognition work, we allow for a wide
range of transformations, including affine and pers-
pective projections from a 3-D scene into a 2-D image.

Of course, there has been a great deal of work on
the general problem of determining structure and
motion from a sequence of images [see reference (5)
for a recent review]. However, that work generally
makes quite different assumptions. Typically, that
work considers 3-D world structures, which give rise
to a much more complex problem. At the same time,
that past work typically assumes either that motion
and any occlusions that occur are small, or that local
geometric features have been identified and tracked.
Perhaps most relevant to the problem considered here
is the motion tracking work of Huttenlocher er al.'®
They allow for only 2-D translations, and for signifi-
cant amounts of occlusion, by matching shapes using
a variation on the Hausdorff metric. This work still
attacks a problem considerably different from ours in
that it 1s still assumed that a significant portion of the
shape is seen in both adjacent images, so that a direct
comparison of shape can be made.

3. ASOLUTION THAT IS POLYNOMIAL
IN THE IMAGE COMPLEXITY

We will now present an algorithm that determines
whether a feasible set of transformations exist that are
consistent with the set of images that we have
gathered, and that delimits this set of transformations
and the object shapes that are consistent with them.
A preliminary version of this algorithm, which applied
only to the L&B problem, appeared in reference (7).

We will describe the algorithm for the case where
the images are related by a scaled translation. It is
easily simplified, with reduced complexity, for the case
of translation alone, and we will indicate how it may
be extended to handle more complex transformations,
at the cost of additional complexity. The algorithm
runs in O(n?“* V1) time, where n is the maximum
number of polygon sides in any single image, m is the
number of images, and d is the number of degrees of
freedom in the allowed transformations. Therefore, this
algorithm is polynomial when m (and d) 1s fixed, and
practical when dm is small. In Section (4) we show that
the problem is NP-hard when m is allowed to vary.

The first step in describing our algorithm is to
demonstrate that the number of qualitatively different
transformations relating two images is a low-order
polynomial. Having done this, we show that one
can enumerate these sets of transformations, and so
discover which sets are feasible.

The goal of our algorithm is to describe the set of
transformations that superimpose the sets of colored
images so that they intersect only in compatible
colors, subject, perhaps, to some limits on the range of
allowable transformations. Consider first the case of
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only two images, in which we may assume, without
loss of generality, that only the second image will be
transformed. The relationship between the polygons
describing the two images may be expressed entirely
in terms of the lines and vertices that bound them. We
will divide the set of feasible transformations into
qualitatively identical cells. These will be sets of trans-
formations within which none of the relationships
between the lines or vertices bounding the polygons
are altered. To form these cells, first imagine extend-
ing all of the line segments bounding the polygons in
the two images into lines. We will call two transforma-
tions qualitatively identical when they both map the
second image onto the first so that every vertex in
each image is on the same side of every line in the
other image. Now, consider a valid transformation of
the second image, one which places each black or
grey vertex and line segment inside or on the bound-
ary of a black polygon, and similarly places each
white vertex or line segment inside a white polygon.
Clearly, any qualitatively identical transformation
will place the vertices and lines of each image inside
the same polygons of the other image.

A qualitatively identical cell in transformation
space is delimited by the constraints that its trans-
formations must map points to the appropriate side
of lines, and lines so that they separate the same set of
points. Let (x, y) denote a point in the first image,
(x, y’) a point in the second image, and let lines in the
first and second image, respectively, be described by
the equations:

Ax+By+C=0 (1)
and
AX 4+ By +C =0 2)

Further, we assume that the second image is trans-
formed by a scaled translation in which we denote
the translation by (f,,t,). and use s for the scale
factor. In that case, the constraints that bound a cell
of qualitatively identical transformations have the
forms:

A"+ 1)+ B(sy +1)+ C>0 (3)

X — 1, —
A'(’C ) n B'C—’—) +C >0 4)
N S

Since s > 0 this last equation can be replaced by

and

A'x —A'ty + By — B't, + sC" > 0. (5)

Note that these constraints are linear in the un-
knowns, t,, t,, s. This means that a cell is the intersec-
tion of a set of half-spaces in the 3-D transformation
space.

L&B made use of a similar decomposition of the
possible transformations into qualitatively identical
sets; Fig. 2 gives an example. Recall that L&B res-
tricted the allowable transformations to translations
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I,

I3

Fig. 2. Two qualitatively similar translations for a simple
example of the L&B problem. Here the “white” areas are
only the remainder of the lines with black line segments. The
remainder of the figure is “uncolored”. On the right, the
vertical lines are shifted upward and to the right until /, just
touches /, and [, just touches /;. Additional translation
in these directions will result in a qualitatively different
solution.

only. They pointed out that when two lines are con-
strained to intersect in two specific line segments of
the same color, this places four linear constraints on
the range of qualitatively identical translations, which
are the translations that place the end point of each
line segment on the appropriate side of the intersect-
ing line. It follows that, in L&B’s setting, every set
of translations that are qualitatively the same is
bounded by a set of linear constraints, and so is
a convex subset of the space of all translations.
Note that we can view L&B’s case as that where the
“polygons™ are in fact just line segments: the bound-
ary changes between white and black correspond to
the vertices, and the edges are just the segments them-
selves. Using this interpretation, L&B’s observations
are included as a special case of our more general
analysis.

We have shown that, in general, any qualitatively
identical set of scaled translations is defined by a set of
linear constraints, and thus such a set is convex subset
of the set of possible transformations. We will now
show how to enumerate all the vertices of these con-
vex sets of transformation space, that is, all of the
extreme points of the feasible scaled translations.
Every vertex of every cell in the transformation space
is formed by the intersection of three planes, that is,
these vertices occur when three of the linear con-
straints on the transformations intersect. This occurs
when transformations map three points (or lines) of
the second image so that they lie on (or contain)
corresponding lines (or points) in the first image.
A match between three points and lines in the two
images provides three linear equations with three un-
knowns, which will generally have a unique solution.
(If these matches provide no or infinite numbers of
solutions they may respectively either be ignored, or
an arbitrary satisfying transformation may be con-
sidered.) If we consider translation alone (so that
d = 2) then only two matches are needed. In general,
there will be O(n??) such sets of matches. Each set of
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matches determines a transformation that may be on
the boundary of a set of feasible transformations. To
check this, we must see whether this transformation
causes all lines and points to intersect like colors. We
may check this in O(n?) time.

When there are more than two images, we can
determine the possible transformations of each image
relative to the first image. All possibilities are enu-
merated by generating similar matches between each
additional image and the first, and then considering
all possible combinations of these matches. This leads
to O(n?¥™~ 1) combinations, each of which can be
verified in O(n*™~ 1) time. However, in practice, we
can gain greater efficiency by evaluating matches
based on only a partial set of the images, and then
extending only those matches that lead to valid
translations.

We can contrast this algorithm with that proposed
by L&B by noting that, instead of considering pairs of
matches between each image, they considered all com-
binations of matches between every boundary point
and every line in each image. Each combination was
then checked for validity with linear programming.
This led to a number of possible matches that was
exponential in #. Our algorithm demonstrates that
this search was unnecessarily redundant; most of these
exponential number of combinations are inconsistent
with a single transformation, and need never be
considered.

Our algorithm is directly inspired by the work of
Cass'® [which is based on the work of Baird'®’]. Cass
considers the problem of finding a transformation
that matches a maximum number of known model
point features to a set of noisy image features known
to lie inside convex polygons. Cass shows in this case
that the number of qualitatively different transforma-
tions is polynomial, and can be efficiently explored.
While we consider a different problem, we also rely on
the insight that we can partition the space of trans-
formations into a polynomial number of interesting
cells.

Mount et al.*? made use of a similar formulation
of the combinatorial structure of the qualitatively
different sets of transformations. They consider the
sets of qualitatively different intersections possible
between translating polygons to compute the possible
areas of overlap between two polygons. This is related
to our approach, since we seek transformations in
which the white and black regions of two images do
not overlap at all. Their paper contains interest-
ing additional insights into this combinatorial
structure.

4. THE PROBLEM IS NP-HARD IN THE
NUMBER OF IMAGES

Our algorithm’s computational complexity is not
polynomial in the number of images. Unfortunately,
this may be unavoidable because, as we now show, the
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problem is in fact NP-hard. This is the case even for
L&B’s more constrained version of the problem:

Theorem 1. The Lindenbaum—Bruckstein problem is
NP-hard. The decision version of the problem-—-i.c.
given a collection of images (sets of lines), deciding if
there exists any object with which these images are
consistent-—is NP-complete.

Remark. The problem is NP-complete even for some
constant number of lines per image and constant
number of distinct segments per line, so that only the
number of images is variable.

Note that the number of lines per image, times the
number of segments per line (i.e. the number of dis-
tinct black and white subsegments per slice, which is
one plus the number of color changes between black
and white), corresponds to the n parameter in the
general case.

The remainder of this section is devoted to a proof
of this result. We begin by noting that the fact that the
decision problem is in NP follows immediately from
our earlier remarks. That is, if there is a consistent
image, it is always possible to verify this by “guessing”
the corresponding extreme translations and then
checking consistency. Both the size of the guess and
the time needed to check consistency are polynomial.

We prove hardness by reduction to a variant of the
well-known 3SAT problem.!"t-1? 3SAT is perhaps the
canonical NP-complete problem. We define this prob-
lem again here, as a reminder and to establish notation:

Definition 1. Let ¥ = {vy,vy ...,vp} be a set of
variables. A literal is either ¢; or —v; for some v; € ¥
let & be the set of literals. A truth assignment t is
a mapping from % to {true, false} such that t1(—v,) =
not 7(;) for all ¢;. A clause is a set of literals. A clause
is satisfied by a truth assignment 1 iff at least one
literal in the clause is given value true by z. Ina SAT
problem one is given a collection of clauses, and asked
if there is any truth assignment that satisfies all the
clauses. In a 3SAT problem each clause has at most
3 literals. A 3-3SAT problem is a 3SAT problem such
that each variable appears in at most 3 clauses.

Only the last definition here is nonstandard. As well
as restricting the number of literals per clause, we also
limit the number of times any single-variable appears.
However, one can easily show that 3-3SAT remains
NP-complete. as follows. Consider any 3SAT pro-
blem, but suppose that some variable v; is used k > 3
times. We can replace each occurrences of ¢; by one of
the k distinct new variables, v; , v; 2. ..., ;. If we
then add clauses saying that v;  is logically equivalent
to 1y, (the two clauses {v; , 71v; 2} and {Te;4, 0]
suffice), that v; , is equivalent to v; ;3 (i.e., {v; 5 10,3}
and {T1v; 5, v;3}), and so on, then we clearly obtain
a 3-3SAT problem that is satisfiable if and only if the
original 3SAT problem has a solution.
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The body of our proof shows how, if one is given
a 3-3SAT problem with C clauses and V variables,
one can construct an instance of the Lindenbaum—
Bruckstein problem that is consistent if and only if the
given 3-3SAT problem has a satisfying assignment.
From this, it follows that the decision version of
L&B'’s problem is also NP-complete.

The proof uses a somewhat involved construction
which makes heavy use of a “lock-and-key™ principle.
A lock is a local collection of color changes in one
image, matched by one or more corresponding keys in
another. The two images can be consistently super-
imposed only when a key of the appropriate type is
superimposed on the lock. Thus, by choosing the
number and location of the keys, we can limit the
possible intersections between two images to a dis-
crete set of alternatives. This is the basic trick that
allows us to reduce a combinatorial problem, such as
3-3SAT, to the Lindenbaum-Bruckstein problem,
which is very geometric. Note that the (somewhat
messy) details of our lock-and-key construction are not
relevant to the basic strategy of the proof, so we defer
these details until towards the end of this section.

Given a 3-3SAT problem, we must construct an
instance of the Lindenbaum-Bruckstein which is con-
sistent if and only if the given 3-3SAT problem has
a solution. Note that a clause with 3 literals can be
satisfied in one of seven possible ways. For instance,
{vi v s satisfied if ¢, vy v are true, or if vy is
false and v;, v, are true, ete.; in fact by any combina-
tion other than v; and v; being false and v, being true.
Thus any given 3SAT problem is consistent iff we can
choose (1) for each variable, either true or false, and
(2) for each clause, one of the seven ways of making
the clause true, such that all of the choices we make
are consistent with each other. This may seem some-
what like a redundant reformulation of 3SAT, but
it turns out to be well suited to our problem.

The main idea of the proof is to have one (horizon-
tal) selector image for each variable, and one (vertical)
selector image for each clause. We also use two guides:
a vertical guide for variables and a horizontal guide
for clauses. These guides are arranged as in Fig. 3.
Note that there is a (distinct) lock corresponding to
each clause and variable on the appropriate guide; in
each case these locks are distance 2 apart. A central
lock L0 on the vertical guide, and corresponding key
KO on the horizontal guide, ensures that the two
guides will have a fixed position relative to each
other. We defer details of the guides’ construction
until the end, after we have shown how to define locks
and keys. However we note here that, although the
guides are rather complex combinations of images,
each selector will be a single image consisting of
a single line.

Each variable selector will have two identical keys,
distance 2C + 2 apart (where C is the number of
clauses), each matching the corresponding lock on the
variable guide. (L.e., in the notation of Fig. 3, the
selector for variable i will have two keys matching the
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The guide images
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LO/KO Lez b Le3/Ked
|
1
Lv2/Kv2 Kv2
Lv3 | 2C+2
|
242 l
O Kc3
i

Two selectors

Fig. 3. Guides and selectors (dashed segments are “white™).

lock Lot It fodlows that the variable selecion can e im
one of two possible locations; intuitively, these will
correspond to true and false. Simitarly, each clause
selector has seven copies of its key, spaced distance
2V 4+ 2 apart, and so can be in one of seven distinct
positions (intuitively, each corresponds to one of the
seven ways the clause might be made true). See Fig. 3
where two selectors are displayed.

The final step is to ensure that the selectors’ loca-
ticas are consistent € aad only the aciginal 3-38AT
problem has a solution. We do this by inserting black
segments bertween the selectors keys a1 appropriae
points. Counsider first a variable selector. After the
second Xey P.e, M Fig. 3. the Hghimost Xey), 1he hineds
uniformly white. But between the first key and the
second i1he hHne s whiie except I IOCANONS COYres-
pcading ¢o clauses w which the vacabile appedcs, at
which points we insert a black segment of length 1. So,
for instance, if ¢; appears in the jth clause, there is
a black segment centered 2; to the right of the first key
on ¢;'s selector. The variable selector shown in Fig. 3
shows that variable 2 appears (possibly negated) in
clauses 3 and 4.

Next, we consider the clause selectors. Recall that
each key on a clause selector is supposed to corres-
pond 10 one way B MAXINE The Hanse 1o, Ty,
specifies & gpacticular value {either ¢eue ar falsel tac
each of the three variables appearing in the clause.
This assignment is reflected in the pattern on the
selector between this key and the next: this gap should
be nmiorm)y wmie except hat Thete are 'Diatk sep-
ment(s) of length 1 at positions corresponding to any
vasi] whikh Rok (L) tpsrass @ the dause keing,
consibered, and 215 assigned vue 'oy The parhcial
key ‘peing considered. Yor exampie. consider \ne
clause {v;. r;, 710y, and suppose the first key corres-
ponds to ¢; being fulse and ¢, v, being true. Thus,
between the first key and the second should be solid
white except at distances 2j and 2k (corresponding to
v; and 1), at which points will be centered two black
SERMRMS. TR AU SURUIT S it §5g. T sl
that one way of making clause 3 true is to make both
variables 2 and 4 true.

1 now casy 1o verily that the corstraction wotks.
If the given 3-3SAT problem is satisfiable, then the
corresponding atignment of setectors wilt be consis-
tent and, conversely, if we can align the selectors
consistently we can read off a satisfying assignment by
looking at the variable selectors. That is, if a variable
selector has its first key matching the corresponding
lock we should regard that variable as being true,
otherwise it is false. Consider any given arrangement
af the variable selectars. A clause selectar will be
consistently translated if and only if all variables
wnich e cause selector thinks snowdd be rue over-
lap black segments on the cocresponding variables’
sedeciors, npiymg hay the vanabie sedecior agrees
that the variable is true.

We compieie the proof by discussing one way n
whiictt the “lock-and-key” pairs and che guides caa be
constructed. For reasons noted below, this is also
a rather involved construction. A key will be any
black segment in an image of length strictly less that 1;
different length keys will fit different locks. Notice that
our construction never uses segments of length <1 in
agy owrer 1oie, 30 nORRE <aw be used as a3 Ky
“by accident”. It is also necessary to suppose that
no two keys ever appear on a line within distance 1
OT Yess Ui eath UINET, LuT ComSITutHon Wisd Gealty
satisties ths.

To be concrete, we consider the case of a horizontal
lock and a vertical key. A horizontali lock is part of an
image consisting of six lines; see Fig. 4. The first (i.e.
Tne Ao and Divh Nines @te Gistance Y apan and aie
solid white, while the second line (distance ¢ below the
tand s slid bladk . Hlars ¢ g o vary sxall widh that
VEITTIHNTS ThE PITUSion wilh winth 4ne hovk and ine
Key must atth. {In o1 consituion, it sufhees o
take ¢ = 0.25/(C + V).) Lines 3 and 4 are a distance
b and b + 3¢, respectively, below line 2, where
b <1—4¢ is a parameter defining the lock (see
below}. Both lines 3 and 4 are white to the left, and
black to the right, but line 4 becomes black slightly
i Gt wod) 4 L ciqlad 3l ddaee 3. L2t | Feweads W paiad,
where line 3 becomes black, and y the point where line
4 becomes black. Line 6, which is white except for
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Fig. 4. A horizontal “lock” and matching vertical “key”.

a short black segment of length 0.5, should be ignored
for the moment.

Now, consider any image which consists of a single
vertical line, and whose only key(s) have width strictly
less than b + 3e. Such a line cannot cross the lock at
any point to the right of position y, since it has no key
long enough to cross more than two black lines at
once. On the other hand, if all keys have width greater
than b + ¢, then it must cross the lock at a point to the
right of x, because there is no way that it can cross line
2 without also crossing line 3. It follows that a key of
length b + 2¢ must cross the lock between positions
x and y. Thus, when the vertical image has a b + 2¢
sized key (and no other key), we can fix the relative
position of the images to within precision ¢ (which we
can make as small as we wish). We can either fix the
position completely or, if the vertical line contains
several keys of length b + 2¢, we can limit their rela-
tive position to a discrete set of alternatives.

Note that the construction so far provides a six-line
image with a single lock on it. Let us call such a lock
a simple b-lock. (L.e. we obtain different locks by vary-
ing the value of b.) However, the two guides in our
construction appear to require many different locks,
at differing positions. However, this is easy to arrange.
Consider, for instance, the horizontal guide line,
which requires C + 1 locks {i.e. LO and a lock for each
clause). For this, we consider a collection of separate
simple i/(C + 2)-locks, for i =1... C + 1. Our guide
lines can be constructed by appropriately superimpos-
ing all these locks. That is, we need the top and
bottom lines of all these simple locks to be (almost) on
top of each other and furthermore that the “position”
of the ith lock be 2 units to the right of the (i — I)th
lock. (Note, though, that we do not want exact super-
position—the various locks would be inconsistent
with each other—but rather just that they be very
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close to each other.) Of course, we can arrange the
appropriate superposition with yet another lock! This
is the purpose of the sixth line in simple locks; recall
that this is always just a horizontal key of length 0.5.
But putting this key in the appropriate positions in
each horizontal lock, then adding a single vertical
simple 0.5-lock, we can align all the horizontal locks
as necessary for our construction. (We note that the
construction of this vertical lock must be slightly
different from that discussed so far, since it must not
interfere with the first five lines of the horizontal locks
that will cross it. The details of this easy variation are
omitted.) The vertical guide line is, of course, con-
structed analogously.

Our discussion of locks-and-keys may seem some-
what complex than necessary. Although there are
simpler constructions, ours has an important advan-
tage: Each lock only uses a constant number of lines
(ie. 6), and only a constant number of color changes
per line (never more than 2). Furthermore, our locks
work even when appropriately superimposed, so we
can construct our guides using many smaller images.
In contrast, if we were to make each guide a single
image, we would need the number of lines and/or the
number of color changes to grow with C and V;,
consequently, the result would be much weaker. Aside
from the images used in defining the guides, the only
other images we use are the clause and variable selec-
tors, and each of these only consists of a single line.
Furthermore, the clause selectors clearly have only
a finite number of color changes (although, as we have
presented the construction here, clause selectors can
have as many as 56). Note that each variable selector
also has a constant number of color changes (in fact at
most 10), but only because we considered the 3-3SAT
problem in which any one variable appears in only
a few clauses. This concludes the proof.

5. EFFICIENT SOLUTION FOR CONVEX SHAPES

In the previous sections we introduced an algo-
rithm for shape recovery that is polynomial in the
complexity of the image, but then showed that even
the simpler problem originally defined by L&B is NP-
complete in the number of images. The latter result’s
proof required us to consider fairly odd shapes, so
it therefore makes sense to consider placing some
restrictions on shape in order to obtain efficient algo-
rithms. In this section we consider the class of convex
shapes. Convexity, together with another assumption
about the configuration of the occlusions (explained
below), allows us to solve the problem efficiently. Spe-
cifically, we can solve the problem by running a linear
program with a set of constraints whose number is
quadratic in both n and m. With the aid of a stronger
assumption about the occlusions, we can reduce the
number of constraints to be linear in n and m. We note
that, given convexity of the image, this stronger as-
sumption about the configurations of the occlusions
will always hold in L&B’s version of the problem.
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Fig. 5. On the left, a scene with some occlusion. The middle figure shows the minimum region that may
belong to a convex object in this figure. The right shows the maximum convex region.

Consider any single image, image i for instance, and
let N; denote the convex hull of all black regions in
the image. Given the assumption that the unknown
object is convex, the object clearly must include N
Furthermore, the points in N; are the only points in
image i that, on the basis of this image alone, can be
deduced to definitely come from the image. Just as
N; includes all points that must be included in the
object, we can also construct another region, which
we call X, that includes all points that might be part
of the object. One can find X; as follows. Recall that
the black regions in the image will be bounded by
lines that are either black or grey, where grey corres-
ponds to a boundary between black and white. Then
consider the largest convex region which includes all
of the grey lines as part of its boundary (see Fig. 5).
X, is simply all non-white portions of this region. It
follows that the shape of the unknown object must be
“sandwiched” between N; and X,.

The second assumption we make in this section, in
addition to the object’s convexity, is that X, is also
convex. This will be the case when the grey lines
delimit a fairly small region where the object may lie,
and the occluder is large enough to cover this region.
This occurs in Fig. 5, for example. It is also the case
whenever the white region is the union of a set of
half-planes, which is always true for the L&B problem
when the shape is convex (see Fig. 6). To see this, note
that in this case each image consists of a set of lines
that are white except for a single black line segment,
together with (perhaps) some flanking lines on either
side that are all white. Each black line segment is
bounded by two points at which the tangent of the
object shape is known. Each of these points, with its
tangent, defines a line that bounds the largest possible
region containing the shape. (Note that without some
restriction, such as convexity, on the object’s shape,
the tangent information is essentially useless. This is

why we did not consider this information in the pre-
ceding sections.) Additionally, the shape must lie en-
tirely on a known side of any all-white line in the
image.* Therefore, X; in this case is simply the inter-
section of a set of half-planes, and so is convex (see
Fig. 6, right).

Given our assumptions, it is easy to see that all the
images are consistent with each other if and only if we
can transform them into a common reference frame,
in which every N; is contained in every X;. This is
because the intersection of the X; contain no white,
and so if every N, is contained in this intersection, so
is their collective convex hull, and so no known parts
of the shape can overlap white.

To formalize this, let the vertices of N; be pi, ..., P}
(1 <i<m) and let pi = (xi, vi). For notational con-
venience we assume that there are exactly n of these
points in each image, although in fact, there may be
fewer. Next, we express all the lines bounding X; using
equations of the form Aix + Biy + Ci =0 and as-
sume, without loss of generality, that the shape lies in
the positive half-plane defined by the line. (Le. that
every point (x, y) in X satisfies Ajx + Biy + Ci>0)
Again, we simplify the presentation by assuming that
each X, is determined by exactly »n lines.

Now, consider first just two images, I; and I;.
Denote the relative translation between the images by
(uy, v;;), and the scaling by s;;. Then, for every point in
image i and every line in image j, we may write two
linear constraints of the form:

Al (sipxk + uig) + Bl (siyh + vi) + €1 = 0, ©
i("{ —u) + Bi(}’{ — i) + S Ci>0.

* This is because if at least some portion of the shape is not
visible in an image, that image may be ignored.
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Fig. 6. An example of the L&B problem, with a convex

shape (top). Background is shown in grey, to make white

lines visible. N; (shown in middle) is the convex hull of the

vertices. Every tangent or purely white line delimits a half-

plane that must be all white. Together, all constraints delimit
a convex X, (bottom).

Constraints of the first sort ensure that T(N;) < X,
where T indicates the transformation, while constraints
of the second form require that N; < T(X),) =
T~ '(Nj) < X;. These constraints ensure that the con-
vex hull of all transformed black points are trans-
formed to a position where they contain no white
points. The point positions and the line equations
are known in these constraints, while the scale and
translation magnitudes, s;;, u;;, t;; are unknown. It is
possible to write all of these constraints as linear
inequalities because both T and its inverse can be
written as transformations that are linear in the same
set of parameters.

These constraints can be written for every pairing
of a point and line in two images, resulting in at
most 2n* constraints for the two images. We can
find the scaling and translation parameters between
I; and I; by solving this system of 2n* linear
inequalities using, e.g. linear programming. If we
use Seidel's randomized algorithm? this linear
program can be solved in expected time that is
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of the order of the number of constraints, which is
o(n?).

The number of constraints can be further reduced
for the special case where every vertex of N; is grey,
and we know its tangent. This is true in L&B’s pro-
blem, where the endpoint of every line segment is the
dividing point between the white and black parts of
the line, and where it is assumed that the tangent of
the shape is known at these points. Note that the
angle of every line is invariant under scaled transla-
tion. Therefore, we can infer the order of these vertices
on the boundary of the shape. The position of each
vertex is only constrained by its neighbors. Therefore,
the number of useful constraints between two images
is twice the number of points in the two images, that
is, only 2n. Consequently, if the tangent directions in
every image are given in order then we obtain an
algorithm that is linear in the number of points in the
two images. (Of course, if the tangent directions are
given unordered we will have to add to this the
O(nlog n) cost of sorting the angles.)

When considering more images, it must be true that
all translations and scalings are consistent, i.e. Vi, j:
I<i<j<m

j-1 i-1

(u;;. vij) = Z (U k4 15 Uit 1) Si ;= H Skxvre (7)

k=i k=i

Thus, with m images we have only 3m — 3 unknowns,
We now have O(nm) points and lines, all pairs of
which yield a linear constraint, for a total of O(n*nt?)
constraints. Seidel’s algorithm is no longer suitable,
since it is practical only for linear programs with few
variables. However, it is well known that linear
programs can be solved in time that is polynomial in
the number of constraints. In practice, the simplex
method typically takes time proportional to ¢*d to
solve a problem with ¢ linear constraints in a d-dimen-
sional space [see, e.g. reference (14)], which gives an
overall run time of O(n*m®). This will be practical
when n and m are not too large.

For the L&B problem and related special cases
where the vertices have known tangent directions, the
number of constraints will be O(nm). (O(nm) vertices
may need to be sorted in producing these constraints.)
This leads to a total run time of O(n*m?).

This algorithm is related to our own work on object
recognition'® and to Amenta’s work on shape match-
ing under the Hausdorff metric."® In our work we
aligned 2-D models to 2-D images using correspond-
ences between convex regions with no explicit corres-
pondences between local features inside the regions.
In that work we assumed that the shape of the object
is given by the model, and that the image may be
partly occluded. In our present terminology, this is
equivalent to assuming that in the first image,
X, = Ny, and in the second image, X, is unbounded.
Given these assumptions, we need only enforce the
constraint T(N,)< X,. since the constraint
that T YN,) < X, is always true. This allows
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us to linearize our problem for a wider class of
transformations, including similarity, affine and pro-
jective transformations. In that work we also show
that constraints of the form T(N,) € N, and of the
form T~}N,) € N, together cannot be linearized for
these transformations; our argument in that paper
also shows that our current problem of constraints of
the forms T(N) < X; and T™Y(N;) = X; cannot be
simultaneously linearized for these more complex
transformations.

Also, Amenta has shown how to efficiently find
the scaled translation that minimizes the one-way
Hausdorff distance between two polytopes. Amenta''
shows that this problem can be solved using convex
programming, a generalization of linear program-
ming. In this problem. one polytope is translated and
scaled so that it is placed inside another which has
been dilated by a distance /. This problem is easier
than ours in that only one polytope is constrained to
lie inside the other, so that constraints are formulated
on the transformation, but not on its inverse. How-
ever, it is more difficult than our problem, in that the
minimum dilation distance must be found for which
the problem is still solvable.

6. EXPERIMENTS

To illustrate our algorithms we have implemented
and run them on three artificially generated shapes.
In the first two sets of experiments we used two non-
convex shapes, and so we applied the algorithm des-
cribed in Section 3. In the first cxperiment images of
a head-like shape were produced in the form allowed
by L&B. Figure 7 shows three passes obtained for the
head (the original shape is dotted). Five sensors at
known positions were used to detect object and
background segments along five lines. This resulted in
30, 20, and 14 boundary points in the three passes.
Matching the lines in passes 1 and 2. for example, gave
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Fig. 8. Three instances of a non-convex shape (solid lines)

which are partly occluded (the occlusions are denoted by the

gray regions. top row) and the recovered shape (bottom). The

dashed line represents portions of the boundaries that are
not determined by the three images.

rise to 15,000 translation cells (30 x 20 x 5 x 5 = 15,000),
of which only 12 were feasible. Similarly, matching
passes 1 and 3 gave rise to 10.500 cells, 13 of which
were feasible, and matching passes 2 and 3 gave rise to
16,500 cells, S of which were feasible. The figure also
shows an overlay of the three passes obtained after
matching all three passes. It can be seen that a good
reproduction of the shape was obtained.

Next, we applied the same algorithm to a second,
non-convex shape allowing for more general types of
occlusions. Figure 8 shows three images of the shape
with different occlusions and the shape recovered by
aligning these three images. In this case too a good
reproduction of the shape was obtained.

Finally, we tested our method with a convex, cup-
cake-like shape. As in the first experiment, the input in
this case was provided in the form allowed by L&B.
Figure 9 shows six passes obtained for this shape. This
shape is convex, and so we used the algorithm
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Fig. 7. Three passes of a “head” shape (dotled lines) across a field of five sensors (top row). Solid lines
show each sensor’s output, and the result of aligning all measurements (bottom).
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Fig. 9. Six passes of a “cupcake” {top two rows), and the result of aligning all measurements, using the
convex solution (bottom).

described in Section 5. Again, five sensors at known
positions detected object and background segments
along five lines. Each sensor (denoted by tiny circles)
reported the positions of two boundary points and
their tangent direction, resulting in 10 boundary
points in each pass. Using a single linear program
we aligned the six passes. The figure also shows an
overlay of the six passes. Again, a good reproduction
of the shape was obtained.

7. CONCLUSIONS

We consider the problem of recovering the shape
of a heavily occluded object from a sequence of
images. Lindenbaum and Bruckstein have proposed
a specific example of this problem, in which the object
is sensed through small apertures that model the
receptive fields of insect sensors. We have shown that
this problem is not tractable in general (assuming
P # NP). However, we can efficiently solve the Lin-
denbaum and Bruckstein problem when either the
number of images combined at once is small, or if we
know that the shape is convex. In fact, our algorithms
apply to a significant generalization of the original
problem, including cases where the 2-D images con-
taining general patterns of figure, background and
occlusion.
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