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Abstract

Work on photometric stereo has shown how to recover the
shape and reflectance properties of an object using multiple
images taken with a fixed viewpoint and variable lighting
conditions. This work has primarily relied on the presence
of a single point source of light in each image. In this pa-
per we show how to perform photometric stereo assuming
that all lights in a scene are isotropic and distant from the
object but otherwise unconstrained. Lighting in each image
may be an unknown and arbitrary combination of diffuse,
point and extended sources. Our work is based on recent
results showing that for Lambertian objects, general light-
ing conditions can be represented using low order spherical
harmonics. Using this representation we can recover shape
by performing a simple optimization in a low-dimensional
space. We also analyze the shape ambiguities that arise in
such a representation.

1. Introduction

Photometric stereo methods recover the shape and albedo of
an object using multiple images in which viewpoint is fixed,
and only the lighting conditions vary. Many solutions to this
problem exist for laboratory conditions, in which lighting
can be kept simple. In this paper we show how to perform
photometric stereo under quite general lighting conditions
that need not be known ahead of time. We consider convex
objects that are approximately Lambertian, and assume that
lights are relatively distant and isotropic (no cast shadows
or slide projectors). But otherwise, we allow for arbitrary
lighting, including any combination of point sources, ex-
tended sources, and diffuse lighting.

Much work on photometric stereo has assumed that
lighting comes from a single source, generally a point
source or a controlled, diffused source of light (see Sec-
tion 2). Some recent approaches allow for images contain-
ing a single point source and a diffuse component of light-
ing, provided that the diffuse component is the same for
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all images. These assumptions are natural for many appli-
cations, such as inspection, in which one controls viewing
conditions.

In this work, we consider images produced by more gen-
eral lighting conditions that are not known ahead of time.
We do this, first, because we may wish to use shading to
construct shapes under everyday lighting. This lighting is
often quite complex, consisting of multiple sources of vary-
ing kinds, and large surfaces such as walls that reflect light.
Second, for some applications, such as modeling large out-
door structures, it may not be practical to completely control
the lighting. Third, for other applications, one may wish
to reconstruct shape using previously taken photographs,
without having access to the object itself. For example, one
might wish to use photos of a person taken many years ago
to build a model of them. Finally, theories for reconstruc-
tion under general, unknown lighting conditions can shed
light on how humans perceive shape under similar condi-
tions. This paper develops basic tools to handle complex
lighting conditions, and provides a preliminary assessment
of them using controlled images. It is a subject of future
work to explore these more general applications.

The starting point for our work is results that show that
the set of images produced by a convex, Lambertian object
under arbitrary lighting can be well approximated by a low-
dimensional linear set of images ([1, 20]). This set is 4D for
a first order approximation, 9D for a second order approxi-
mation. This implies that given a number of images under
different lighting conditions, principal component analysis
can provide a good approximation to an object’s complete
set of images. In this paper, we consider the problem of
translating this linear description of an object’s images into
a description of its surface normals and albedos. Existing
techniques can then be used to translate these normals into
an integrable surface, if desired.

To do this, we must fit the low-dimensional space that
represents the actual images with a similar space that could
be produced by a 3D scene. With a first order approxima-
tion, the 4D space of an object’s images corresponds to its
albedo and its surface normals scaled by albedo (we call
these scaled surface normals). Therefore, we must approx-
imate the observed images with a 4D space in which one
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dimension equals the norm of the other three. This can
be done by solving an overconstrained linear system, in a
manner similar to that used by [23] to determine motion
for scaled orthographic projection. With a second order ap-
proximation, we must find a scene structure whose images
under harmonic lighting match the observed images. This
can be done with an efficient iterative process, because the
scaled surface normals can be described as three linear com-
binations of the images, requiring us to optimize over only
27 variables. We confirm experimentally that these opti-
mization procedures produce good results.

We also determine the extent to which a linear descrip-
tion of an object’s images uniquely determine its surface
normals. With the 4D approximation, we show that the
normals are determined up to a subgroup of the 4�4 lin-
ear transformations, called Lorentz transformations. That
is, a (scaled) Lorentz transformation of surface normals and
albedo generates new surface normals and albedo with the
same 4D linear approximation to its images. We also show
that to first order, any linear transformation of an object’s
scaled normals will not change the 9D approximation to its
images. Consequently, using the 9D approximation, an ob-
ject’s normals can only be stably reconstructed up to a linear
transformation.

Finally, we present some preliminary experiments to il-
lustrate the potential of these methods. We present simula-
tions that show that in spite of the approximations made, in
ideal cases we can reconstruct an object’s normals up to a
few degrees of angle. We also show experiments with real
objects, in which we reconstruct shapes that appear to be
quite veridical.

2 Background

Classical work on photometric stereo has assumed that the
illumination conditions are known, e.g., through the speci-
fication of a reflectance function [24] (see [8] for a review).
Much work has followed, including some that focuses on
dealing with non-Lambertian objects (e.g., [5, 26]), in some
cases capitalizing on distributed light sources ([9, 17]), and
in situations in which the light source is near the object and
near the camera ([13, 4]).

[21, 16] have pointed out that when each image is pro-
duced by a single point source with unknown intensity and
direction one could recover the scaled surface normals of an
object up to an unknown linear transformation; in fact each
image is a linear combination of the x; y and z components
of the object’s normals scaled by albedo. [25] also considers
the problem of unknown light sources. [7] uses [21, 16]’s
result in a factorization framework to handle many images.
These results assume that the surface normals face the light
source direction in all images (that is, no attached shadows).
[3, 28, 6] (see also [18]) have shown that integrability re-

duces the ambiguity to a “generalized bas-relief transforma-
tion,” which allows the recovery of a surface up to a stretch
and shear in the z-direction.

[14] extends this approach by allowing for a single point
source plus a perfect ambient component to the lighting.
This adds a fourth dimension to a linear description of an
object’s images, corresponding to albedo. [15] used the
same space to recover the albedo when the surface normals
are known. [28] describes a reconstruction method when
each image is lit by a single point source, and all images
share a common background lighting, which can be arbi-
trary. This work shows a progression towards lighting con-
ditions that are less constrained, but still the emphasis is on
inferring structure based on the assumption of a single point
source in each image.

Recently, [1, 20] have provided a new way to describe
the effect of general lighting on a Lambertian object. They
do this by focusing on the reflectance function, which de-
scribes the amount of light reflected by each surface nor-
mal. They point out that the reflectance function results
from convolving a function describing the light with a ker-
nel that describes Lambertian reflectance. This kernel is
the max of the cosine function and zero, and can be shown
to act as a low-pass filter. This means that only the low
frequency components of lighting have a significant effect
on a Lambertian object’s reflectance function. These com-
ponents are represented as low-order spherical harmonics.
Analogous to the Fourier series, spherical harmonics form
an orthonormal basis for describing functions on the surface
of a sphere. [1] proves that for any distant, isotropic light-
ing, at least 98% of the resulting function can be captured
when light is represented by second order spherical har-
monics. A first order approximation captures at least 75%
of the reflectance. These bounds are not tight, and in fact
many common lighting conditions yield significantly better
approximations. For example, under a point source illumi-
nation the first and second order harmonics approximate the
reflectance function to 87.5% and 99.22% respectively.

These results are key to our shape reconstruction
method. Below we show how we can use a set of images
of a Lambertian object to estimate the harmonic images of
the object and consequently to recover its surface normals
and albedos. The methods that we present will be appropri-
ate under the same assumptions as in [1, 20], namely, for
a convex object illuminated by distant and isotropic lights
that are otherwise unconstrained.

3 Shape Recovery

For our purposes, the key consequence of [1, 20] is that
they provide an approximate, analytic description of an ob-
ject’s images as a 4 or 9D linear subspace of image space.
To first order, any image of an object can be described as:
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~i = ~l4S4. ~i is an n-dimensional vector containing the in-
tensity of each pixel, and ~l4 is a 4D vector describing the
low frequency components of lighting. S4 is a 4 � n ma-
trix whose rows each describe an image the object produces
when lighting consists of a single, low-frequency, spheri-
cal harmonic. The first row, ~�, is a vector describing the
albedo at each pixel. (We omit additional constant factors
since they do not change the space spanned by the vectors.)
The next three rows, ~� ~nx; ~� ~ny; ~� ~nz are each a vector de-
scribing the x; y or z component of the object’s surface nor-
mal at each point, scaled by its albedo. Abusing notation,
we write a product of two vectors to denote componentwise
multiplication of the elements of the two vectors. The four
harmonic images obtained in this case are identical to the
representation used in [14], although they interpreted this
as relevant to the case of an object illuminated in each im-
age by a perfectly diffuse light plus a single point source
that was visible to all surface normals.

If we take a second order approximation to lighting, an
image is described by~i = ~l9S9, where~l9 is a 9D vector and
S9 contains the object’s images under lighting from nine
harmonics that provide a second order approximation. The
first four rows of S9 are the same as S4. The other rows are:
~�(3~nz~nz �~1); ~�~nx~ny; ~�~nx~nz ; ~�~ny~nz ; ~�(~nx~nx� ~ny~ny).

We assume that a number of images of an object are
taken from the same viewpoint, but with different illumi-
nation. Denote the matrix of measurements by M . M is
f � n where f denotes the number of images and n de-
notes the number of pixels in each image (so every image
is a row in M ). Then, M can be approximated by a linear
combination of the harmonic images, that is,

M � LS;

where L (f � r) contains the low order coefficients of the
lighting and S (r � n) contains the harmonic images. r is
either four or nine. Our goal is to recover the harmonic im-
ages, S, since it is straightforward then to infer the surface
normals and the albedos of the object.

The first step is to factor M using Singular Value De-
composition (SVD). Assuming f; n � r, L and S can be
recovered up to a r � r linear ambiguity. Such a method
was proposed by [7] for the 3D linear space character-
ized in [21, 16] and by [14] for the 4D space that contains
the zero and first order harmonics. Using SVD we obtain
M = U�V T where U (f � f ) and V (n�n) are orthonor-
mal and � (f � n) is diagonal and contains the singular
values of M . The bulk of the energy in the images is con-
tained in the first r components. Consequently:

M � ~L ~S;

where ~L = U
p
�(fr) and ~S =

p
�(rn)V T , where �(fr)

(and �(rn)) denote the first r columns (and respectively the
first r rows) of �.

Both the first and second order methods are based on
the assumption that the low order harmonics will show up
in the space produced by SVD. This is reasonable, since we
know that they account for most of the energy in the images.
The 4D method assumes that the first four harmonics span
the same space as the first four principal components of the
images. Then we determine which sets of scaled surface
normals lie in this space with an albedo that also lies in this
space. The 9D method makes the weaker assumption that
the first order harmonics appear somewhere in the 9D space
spanned by nine principal components. In this case we look
for scaled normals that lie in the 9D space, and generate
harmonic images that span a similar space.

Recently, [19] has analyzed the relationship between the
subspaces produced by PCA and by images generated with
harmonic lighting. It is a subject of future work to use this
analysis to analyze the accuracy of each of our methods.

3.1 The Case of Four Harmonics

We have factored M to M � ~L ~S. This factorization is
non-unique up to a linear transformation, A, since ~L ~S =
~LA�1A ~S. So S � A ~S for an unknown A. In the 4D case
A is 4 � 4. In a second step we now show how to use a
constraint on S to reduce this ambiguity to a seven degree of
freedom scaled Lorentz transformation. This ambiguity can
be removed with additional constraints such as integrability.

Notice that every column p = (p1; p2; p3; p4)
T in S sat-

isfies: p21 = p22 + p23 + p24 (since p1 is the albedo at a point
and p2, p3 and p4 are the components of the surface normal
scaled by the albedo). This can be written in matrix nota-
tion as pTJp = 0, where J = diagf�1; 1; 1; 1g. Note the
geometric interpretation of this constraint; every column of
S is a point on the surface of the canonical unit sphere in
projective space P3. This constraint is not true of ~S, which
may be a linear transformation of S. We therefore reduce
the ambiguity by finding a linear transformation that forces
the points to lie on the unit sphere. Denote p = Aq, where
q is the corresponding column in ~S. Then qTATJAq = 0.
Denoting B = AT JA, this constraint becomes qTBq = 0.
This equation is linear and homogeneous in the components
of B. Note that B is symmetric, so the equation has 10 un-
knowns, and so at least 9 points are required to determineB
up to an unknown scale factor. To solve for B we construct
a system of equationsQb = 0. Q is n�10, and every row of
Q corresponds to one column of ~S. So for a column q in ~S
the corresponding row in Q is (q21 ; :::; q

2
4 ; 2q1q2; :::; 2q3q4).

b is a 10-vector b = (b11; :::; b44; b12; :::; b34)
T , where bij

are the elements of B. So we can find B up to a scale factor
by looking for the null space (or the best approximation to
the null space) of Q. As a result of this step we find a matrix
~B = �ATJA for some unknown scalar � 6= 0.

Next, we turn to factoring ~B to a product of the form
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~B = � ~ATJ ~A. Notice that if all the previous assumptions
hold ~B should have one negative eigenvalue and three pos-
itive ones (or vice versa). To see this let A = UA�AV

T
A

denote the singular value decomposition of A, then ~B =
�ATJA = �VA�AU

T
AJUA�AV

T
A . Since diagonal ma-

trices commute, and UT
AUA = I we obtain that ~B =

�VAJ�
2
AV

T
A . Clearly, this is an eigenvalue decomposition

of ~B with the eigenvalues given in the diagonal of �J�2
A,

and so the first of them differs in sign from the remain-
ing three. So we can factor ~B as follows. We apply an
eigenvalue decomposition to ~B, ~B = WJ�W T where the
columns of W contain the eigenvectors of ~B and � is a di-
agonal matrix that includes the absolute values of the eigen-
values of ~B. WLOG we order � and W so that the negative
eigenvalue is first. (If there is only one positive eigenvalue
we reverse the sign of ~B.) Next we define ~A =

p
�W T ,

and so ~B = ~AT J ~A. When the assumptions do not strictly
hold, or when there is significant noise, the eigenvalues of
~B may not have the proper signs. In that case we resort to
an iterative computation to find ~A that minimizes the Frobe-
nous norm k � ~B � ~ATJ ~Ak. (Note that we must minimize
this expression for both ~B and � ~B since the sign of � is
unknown.)

At this point we have recovered a valid ~A ~S. However,
there is still an ambiguity because some linear transforma-
tions of ~A ~S preserve the above constraints. Specifically,
the factorization of ~B is not unique since we can obtain
equally valid factorizations by multiplying ~A by any matrix
~C that satisfies ~CTJ ~C = J . Matrices that satisfy this con-
dition represent all the projective transformations that keep
the unit sphere fixed. This set of transformations forms the
Lorentz group that arises in Einstein’s relativity theory and
many other disciplines (for its use in vision, see [12]).

A Lorentz transformation has six degrees of freedom.
This is because the quadratic form ~CT J ~C = J provides
ten quadratic equations (the form is symmetric) in 16 un-
knowns, the components of ~C. These degrees of freedom
include three rotations of the (scaled) surface normals and
three imaginary rotations that blend the albedo with the
scaled surface normals.

Together with the unknown scale factor � we obtain a
seven parameter ambiguity. Let C satisfy A = C ~A (recall
that A is the matrix that separates ~S from the true harmonic
space S and that ~A is the matrix obtained by enforcing the
quadratic constraint), then using ~B = �AT JA and ~B =
~ATJ ~A we see that C must satisfy �CTJC = J .

We can resolve the ambiguity, for example, if we know
the surface normals and albedos in two points. Or, we can
remove the ambiguity by enforcing integrability as in [28].

In summary, the initial equation M � ~L ~S tells us al-
ready that the scaled surface normals lie in the row space
of ~S, obtained by SVD. Since ~S has four rows, this leaves
twelve degrees of freedom in the three scaled normals. We

have shown that the constraint that the first row of S, the
albedos, must equal the norm of the other three rows, the
scaled surface normals, reduces these degrees of freedom to
seven. We have also shown an effective procedure for com-
puting a valid harmonic space by constructing a matrix ~A
that can be applied to ~S to provide the albedos and scaled
surface normals, up to this ambiguity.

3.2 The Case of Nine Harmonics

We now present a method based on the weaker assumption
that the scaled surface normals lie in the space spanned by
the first nine principal components. Since at least 98% of
the energy in the reflectance function lie in a 9D space ([1]),
higher order components have little effect on the images,
and therefore on the 9D space found by SVD.

3.2.1 Recovery

As before, letM denote a matrix containing the images. We
use SVD to construct a 9D approximation such that M �
~L ~S. So ~L is an f � 9 matrix, and ~S is 9� n. If we assume
that the scaled surface normals lie in the row space of ~S,
then we can structure our search by seeking a 3� 9 matrix
A, such that:

A ~S =

0
B@

~�~nx
~�~ny
~�~nz

1
CA :

Given A, we have an estimate of an object’s structure.
We can evaluate how well this structure matches the ob-
served images by comparing it to the 9D linear subspace
generated by the harmonic images. This linear method of
comparing a model to an image is described in [1], but we
review it briefly here. From A ~S, we construct a 9� n ma-
trix, SA, containing the harmonic images of A ~S. Then we
determine how well this matches all images by computing
an error, E(A), as:

E(A) = min
L
kM � LSAk

where k:k denotes the Frobenous norm, and L is chosen so
as to minimize the error. Our goal, then, is to find A that
minimizes E.

We do this using an iterative optimization. First, as a
starting point, we guess that the scaled surface normals will
be the second, third and fourth rows of ~S, which are associ-
ated with the second through fourth largest singular values
of M . We know that in theory, the scaled surface normals,
which are the first order harmonics, are most important af-
ter the DC component, which contains the albedos of the
object. We then can use any general purpose optimization
method to try to find the A that minimizes E, from this
starting point.
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3.2.2 A Linear Ambiguity

When we represent an object’s images using a 9D linear
subspace, the question of ambiguity becomes: when do two
different sets of scaled surface normals lead to the same 9D
space? It is straightforward to show that if we apply any
scaled, 3D rotation to the scaled surface normals, we will
not change the 9D space of their harmonic images. There-
fore, we know that our method can only recover the scaled
normals up to a scaled rotation, at best. However, we also
know that applying an arbitrary linear transformation to the
scaled surface normals of an object will not change the en-
tire set of images that it produces, called its illumination
cone ([3]). On the other hand, applying a 3� 3 linear trans-
formation to the scaled normals of an object does change
its 9D space of harmonic images. This is easily verified
numerically. So a linear transformation alters our 9D ap-
proximation to the illumination cone without altering the
cone itself. This leads us to suspect that our approach can
only accurately recover the surface normals up to a linear
transformation. We now show this.

Suppose we alter the scaled surface normals. Since these
are the second through fourth harmonics, we abbreviate:
h2 = ~�~nz, h3 = ~�~nx, h4 = ~�~ny. Similarly, we let h1 = ~�,
h5 = ~�(3~nz~nz � ~1). Then, we consider applying a linear
transformation: 0

@
h03
h04
h02

1
A = T

0
@

h3
h4
h2

1
A ;

where h0i represents the harmonic images that results after
the transformation. Using SVD, we can write T as R1DR2,
where R1 and R2 are rotations, and D is a diagonal ma-
trix. Rotating the scaled surface normals h2; h3 and h4 is
just a coordinate change. This causes a phase shift; each
harmonic becomes a linear combination of the harmonics
of that order, but no energy is shifted across frequencies.
Therefore, the rotations leave the 9D space of harmonic im-
ages unchanged, and we need only consider changes caused
by the diagonal matrix. We now show that to first order this
has no effect on the first harmonic, the albedo.

We write D = diagf1+ d3; 1+ d4; 1+ d2g. We analyze
this to first order, taking the limit as di ! 0 and considering
the effect on first order harmonics. To first order, the effect
of scaling all of these components by different amounts is
just the sum of the effects of scaling each one separately.
So, without loss of generality, we can consider only the ef-
fect of scaling one, the z component. Then our problem
reduces to determining how h1, the albedo, changes as we
scale the second harmonic, h2, since scaling h2 leaves the
direction of h2; h3; h4 unchanged. For notational simplic-
ity, we consider the harmonic images at just one point.

We want to compute the following derivatives: dh1
dh2

and
dh5
dh2

. For this we use: h1 =
p
h22 + h23 + h24, and, using the

substitutions � = h1 and z = h2
h1

:

h5 =
1

2
(
3h22
h1

� h1)

These imply:
dh1
dh2

=
h2
h1

= z;

and

dh5
dh2

=
@h5
@h1

dh1
dh2

+
@h5
@h2

= �3

2
z3 +

5

2
z

If we now change h2:

h02 = h2(1 + Æ) = �z(1 + Æ)

(so h02 = h2 +4h2 with 4h2 = �zÆ). Then,

h01 � h1 +
dh1
dh2

4h2 = �(1 + z2Æ);

h05 � h5 +
dh5
dh2

4h2 =
�

2
(3z2 � 1 + (5� 3z2)z2Æ):

Finally,

h01 �
2

3
Æh05 = �(1 +

1

3
Æ +O(Æ2)):

This tells us that to first order, when we scale h2, the previ-
ous albedo, h1, lies in the linear space spanned by the new
harmonic images. Therefore, all components of the images
due to h1; h2; h3; h4 can also be produced by the new 9D
linear subspace we get after any linear transformation near
the identity.

The zero and first order harmonics have a much greater
effect on an object’s images than the second order harmon-
ics. This means that when the correct scaled surface nor-
mals account well for the images, this will be primarily be-
cause of the first four harmonic images they produce. Ap-
plying a linear transformation to the normals will, to first
order, generate a linear space that contains these four har-
monics, so that the new harmonics also account well for the
images. Therefore, our reconstruction based on the nine,
second order harmonics will be unstable to a linear trans-
formation of the normals. We observe this experimentally,
as well.

In sum, the method of this section finds a set of scaled
surface normals whose harmonic images match the ob-
served images well. Two things make it possible to solve
this problem efficiency. One is that because the true scaled
surface normals lie near the 9D space produced by perform-
ing PCA on the images, we have reduced the number of un-
knowns needed to specify the scaled surface normals in a
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scene from 3n to 27. The second is that we can use sim-
ple linear methods to evaluate how well a set of normals
fit the observed images. We can then solve this problem
with straightforward optimization techniques, whose effec-
tiveness is demonstrated in Section 5. However, we also
show that this method can only stably recover the normals
up to a linear transformation.

4 From Normals to Surfaces

Our work focuses on finding the scaled surface normals of
an object. Often, we would like to turn these into an inte-
grable surface, with height, z, given as a function f(x; y)
so that the partial derivatives (@f=@x; @f=@y; 1) match the
normals. We face two problems here, the linear ambiguity
in the normals, and turning a set of normals into a surface.

The linear ambiguity can be resolved by finding a lin-
ear transformation of the normals that make them consis-
tent with an integrable surface. This can be done up to a
subset of transformations called the generalized bas-relief
transformations (see [3, 28]). Since our work focuses on
finding the scaled normals, we remove remaining ambigu-
ities by hand in our experiments, but here we make a few
remarks about the interaction between the integrability con-
straint and the ambiguites of our approach.

With the addition of an integrability constraint, the 9D
method can determine a surface up to a bas-relief transfor-
mation. However the bas-relief transformations are differ-
ent from the Lorentz transformations. For example, if we
scale the z component of the scaled surface normals, this is
a simple bas-relief transformation. It preserves the first or-
der harmonics, but transforms the albedos outside the space
spanned by the scaled surface normals (this follows from
the derivation in Section 3.2.2), and therefore changes the
4D harmonic space of the normals. So this is not a Lorentz
transformation.

In fact, because the Lorentz ambiguity is different from
the bas-relief ambiguity, adding integrability to the 4D
method will lead to a unique solution for the surface. This
amounts to removing the bas-relief ambiguity using the sta-
tistical assumption that the first four harmonic images can
be identified as the dominant components of the image.

Once we have resolved any linear ambiguity, we may
also wish to turn the normals into a surface. This is straight-
forward; we can use standard techniques to fit the surface,
which has one degree of freedom per pixel, to unit surface
normals, which have two degrees of freedom, by solving a
quadratic minimization with linear constraints.

Specifically, denote the surface by z(x; y). The direc-
tions of the normals are approximately given by n(x; y) =
(p; q;�1), with p = zx and q = zy where zx and zy denote
the partial derivatives of z with respect to x and y respec-

tively. On a discrete grid, we may approximate p and q by

p � z(x+ 1; y)� z(x; y)

q � z(x; y + 1)� z(x; y):

Given a (recovered) scaled surface normal (nx; ny; nz), we
know that roughly

p = �nx
nz

q = �ny
nz

;

so we obtain the following constraints:

nzz(x; y)� nzz(x+ 1; y) = nx

nzz(x; y)� nzz(x; y + 1) = ny:

These are merely linear constraints on z(x; y), and can be
solved as an overconstrained linear system. Note that the
constraints are invalid near the rim of the object since there
nz � 0. In this case a different constraint can be used.
This constraint depends on the two above constraints, but
does not involve nz. The constraint comes from the fact
that p=q = nx=ny, and is given by:

ny(z(x; y)� z(x+ 1; y)) = nx(z(x; y)� z(x; y + 1)):

We can solve the obtained linear set of equations using a
least squares fit or we can apply in addition boundary con-
straints due to the rim points of the object (where the values
of p and q can be estimated directly from the image).

5 Experiments

We now present experiments to evaluate these methods. Be-
cause they ignore higher order harmonics, even in the ab-
sence of any sensing error, our methods will have some built
in error. So we first describe experiments on synthetic data
to establish some basic properties of the methods.

We generate square surfaces with random heights, and
extract 81 surface normals from them. We then generate 20
images of each surface, using lighting conditions that are a
combination of several random point sources and a diffuse
component for each image. We then solve for the normals
using the above two methods. For the 9D method, we opti-
mize using the MATLAB minimization routine “fminunc,”
which performs a line search in the gradient direction. This
has the virtue of being the easiest possible method to pro-
gram. Other methods, such as gradient descent may lead
to faster optimization, but our current method requires only
a few seconds for small simulations and about an hour for
real images, sufficient for our experiments.

Since we have ground truth available, once we compute
surface normals, we can find the linear or Lorentz transfor-
mation that best fits our solution to the correct one. Then
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Figure 1: One of the volleyball images (left), the surface produced by the 4D method (center) and by the 9D method (right).

Figure 2: On the left, two face images averaged together to produce an image with two point sources. Saturated pixels shown in white. In the center, the
surface produced by the 4D method. On the right, the surface from the 9D method.

we measure the average angle between the true surface nor-
mals and the recovered ones. Repeating this 400 times, for
the 9D method we find a mean error of 2.8 degrees, and
error of 3.6 degrees for the 4D method. (The standard devi-
ation of the means are 0.04 and 0.12 degrees, respectively.)
This tells us that our method will produce small errors even
in the absence of sensing error.

We can also use synthetic data to estimate how often op-
timization finds an optimal solution in the 9D case. To do
this, we can project the scaled surface normals onto the 9D
SVD space of the images. This is the solution closest to
ground truth in the space the algorithm searches. We use
this as a starting point for optimization to produce an es-
timate of the minimal error solution. We find that 97% of
the time, our algorithm finds a solution in which the error
function is no more than 1% greater than this solution.

Finally, we have run our algorithms on two sets of real
images. In all cases we subsampled the images consider-
ably (resolution varied between 60� 60 and 100� 80). In
some cases, these images contain unreliable pixels that have
been saturated. We remove these, and use Wiberg’s algo-
rithm [27] to fill in the missing data (see also [10, 22]). In
the volleyball images (Figure 1), we use 64 images taken
by researchers at Yale. Each image is lit by a single point
source. These controlled images could be used by other al-
gorithms (eg., [28]), but our algorithms do not make any

assumptions that take advantage of the presence of a single
source in each image. Next, we use a similar set of con-
trolled images of a statue of a face, but in this case we aver-
age pairs of images, to simulate having 32 images with two
point sources in each image. Pixels are marked saturated if
saturated in either image. Results are shown in Figure 2. In
each case, we generate a surface by matching some points
in the scene with hand chosen surface normals and using
these to resolve any ambiguity of the method.

6. Summary and Conclusions
This paper describes new methods for recovering the sur-
face normals in a scene using images produced under very
general lighting conditions. The first insight that allows us
to do this is that results due to [1, 20] show that even under
very general lighting conditions, the scaled surface normals
of a Lambertian object will lie in the low-dimensional space
spanned by the principal components of the image. This
reduces the search for surface normals to a problem with
relatively few variables.

We then show that with a 4D approximation, we can re-
cover the normals by solving an overconstrained linear sys-
tem. With a 9D approximation, we resort to a more general
optimization method. We analyze the ambiguities that result
from these linear methods. Finally, we show experimen-
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tally, that these methods can produce accurate reconstruc-
tions under lighting conditions that are beyond the scope of
previous algorithms.
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