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AbstractÐWe have recently proposed an approach to recognition that uses regions to determine the pose of objects while allowing for

partial occlusion of the regions. Regions introduce an attractive alternative to existing global and local approaches, since, unlike global

features, they can handle occlusion and segmentation errors, and unlike local features they are not as sensitive to sensor errors, and

they are easier to match. The region-based approach also uses image information directly, without the construction of intermediate

representations, such as algebraic descriptions, which may be difficult to reliably compute. In this paper, we further analyze properties

of the method for planar objects undergoing projective transformations. In particular, we prove that three visible regions are sufficient to

determine the transformation uniquely and that for a large class of objects, two regions are insufficient for this purpose. However, we

show that when several regions are available, the pose of the object can generally be recovered even when some or all regions are

significantly occluded. Our analysis is based on investigating the flow patterns of points under projective transformations in the

presence of fixed points.

Index TermsÐObject recognition, pose estimation with regions.

æ

1 INTRODUCTION

ESTIMATING the pose of objects is important both for
manipulating the objects and as a step in their

recognition. In this paper, we analyze the behavior of a
region-based method of determining the pose of planar
objects under projective transformations. Planar object
recognition is potentially useful not only because some
objects are flat, but also because some polyhedral objects
can be positioned using markings on their flat surfaces, and
because mobile robots may localize their position relative to
flat indoor surfaces. By allowing projective transformations
to represent pose, we handle a superset of true perspective
distortions and allow an object model to be acquired with
an uncalibrated camera of unknown pose and to be
matched to an image taken with an uncalibrated camera.

A basic question in pose estimation is how to represent
objects in order to estimate their pose accurately and
efficiently. Recently, we proposed a method for pose
estimation that uses regions ([1], [11]). This method expands
the repertoire of possible representational primitives, using
direct representation of region information. It does not
require an exact localization of features. It handles objects
with smooth curved boundaries, but does not require an
algebraic description of such objects. Moreover, the method
can recognize planar objects when the image regions are
occluded, without needing to derive information about the
extent of this occlusion. Also, region information can be
seamlessly combined with local features, when they are
available. Finally, this method computes the pose of objects
efficiently using linear programming.

In [1], we introduced the method and explored its
properties for planar objects undergoing similarity and affine

transformations. We also showed that the method could be
applied to the projective case and stated some preliminary
results about this case. In this paper, we more thoroughly
consider the case of aligning an image to a model of a planar
object undergoing a projective transformation. We focus on
the most basic problem of determining when there is enough
region information to determine object pose. We prove that
three regions generally determine a solution uniquely. In
addition, we show that for a large class of objects two regions
are insufficient for this purpose. This complements our
previous results showing that two regions determine a
unique solution under affine transformations. At the same
time, we show that when several regions are available the
pose of the object can generally be recovered even when all
regions are significantly occluded.

We should compare these results to corresponding ones
for other pose determination methods. First, a projective
transformation relating a model with an image can be
determined using four or more corresponding simple local
features, such as points or lines (such methods are
discussed, e.g., in [9]). Our algorithm addresses the problem
of pose determination when such local features are difficult
to find or match. For example, in smooth convex shapes,
there may not be local features that can be reliably
computed and matched for arbitrary perspective views.

Second, one can determine the pose of two regions using
their second moments or algebraic descriptions of conics
(e.g., [8], [12]). We show that our method generally requires
more than two regions. However, methods based on
moments or algebraic descriptions require regions that
have no occlusion. Our method correctly uses information
derived from partially occluded image regions without any
prior knowledge of which regions are occluded or the locus
of occlusions. We show theoretically that our method
produces correct results when several regions are matched
and at least two are unoccluded, while others are arbitrarily
occluded. We demonstrate experimentally that our method
can correctly determine pose even when all regions are
partially occluded. By handling arbitrarily occluded, arbi-
trarily shaped regions, our method handles some problems
that cannot be solved by other existing methods.
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The paper is divided as follows: In Section 2, we review the
method of recognition with regions. In Section 3, we derive
necessary and sufficient conditions for unoccluded regions to
produce a unique projective transformations and show that,
in general, three regions produce a unique solution. Results a
bit weaker than those shown in this section had been stated
without proof in [1]. In Section 3.2, we show that two
unoccluded regions generally do not produce a unique
solution and, in Section 3.3, we explore the contribution of
partially occluded regions in providing a unique solution.

2 RECOGNITION WITH REGIONS

In this section, we briefly review the scheme for recognition
using region correspondences. A more detailed description
can be found in [1]. We restrict our discussion to planar
objects undergoing projective transformations.

In our scheme, an object is modeled as a set of convex
regions (denoted by V1; . . . ; Vk � R2) and an image of the
object is given by a corresponding set of regions (denoted
by R1; . . . ; Rk � R2). Our task is to determine the transfor-
mation �T 2 T that maps every model region Vi to its
corresponding image region Ri (1 � i � k), where T
denotes the set of projective transformations. Basri and
Jacobs [1], [11] discuss issues involved in applying the
method to nonconvex regions, using their convex hulls, but
we will not discuss that here.

Determining a transformation that perfectly maps a set
of model regions to their corresponding image regions is
generally a nonconvex optimization problem since we can
have multiple, locally optimal solutions. Moreover, such a
transformation would not allow for partial occlusion of the
image regions. For these reasons, we divide the constraints
that finding a perfect match would place on the transforma-
tion into two sets, one of which is unaffected by occlusion.

Forward constraints: Every model point ~p 2 Vi should project
inside the region Ri (that is, �TVi � Ri).

Backward constraints: Every image point ~q 2 Ri is the
projection of some model point ~p 2 Vi (that is, �TVi � Ri,
or equivalently, Vi � �Tÿ1Ri).

Individually, each set of constraints produces a convex set
of feasible transformations. Thus, each set of constraints can
be solved efficiently by computing a linear discriminant
function.

We proceed by defining the backward constraints under a
projective transformation (see Fig. 1). The forward constraints
can be defined in the same way since planar objects models
and images are interchangeable. Solving for the transforma-
tion using the backward constraints alone is particularly
useful in the case of occlusion. Image regions that are partly
occluded lie inside the corresponding model regions (after the
model and the image are brought into alignment), but the
inclusion may be strict due to the occlusion.

We solve the backward constraints by formulating
constraints on �Tÿ1, the inverse of the transformation we
seek. For notational convenience, we let T � �Tÿ1. Let ~q �
�u; v; 1�T 2 V be a model point written in homogeneous
coordinates. Below, we denote a line of the form Ax�By�
C � 0 as a 3-tuple, �A;B;C�T (so the line equation is
expressed as a dot product �A;B;C��x; y; 1�T � 0). Then,
since V is convex, every line ~l � �A;B;C�T which does not
intersect the interior of V satisfies

~l T~q � 0: �1�
Let ~p � �x; y; 1�T 2 R be an image point. The backward
constraints imply that the appropriate transformation
T maps ~p inside V . This implies that there exists some
point ~q 2 V such that

~q � �T~p; �2�
where T is 3� 3 nonsingular and � is a scalar factor. When
T is restricted to be affine, its third row is given by �0; 0; 1�
and � � 1 (and, so,~q � T~p). In the general projective case, �
can be an arbitrary nonzero value. Furthermore, in actual
images since the object is constrained to appear in front of
the camera, � must be positive. Combining (1) and (2), we
obtain that

�~l TT~p � 0; �3�
with � > 0. Since � is positive, it can be eliminated from the
equation, yielding

~l TT~p � 0: �4�
This equation is linear in the unknown transformation
parameters, which are the components of T .

The backward problem introduces such a constraint for
every pair of a point in the image regions and a tangent line
to the model regions. In the forward problem, the model
and image change roles. The number of constraints for a
curved object is therefore infinite. For such objects, we
obtain a finite system of inequalities by sampling the set of
constraints. For polygonal regions, the number of indepen-
dent constraints is finite. These constraints are defined by
the vertices of the image regions and the sides of the model
regions and the rest of the constraints are redundant.

The one-way problem, therefore, can be expressed as
follows: Given a finite set of constraints

~l Ti T~pi � 0; i � 1; . . . ; n; �5�
we seek a matrix of parameters T that is consistent with the
constraints.

Solving the one-way problem (5) involves finding a
linear discriminant function. One method of finding a linear
discriminant is by using linear programming. To generate a
linear program a linear objective function should be
specified. A common way of defining such a linear program
is by introducing an additional unknown, �, in the
following way:

max� s:t: ~l Ti T~pi � �; i � 1; . . . ; n : �6�
A solution to (5) exists if and only if a solution to (6) with
� � 0 exists. (Note that other objective functions, e.g., the
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Fig. 1. The backward constraints require that a feasible transformation

satisfies �TV � Ri. Equivalently, V � �Tÿ1�Ri� � T �Ri�.



perceptron function, can be used for recovering T , see, e.g.,
[7] for a discussion of solutions to the linear discriminant
functions problem.)

To give a rough sense of the actual runtime of our
algorithm, we note that convex curves can be accurately
approximated using a relatively small number of line
segments (while it is possible to prove bounds on this, we
just note that, in practice, a dozen or so line segments will
usually provide an excellent approximation to a convex
region in an image). The noise introduced by this approx-
imation can be reasonably made smaller than the noise
generally present in region segmentation. If we match
k polygonal regions, each with m sides, we will have
km2 constraints. Because the linear program has a constant
number of variables (nine in the projective case), it is
possible to solve it in time that is linear in the number of
constraints (Seidel [15] gives an algorithm that runs in
expected time that is O�d!n�, with n constraints and
d variables). More practically, Simplex is found to solve
such problems in a time roughly proportional to dn2 (Strang
[16]). Matlab's linear programming code solves a problem
with five, 16-sided polygons, in about one-half a second on
a laptop with a 400 MHz, Pentium II processor.

2.1 Uniqueness

Whenever an error-free image contains an instance of the
model, perhaps with some occlusion, the backward
constraints (5) are satisfied by the correct alignment
transformation. However, in certain cases, other transfor-
mations may also satisfy the backward constraints. An
algorithm for finding a linear discriminant function is likely
in such cases to return one of these incorrect transforma-
tions, typically by allowing the image regions to contract
inside the corresponding model regions. Therefore, it is
important to determine when the backward constraints
specify a unique solution.

We define the uniqueness problem as follows: Let M be a
model composed of k convex regions V1; . . . ; Vk. Let T 2 T
be a projective transformation and let R1; . . . ; Rk be the
corresponding image regions, so that TRi � Vi �1 � i � k�.
Consider the backward constraints between the model and
image. Does there exist another transformation T 0 6� T 2 T
that satisfies these backward constraints? We focus first on
the case where all k image regions are unoccluded.
However, our method derives only valid constraints from
arbitrarily occluded regions. So, if k unoccluded regions
produce a unique result, so do any set of regions with k of
them unoccluded.

Basri and Jacobs [1] proved a basic lemma that the
uniqueness of a one-way matching problem depends on the
model alone. If the model is nondegenerate, a unique
solution will be obtained when the model is matched to any
of its images, while if the model is degenerate, multiple
solutions will exist whenever the model is matched to any
image of the object. The lemma states the following claim:
The solution to a one-way matching problem under a group
of transformations (similarity, affine, or projective) is
unique if and only if there exists no transformation of that
group (other than the identity) which projects the model
regions entirely inside themselves. The transformation that
produced an image does not affect whether it leads to a
unique pose. Thus, we can modify the problem as follows:
Let M be a model composed of k convex regions R1; . . . ; Rk.

Does there exist a transformation T 6� I (where I denotes
the identity transformation) such that TRi � Ri for all
1 � i � k?

Another property that is used below (and was used
already in [1]) is that transformations that project the model
regions entirely inside themselves introduce fixed points
inside the model regions. That is, if T �Ri� � Ri, there exists
~p 2 Ri such that T �~p� � ~p. The presence of fixed points, and
their particular nature, will play a key role in our proofs.

3 PROJECTIVE TRANSFORMATIONS

In [1], we showed that two distinct regions generally
determine the pose of a planar object undergoing similarity
or affine transformations. In this section, we extend the
uniqueness results to the projective case. This depends on a
further analysis of the fixed points, which is given in
Section 3.1. Previous researchers ([4], [17]) have analyzed
the fixed points of optical flow fields as dynamical systems,
obtaining characterizations of the possible local properties
of fixed points. We extend that work by presenting a
taxonomy of the possible combinations of fixed points that
can occur in a planar projective flow field. In [4], it was
pointed out that these fixed points are the eigenvectors of a
transformation matrix and we use that fact as the basis of
our analysis. This analysis is relevant to our uniqueness
questions because we also show that any projective
transformation mapping a region inside itself must have a
sink point inside that region. Our analysis shows that either
there is just one sink point in planar projective flow or there
is a line on which all points are sink points. This implies
that, if three regions have no single line intersecting them
all, they must lead to a unique transformation. It also allows
us to derive necessary and sufficient conditions for collinear
regions to produce nonunique solutions.

We use these conditions in Section 3.2, however, to show
that every pair of distinct triangles or ellipses is degenerate.
Finally, in Section 3.3, we explore, given three regions, to
what extent one of the regions can be occluded and still
maintain uniqueness.

3.1 Conditions for Uniqueness

We begin with a general discussion of the fixed points that
may occur in planar projective flow. First, we note that a
planar projective transformation can be written as a
3� 3 matrix. Points in the projective plane can be written
in homogeneous coordinates as 3D vectors, �x; y; w�. The
image coordinates of this point are then �x=w; y=w�. So, if
p � �q for some nonzero scalar �, then p and q represent the
same point in the plane. p is a fixed point if Tp � �p.
Therefore, if p is a fixed point of T , p is an eigenvector of T ,
with � being the associated eigenvalue.

Next, we consider a basic property of the fixed points
that belong to regions obeying the one-way constraints
under projective transformations. As stated above, to
determine whether a model gives rise to unique solutions,
without loss of generality, we may assume that the identity
transformation maps the model to the image and ask
whether T 6� I exists such that p 2 Vi ) Tp 2 Vi. Note that if
T obeys this constraint, it must also be the case that
T �Tp�� 2 Vi, and, in general, that Tnp 2 Vi, for all n.
Therefore, we are especially interested in characterizing
the limit points of Tnp.
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There are several possible cases that can occur in the
limit as n goes to infinity for Tnp. First, Tnp can fail to
converge (e.g., by forming a cycle) when T has complex
eigenvalues. T can have either zero or two complex
eigenvalues. When it has two complex eigenvalues, it can
have only one fixed point (only one eigenvector associated
with a real eigenvalue). When Tnp converges to a point, this
point will be an eigenvector of T . In general, this will be an
eigenvector associated with T 's largest eigenvalue. This is
well-known and is the basis of the power method of
computing eigenvalues. Tnp will only converge to a
different eigenvector in special cases. If p is an eigenvector
to start with, then obviously Tnp always remains at p. Or, if
p is a linear combination of two eigenvectors associated
with nonmaximal eigenvalues of T , then Tnp will remain a
linear combination of these two eigenvectors and will
generically converge to the one that is associated with the
second largest eigenvalue.

Geometrically, this means that when Tnp converges to a
point, there may be a line in the image such that for points on
this line Tnp does not converge to a fixed point associated
with the largest eigenvalue. However, all other points in the
plane do converge to such fixed points. We will now analyze
topologically distinct cases involving these fixed points.
Table 1 summarizes the results of this analysis.

First, consider the case in which T has three linearly
independent eigenvectors associated with its largest eigen-
value. This case occurs only when T has a single real
eigenvalue of multiplicity three. In this case, all linear
combinations of these eigenvectors are also eigenvectors,
implyingthatallpoints in theplanearefixedpointsandT � I.
Therefore, T cannot be distinct from I and have three linearly
independent eigenvectors associated with one eigenvalue.

Second, we consider the case in which there is no
eigenvector associated with a real eigenvalue of greatest
magnitude. This can only occur when a complex eigenvalue
is the eigenvalue of greatest magnitude. In this case, there
are two complex eigenvalues and one real one. So, there is
only one fixed point of the transformation and there can
only be one region that obeys the one-way constraints.

Third, consider the case in which there is one eigenvector
associated with a real eigenvalue of greatest magnitude. In
this case, for any point p that is not a linear combination of
the other two eigenvectors, Tnp converges to this sink
eigenvector. Any region of nonzero area that obeys the
backward constraints must contain this sink point, since for
any point in the region, Tnp is also in this region. Therefore,
only one region can obey the backward constraints.

Finally, we consider the case in which the largest
eigenvalue, �, is real and has two linearly independent

eigenvectors, p1 and p2. In this case, from elementary linear
algebra, we know that since Tp1 � �p1 and Tp2 � �p2,
T �ap1 � bp2� � ��ap1 � bp2�, and ap1 � bp2 is a fixed point of
T , for any choice of a and b. That is, all points on the line
formed by p1 and p2 are fixed points and we say this line is
pointwise fixed. For any p, if p is not the third eigenvector of
T , Tnp converges to some point on this line. Therefore,
every region that is not a point and obeys the backward
constraints must contain a point on this line and we have
proven:

Theorem 1. Let V1; V2; V3 � R2 be three regions, each containing
more that a single point such that there exists no straight line
passing through all three regions. Then, the solution to the
one-way matching problem with these regions as a model
under a projective transformation is unique.

We have also shown that if two or more regions do obey
the one-way constraints, then there must be a transforma-
tion T mapping the regions inside themselves such that T
has exactly two linearly independent eigenvectors asso-
ciated with its largest real eigenvalue. We now describe the
form T must have more precisely.

First, we show that if T obeys the one-way constraints on
two distinct regions, T must have a third eigenvector.
Suppose this were not the case. Then, T must have only one
eigenvalue with two associated eigenvectors. Without loss
of generality (WLOG), we may assume that the pointwise
fixed line is the x axis in which case we have:

T �
1 b 0
0 1 0
0 d 1

0@ 1A
(since we can scale the matrix without changing the
projective transformation it produces, we may assume
WLOG that � � 1). Note that such a T has only two
eigenvectors, unless T � I. Then, we have:

Tn �
1 nb 0
0 1 0
0 nd 1

0@ 1A:
For p � �x; y; 1�, Tnp � �x� nby; y; ndy� 1�. In the limit as n
goes to infinity, Tnp therefore converges to the point �bd ; 0�.
Therefore, in this case, any region with nonzero area that
obeys the backward constraints must contain the point
�bd ; 0�. This cannot be the case for two distinct regions. This
proves that T must have a third eigenvector.

In summary, T can obey the backward constraints with
two or more distinct regions of nonzero area if and only if T
has three eigenvectors, two of which are associated with the
largest eigenvalue. These two eigenvectors imply that T has
a pointwise fixed line, l. If we call the third eigenvector q, it
follows that all lines through q are mapped by T onto
themselves since T maps lines to lines and all lines through
q intersect l also and, so, have two fixed points. These are
called fixed lines. If WLOG, we choose our coordinate
system so that l is the x axis and q � �0; 1; 1�, then:

T �
1 0 0
0 1ÿ a 0
0 a 1

0@ 1A
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for 0 < a < 1. T maps all points that are not fixed away

from q and towards l, as shown in Fig. 2.
We can derive one further useful condition if T obeys the

one-way constraints with respect to a region Ri. Consider

any point p that is on the boundary of Ri, so that the line

through p and q is tangent to Ri. Then, p must also lie on l.

Otherwise, Tp also lies on the line tangent to Ri, but Tp 6� p,

and so Tp is not in Ri, violating the one-way constraints. (It

is also possible that a tangent line to Ri contains more than

one point, if part of the boundary of Ri is a straight line. In

this case, similar reasoning shows that at least one point on

Ri on this tangent line must also lie on l). Alternately, we

can say that, if we draw lines through q tangent to all the

regions, then the tangent points on the boundaries of these

regions must all be collinear. This is also depicted in Fig. 2.

It is easy to see that this is not only a necessary but also a

sufficient condition for T to obey the one-way constraints.
We have therefore shown (see Fig. 2):

Theorem 2. Let V1; V2 . . .Vk � R2 be distinct regions with

nonzero areas. Then, the solution to the one-way matching

problem with these regions as a model under a projective

transformation is nonunique if and only if there exists a line l

through the regions and a point q outside l such that

contracting Vi in directions emanating from q toward l

(denoted by Tl;q) implies

Tl;q�Vi� � Vi; i � 1; 2 . . . k:

This theorem is the natural generalization of the two
region case under affine transformations. In that case, a
degeneracy occurs when the tangent lines are parallel (i.e.,
intersect at a point at infinity). In the projective case, a
degeneracy occurs when the tangent lines intersect at any
point in the plane. Note also that the contracting transforma-
tion, which keeps a line pointwise fixed and has an additional
fixed point, is known as a projective homology. Homologies
were used recently to detect repeated structures and
coincident sets of parallel lines in images [13], [14].

Using this result, we can show that generically, even
when three smooth regions are intersected by a single line
segment, they will give rise to a unique solution. This is
because there are two degrees of freedom in placing a line
that intersects all three regions. However, the condition that
all six points where this line intersects the regions will have
tangents that intersect at a single point provides four
constraints on the location of the line. Simple equation

counting shows that generically, we will not be able to
satisfy these constraints.

Figs. 3 and 4 demonstrate this result using real images. We
have manually extracted regions from the images in Fig. 3 and
used these regions to recover the projective transformation
relating the two images. Fig. 4 shows the result of aligning the
two images using three regions. As can be seen, three regions
led to a fairly good alignment, indicating that the projective
transformation was correctly recovered.

3.2 Nonuniqueness of Two Regions

Similar reasoning shows that two regions will not give rise to
a unique solution when one can use three degrees of freedom
to satisfy three constraints. The resulting equations are
nonlinear so we are not guaranteed that a solution will exist,
but it is plausible that often two regions provide insufficient
constraint to determine the solution uniquely. To test this we
examine two types of shapes, triangles and ellipses. Below,
we show that both objects composed of two triangles and
objects composed of two ellipses give rise to nonunique
solutions, supporting the intuition that for a large class of
objects two regions do not introduce sufficiently many
constraints to uniquely determine a solution.

We now turn to showing that the solution for the
projective one-way matching problem with a model
consisting of two distinct triangles is always nonunique.
To show that such a model is degenerate, we have to find a
line l through the two triangles and a point ~q outside the
two triangles such that contracting the two triangles toward
l in directions emanating from ~q will contract the triangles
inside themselves. Given two distinct triangles notice that
one can construct a line that enters each triangle at a vertex
and exits the triangle at an edge or vice versa (see, e.g., Fig. 5
in which the line l enters the triangles at ~p1 and ~p4 and exits
the triangles at the edges connecting ~p2;~p3 and ~p5;~p6).
Denote this line by l; l will be the fixed line. Now, continue
the two edges from which l exits until they intersect (which
if they are parallel will be at infinity). Denote the point of
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Fig. 2. Two model regions lead to nonunique projective transformations
when a line l, exists such that the tangents at all intersection points meet
at a single point q. In this case, the regions can contract toward l in the
directions emanating from q.

Fig. 3. Two views of a drawing by Kandinsky.

Fig. 4. Aligning the two views with the one-way constraints using three
regions. The figure shows an overlay of the two images. The green
regions represent the regions used for alignment. These regions are the
sun, the tree top, and the tilted dome.



intersection by ~q. It can be readily verified that contracting
the triangles toward l in directions emanating from ~q will
keep the triangles inside their original regions. Conse-
quently, under projective transformation, any model con-
sisting of two distinct triangles is degenerate.

Next, we show that the solution for the projective one-
way matching problem with a model consisting of two
distinct ellipses is always nonunique. An ellipse in the
projective plane is defined by a quadratic form ~x TA~x � 0,
where A is a 3� 3 symmetric matrix with negative
determinant. Given an ellipse (or a general nondegenerate
conic), two points ~x and ~y are called conjugate with respect
to the conic if they satisfy the bilinear equation ~x TA~y � 0.
For a given point ~x, the set of conjugate points to ~x forms a
straight line. This line, l, called the polar line of ~x, is given
simply by ~x TA~y � 0 since the quadratic form is linear in ~y.
Similarly, ~x is called the pole of l.

Here are a few examples of conjugate points and
polarities. A point is self-conjugate if and only if it lies on
the conic. The polar line of a point on the conic is the
tangent to the conic through that point. The polar line of
a point ~u outside a conic is given by the following
construction: Connect ~u to the conic by two tangent lines.
Each tangent meets the conic at a single point. The polar
line of ~u is the line connecting the two intersections of the
tangents with the conic.

The following lemma establishes that when two ellipses
are contracted inside themselves, the fixed line is, in fact,
the polar line of the fixed point, ~u, from which contraction is
emerging. This polarity relationship is used in Lemma 1 to
relate the uniqueness of two ellipses with the generalized
eigenvalue problem.

Lemma 1. The solution to the projective one-way problem for two
distinct ellipses ~x TA~x � 0 and ~x TB~x � 0 is nonunique if and
only if the matrix Aÿ1B has a positive eigenvalue.

Proof. According to Theorem 2, two regions V1 and V2 give
rise to a nonunique solution if and only if there exists a
line l through the regions and a point ~u outside the
regions such that contracting the regions in directions
emerging from ~u toward l will map V1 and V2 to inside
themselves. Notice that, for smooth bounded regions, the
directions of contraction at the points of intersection of l
with the boundaries of V1 and V2 must be tangential to
the boundaries or else the regions will not contract
within themselves. Consequently, suppose that now V1

and V2 are two ellipses, ~x TA~x � 0 and ~x TB~x � 0,
respectively, then l must be the polar line of ~u with
respect to both A and B.

Since l is the polar line of ~u with respect to both A and
B, it is given by both ~x TA~u � 0 and ~x TB~u � 0. These
two equations represent the same line if and only if they
are scaled versions of one another, that is

�A~u � B~u �7�
for some � 6� 0. � and ~u, respectively, are called the
generalized eigenvalue and eigenvector of B with respect
to A. Alternatively, if we multiply the last equation by
Aÿ1 we obtain

Aÿ1B~u � �~u: �8�
We have proven so far that contraction is possible if and
only if there exists a point ~u outside the two ellipses
which is an eigenvector of Aÿ1B.

Next, we show that ~u lies outside the two ellipses if
and only if � > 0. Multiplying the two sides of (7) by ~u T

from the left we obtain that

�~u TA~u � ~u TB~u: �9�
Suppose that ~u lies outside the two ellipses, then ~u TA~u >
0 and ~u TB~u > 0, and, consequently, � > 0. Conversely,
suppose � > 0, then~u TA~u and~u TB~u share the same sign.
If ~u TA~u < 0 and ~u TB~u < 0, then ~u must be contained in
both ellipses, but this is impossible because the two
ellipses are distinct. Therefore, both ~u TA~u and ~u TB~u
must be positive and ~u lies outside the two regions. tu
Using Lemma 1, we can now show:

Theorem 3. The solution to the one-way projective problem with
a model consisting of two ellipses is always nonunique.

Proof. According to Lemma 1, the solution to the one-way
projective problem with a model consisting of two
distinct ellipses ~x TA~x � 0 and ~x TB~x � 0 is nonunique
if and only if the matrix Aÿ1B has a positive eigenvalue.
Note that both det�A� and det�B� are negative. Therefore,
det�Aÿ1B�must be positive. This implies that Aÿ1B has a
positive eigenvalue. To see this, note that the eigenvalues
of C are the roots of the characteristic polynomial of C
which is a third order polynomial. Every third order
polynomial has either three real roots or two complex
conjugate roots and one real root. In case all three roots
are real, they cannot all be negative since their product
must be equal to det�C� which is positive. In case only
one of the three roots is real, this root still must be
positive because the two other roots are conjugate and so
their product is positive. Consequently, Aÿ1B must have
at least one positive eigenvalue and, so, the solution to
the one-way projective problem for any two ellipses is
nonunique. tu
An example of two ellipses and the fixed point and line

that they produce is shown in Fig. 6. One eigenvector
produces the fixed point; the other two eigenvectors, which
correspond to negative eigenvalues, lie on the fixed line and
are located inside the two ellipses. Note that it is known
that, given two pairs of ellipses related by a projective
transformation, the transformation that aligns the two pairs
of ellipses exactly is determined uniquely. Theorem 3 shows
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Fig. 5. Two model regions lead to nonunique projective transformations
when a line l, exists such that the tangents at all intersection points meet
at a single point q. In this case, the regions can contract toward l in the
directions emanating from q.



that this transformation is not determined uniquely by the
backward (or forward) constraints alone. However, by
considering the backward constraints, we can align more
than two convex shapes even in the presence of unknown
occlusion.

Fig. 7 illustrates these results on a real image. Here, two
regions are used to determine projective pose, producing an
incorrect pose with significant contraction.

3.3 Uniqueness in the Presence of Occlusion

The implication of Section 3.2 is that, for a large class of
objects, two regions are insufficient to determine a
projective transformation uniquely. In this section, we
examine analytically the case of a model composed of three
regions when one of the regions appears partly occluded.
We show below that it is possible to occlude significant
portions of one of the regions and still obtain a unique
solution. We then describe experiments that indicate that a
unique solution is often obtained with zero or one
unoccluded regions.

In the analysis below, we assume that the regions are
ellipses and that no straight line can traverse all three regions.
Furthermore, we can assume WLOG that the occluded region
is a circle. This will require preprocessing the model by
applying to it an affine transformation, but such a transfor-
mation does not effect whether a unique solution exists and it
does not change relative areas. According to Theorem 2, a
nonunique solution is obtained only if it is possible to contract
the two ellipses inside themselves toward a pointwise-fixed
line in directions emanating from a point outside the two
ellipses. As shown in Section 3.2, the number of different
contractions can be either one of three according to the
number of positive eigenvalues.

Consider the case in which the two ellipses introduce a
single contracting transformation. (It can be readily shown
that it is generally impossible to have more than one
contracting transformation.) Suppose that the fixed point is
at infinity (in which case, the contracting transformation is
in fact affine). In this case, we obtain the situation illustrated
in Fig. 8. The contracting transformation due to the two
unoccluded ellipses is not feasible because the boundaries

of the third region that face the fixed line will prevent the
third region from contracting. Only when this side is
occluded entirely will the contracting transformation
become feasible and the solution cease to be unique.

To get a sense of the likelihood that occlusions may destroy
uniqueness, we now restrict ourselves to the case that the
occluded region is a circle of unit radius. (The following
results do not extend to the case that the occluded region is an
ellipse since in that case the likelihood that occlusion destroys
uniqueness will vary with the orientation and the aspect ratio
of the ellipse.) Let occlusion be determined by a half-plane
passing through two randomly selected points on the
boundary of the circle. (It can be readily verified that a
uniform selection of pairs of points on the boundary of the
circle yields a uniform selection of half-planes.) To construct a
destructive occlusion, we need to select the two points in the
upper half of the circle and, in addition, select the side of the
plane that includes the center of the circle. The chance of this
happening (assuming uniform distributions) is 0.125. Using
this model, we can also estimate the expected area of
occlusion that can be applied to the third region without
destroying uniqueness. Next, we show that under this model
we can on average occlude up to 93.5 percent of the area of the
third region and still maintain uniqueness.

Denote the points of intersection of the occluding half-
plane with the circle by v� and v� (where � and � denote the
angles that v� and v�, respectively, create with the x-axis,
assuming the origin is set at the center of the circle; see Fig. 9).
The half-plane divides the circle into two portions, the visible
part, whose angular extent is �ÿ �, and the occluded part,
whose angular extent is 2�ÿ �� �. Note that to destroy
uniqueness, the occluded part must include the center of the
circle.Denote� � �ÿ �.Theareaof thevisible part isgivenby
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Fig. 6. Contraction directions with two ellipses. The generalized
eigenvalues of the ellipses are 13.14, -31.10, and -0.04. The eigenvector
corresponding to the only positive eigenvalue determines the fixed point
(denoted by u) and its polar line with respect to either of the ellipses is
the pointwise fixed line (denoted by l). The two eigenvectors that
correspond to the negative eigenvalues determine two points that lie on
the fixed line and are located inside the two ellipses. (The points are
denoted by circles and their respective polar lines are denoted by the
dashed lines.)

Fig. 7. Aligning the two views with the one-way constraints using two
regions. The figure shows an overlay of the two images. The green
regions (the sun and the large dome) represent the regions used for
alignment.

Fig. 8. The effect of contracting two ellipses (V1 and V2) inside
themselves on a third region. This figure illustrates the case that the
external fixed point is at infinity. The lower half of the circle (V3) prevents
the contraction. Consequently, to destroy uniqueness the entire lower
half of the circle must be occluded.



0:5��ÿ sin��: �10�
The occluded part complements the visible portion to � and
so its area is given by

�ÿ 0:5��ÿ sin��: �11�
To compute the expected area of destructive occlusion, we
need to integrate this measure over all choices of � and � in
the upper portion of the circle. This can be achieved by
varying � between 0 and � and � between 0 and �. The
measure of such choices is �2=2. Consequently, the expected
area of destructive occlusion is given by

A � 2

�2

Z �

0

Z �

0

�ÿ �ÿ �
2
� 1

2
sin��ÿ ��

� �
d�d� � 5�

6
� 1

�
:

�12�
And since the total area of the circle is �, we get that this
area composes

F � A
�
� 5

6
� 1

�2
� 0:9347 �13�

of the area of the circle. Consequently, the expected area of
occlusion that can be tolerated by the scheme is about
0:9347 (93.47 percent).

This analysis also holds in most cases when the fixed line
intersects the third region. In general, in such cases, the
boundary of the circle includes two portions that prevent
contraction so that both portions must be occluded to destroy
uniqueness. The likelihood of that is the same as the
likelihood of destroying uniqueness when the fixed line does
not intersect the third region. An exception to that is the case
that the tangent to the boundary of the region at one of the two
intersection points happens to be pointing toward the
external fixed point. In this case, the likelihood of destroying
uniqueness increases considerably. Nonetheless, there are
only measure zero models that are subject to this condition.

A similar analysis, with similar results, can be applied in
case the fixed point is located at a finite position.

To provide a more detailed sense of how much informa-
tion is really needed to determine pose, we have also run
controlled simulations in which we have varied the number
of unoccluded and partially occluded regions. First, we
generated random convex hexagons by choosing six vertices
on the boundary of the unit circle and then applying a
randomly chosen 2� 2 linear transformation with eigenva-
lues chosen from a uniform distribution between zero and
one. These served as our model regions. We formed models
by arranging the centers of the regions on grid points in a five
by five rectangle (we tried varying the size of the rectangle,

but this seemed to have little effect). We varied the total
number of regions from two to eight, with zero, one, two, or
three of these completely unoccluded and the rest randomly
occluded. Each occluded region was partially covered by a
half-plane. Half-planes were chosen from a uniform distribu-
tion, subject to the constraint that they occlude the chosen
region. Since each half-plane and its complement are equally
likely occluders, on average, half of each region's area was
occluded and half of its perimeter was occluded. Randomly
chosen occluded models were then checked to see whether
they yield unique poses.

The results of these simulations are shown in Fig. 10. Each
data point is based on 1,000 simulations. First, when three
unoccluded regions were chosen, this always led to a unique
solution, thoughthis isnotshowninthefigure.Whenonlytwo
regions were used, a unique solution was never produced.
These results are predicted by our theoretical results.

However, we also see that a small number of occluded
regions can quickly lead to a unique solution. For example,
when we use five regions that are all occluded, we obtain a
unique solution more than 90 percent of the time. Roughly
speaking, we see that two regions occluded on average by
half contribute about as much to a unique solution as does
one unoccluded region and that about two and a half
regions are needed to usually produce a unique solution. In
Fig. 11, we show an example of a real image in which four
occluded regions are used to find a unique solution.

The results of this section demonstrate that although
three unoccluded regions are needed to guarantee unique-
ness, in practice our algorithm can also combine constraints
from multiple partially occluded regions to produce a
unique pose. In fact, even when each region is partially
occluded, we can obtain correct poses by combining
constraints derived from each region that are correct, even
in the presence of occlusion. This is in contrast to many
other methods of pose determination.

4 CONCLUSION

In this paper, a method for recognition that uses regions
to determine the pose of objects was analyzed. We
considered the case of planar objects undergoing projective

526 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 5, MAY 2001

Fig. 9. A circle partly occluded by a half-plane. v� and v� denote the
points of intersection of the half-plane with the circle. The angular extent
of the visible portion is � � �ÿ � and the angular extent of the occluded
portion is 2�ÿ �.

Fig. 10. Results of simulations. Three curves show cases when zero,
one, or two regions are completely unoccluded. The fraction of times
that models generate unique solutions are shown as a function of the
total number of regions.



transformations and proved that the method produces
unique, correct solutions in previously unexplored situa-
tions. Our results were obtained by looking at the flow
patterns of points under 2D projective transformations in the
presence of fixed points. We have proven that three visible
regions are sufficient to determine the transformation
uniquely. In addition, by considering general pairs of
triangles and ellipses, we showed that two regions are often
insufficient to determine the correct transformation uniquely.
However, when three regions are available we showed that,
depending on the model, it is possible to occlude significant
portions of the area of one of the regions without destroying
uniqueness. Furthermore, our simulations indicate that with
a larger number of regions it is possible to occlude more of the
regions and still recover the pose. In fact, when the number of
regions available is at least five pose can often be determined
even if all of the regions are partly occluded.

These results indicate that by using only a small number
of regions it is possible to determine the pose of objects in
the presence of significant occlusion. This is particularly
interesting because when we use the backward constraints
we do not need to specify the location of occlusion.
Consequently, in many situations it is not mandatory that
we identify the locations of occlusion in order to determine
the pose of objects in the image. The backward constraints
implicitly account for these occlusions and if sufficient
information about the shape of the object appears in its
nonoccluded portions then the pose of the object can be
recovered by solving the backward constraints.
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Fig. 11. (a) A new picture of the Kandinsky with occlusion. (b) The pose

that is determined using the four shaded regions (the sun, the tree top,

and both domes), which are all partially occluded.


