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Abstract
We introduce a method for unsupervised clustering

of images of 3D objects. Our method examines the
space of all images and partitions the images into sets
that form smooth and parallel surfaces in this space.
It further uses sequences of images to obtain more re-
liable clustering. Finally, since our method relies on
a non-Euclidean similarity measure we introduce alge-
braic techniques for estimating local properties of these
surfaces without �rst embedding the images in a Eu-
clidean space. We demonstrate our method by apply-
ing it to a large database of images.

1 Introduction
Perceptual categorization is one of the most intrigu-

ing problems in computer vision. One of the funda-
mental questions in categorization is what process can
cause natural classes of objects to emerge from a set
of unlabeled images. In an attempt to provide an an-
swer to this question we introduce below a system that
begins with a large number of unlabeled images (or se-
quences of images) of 3D objects and attempts to clus-
ter the images according to the shape of the objects.
Clustering images is important if we wish to automat-
ically construct models of both classes and individual
objects. In addition, it may provide insight into the
way object categorization is implemented in the hu-
man visual system.

When we try to cluster objects by comparing their
appearances we must take into account two problems.
First, when we compare two images of two similar ob-
jects we may �nd that the images are very di�erent
from each other because the two images are taken un-
der very di�erent viewing conditions. Likewise, when
we compare two images of two di�erent objects we may
�nd that due to the loss of information with projec-
tion the images are very similar to one another. Con-
sequently, it is often di�cult to determine whether the
similarity measured between pairs of images indicates
similar relationships between the objects, or whether
it is merely an artifact of viewing conditions.

One possible way to circumvent this problem is by
comparing a large set of images. When we compare
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many pairs of images of objects we may expect that
the similarities between the objects will be reected
in the relationships between their sets of images. Our
task, therefore, is to �nd e�ective ways to infer the
similarities between objects from the collective simi-
larities between the images.

In this paper we develop a system for clustering
unlabeled images of objects according to their shape.
Our method is based on the observations that objects
produce images that in the space of all possible images
form surfaces that are generally low dimensional and
smooth. In addition, the surfaces of images produced
by similar objects are often fairly close and parallel.
We thus approach the problem of image clustering by
introducing a general method for surface clustering
whose objectives are to detect smooth surfaces and
group together near-parallel surfaces. We further use
sequences of images (tracks) to overcome non-smooth
transitions in these surfaces and to resolve accidental
intersections. The method we introduce can deal with
similaritymeasures that are only locally Euclidean. In
particular, we develop techniques for clustering that
do not require embedding the images in a Euclidean
space, but work directly with similarities.

We test the validity of our assumptions experimen-
tally by applying the system to a fairly large database
of images of 18 segmented objects. For the experi-
ments we de�ne a simple similarity measure, one that
is based on measuring the distortion of local features.
Our experiments demonstrate that using our method
natural classes of objects emerge with high accuracy.
These results indicate that surface clustering is a pow-
erful mechanism that can be used to �nd useful clus-
ters of images even when a simple similarity measure
is used.

The paper contains the following sections. In Sec-
tion 2 we briey review the existing approaches to
categorization. Section 3 lays out the principles of
our clustering algorithm. Section 4 describes our al-
gorithm in detail, and Section 5 o�ers experimental
results.

2 Background
Most existing approaches to the categorization of

3D objects from 2D images look in the images for
properties of the objects that are invariant over a wide
range of viewing conditions. These include methods
that extract global features of the objects and clus-
ter the images according to these features [16, 7]. A



second family of methods relies on the part structure
of objects for categorization [5, 4, 18, 6, 20, 27, 10].
The underlying assumption of these methods is that
objects that belong to the same perceptual category
maintain roughly the same set of parts. Finally, there
are methods which seek to interpret the perceived
shapes in terms of their function [33, 13, 22, 28].

Unfortunately, it has proven di�cult to extract in-
variant properties from images. Representations that
rely on global properties tend to be sparse, and so they
often are applied to problems that involve very few
classes. Part structure e�ciently characterizes many
classes of interest. Nevertheless, many shapes are dif-
�cult to describe by parts (e.g., shoes). Also, part
extraction from images tends to be sensitive to small
changes of the shape, and many objects appear to
produce di�erent sets of parts from di�erent aspects.
Methods that rely on function su�er from similar prob-
lems. For this reason most existing studies of func-
tionality were applied to 3D representations of objects
rather than to their 2D projections. It is interesting
to note that there is also an ongoing debate in the psy-
chology literature as to whether perceptual categories
are characterized by invariant properties (see [17]).

The di�culty in using invariance leads us to seek
other mechanisms for categorization. The assump-
tion underlying invariance-based approaches, that the
properties which are essential for determining the class
of objects can be detected in single images, is replaced
by a method which determines the class of objects
from large ensembles of images. Because a large num-
ber of images are considered it will be possible to ob-
tain useful clusters even with a fairly simple similarity
measure. Our motivation in using large data sets of
images is driven in part by the progress in technology
which makes the storage and comparison of large num-
bers of images feasible. In addition, images in large
numbers are clearly available to the human visual sys-
tem. The extent to which this large volume of images
plays a role in perceptual categorization has not yet
been determined.

Our solution to the problem of image clustering
is based on detecting the smooth and parallel sur-
faces in the space of all images. Representing the
images of objects as surfaces in a high dimensional
space was the idea underlying several studies of recog-
nition which attempt to identify individual instances
of objects [9, 14, 19, 21, 29]. Similar ideas also ap-
peared in studies which attempt to categorize objects
using an a-priori known model or in the context of
supervised learning (e.g., [31, 30, 8, 3]). These stud-
ies use supervision to derive a feature space in which
the images of similar objects produce tight clusters.
Unlike these studies, we address the problem of unsu-
pervised clustering. Also unique to our method is the
use of a non-Euclidean similarity measure (see [2, 15]
for further insights to this problem). Finally, the idea
of detecting smooth surfaces of images from a collec-
tion of single images and tracks is inspired in part by
methods for curve extraction and perceptual grouping
(e.g., [11, 23, 32, 34]). Our problem, however, is more
di�cult since we attempt to detect surfaces of arbi-
trary dimension in a high dimensional, non-Euclidean

space.

3 Clustering Appearances
In this section we describe our solution to the prob-

lem of image clustering. We begin by explaining why
image clustering can be recast as a problem of surface
clustering. We next outline the steps of our algorithm
and then describe these steps in detail.

In our method we assume that a large number of
images are available to the system. When we consider
a large number of images it is useful to think of the
images of an object as a surface in the space of all
possible images. Every image of the object will be a
point on this surface. The dimension of the surface
will generally be much lower than the dimension of
the space [9, 14, 19, 21, 24, 29], but it may be arbi-
trary, due to changes in lighting, viewpoint, articula-
tion, etc., and may even vary at di�erent places. (In
fact, the set of images may even have volume in space
due, e.g., to lighting variations, see [1]). In addition,
the surface may self intersect, e.g., due to symmetries
of the object. In general, we may expect the surfaces
produced by the set of images of objects to typically
be continuous and slowly curving. The surfaces will be
continuous since small changes in the viewing param-
eters will generally produce only small changes in the
appearance of the objects. This will be generally true
except at the boundaries of very di�erent aspects of an
object, when a small rotation of the object may change
its appearance drastically. The assumption that the
surfaces are smooth amounts to the assumption that
small changes in viewing condition have a roughly lin-
ear e�ect on the appearance of objects. This means,
for example, that if moving the light source by a tiny
amount changes the appearance of an object in a par-
ticular way (e.g., makes some patches darker and oth-
ers brighter), then a further tiny motion of the light
source will change the image at a similar rate. Al-
though the assumption of smoothness is violated in
some circumstances, we expect it to be true in general
and use it as a working hypothesis, which we need to
validate experimentally. This smoothness assumption
is known to be exactly true of lighting and viewpoint
changes for some limited circumstances ([29, 24]).

An important issue for clustering is the relation be-
tween surfaces representing the images of di�erent ob-
jects. When two shapes are similar we may anticipate
that all corresponding projections of these shapes seen
under identical viewing conditions will also be similar.
This implies that the two surfaces representing the im-
ages of these shapes will be relatively close to each
other in most places. The actual distance between
the surfaces may vary from place to place, but not by
much. In contrast, when two shapes are very di�erent
we may expect that most of their projections will not
be similar. As a result the surfaces representing their
images will generally be distant from one another. An
exception occurs when accidental (or nearly acciden-
tal) views exist, in which case the two surfaces may
cross each other, or for a small section become close
to one another.

To cluster the images of similar objects we need
to detect the nearly parallel surfaces and distinguish



them from surfaces that accidentally cross one an-
other. To perform this clustering we can use the
following procedure. First, we identify local patches
on the surfaces and estimate their dimension and ori-
entation. Then, we attempt to determine what set of
surface patches represent the same individual object.
Patches of low dimension will tend to correspond to
views of a single object, whereas patches of high di-
mension may indicate the presence of an accidental
intersection of surfaces representing the images of dif-
ferent objects. In addition, pairs of patches that form
smooth continuations are likely to come from a sin-
gle object. Next, we attempt to connect surfaces that
represent similar objects by identifying patches that
are close to each other and have similar orientation.
In our implementation we combine both smooth con-
tinuation and parallelism into a single a�nity measure
that reects the evidence that two patches come from
a single class.

The analogy to surface clustering demonstrates why
standard pattern recognition approaches to clustering
fail to cluster images. To illustrate this consider the
images of two objects that share an accidental view.
The trajectories of these objects in the space of all
images near the location of their intersection form a
cross-like shape. Standard clustering algorithms are
not designed to separate the two lines of a cross.

An important source of information for image clus-
tering is found in sequences of images. Tracks provide
a reliable indication that their images are projections
of the same individual objects. Thus, we may inte-
grate the information which indicates the preferred
clustering for all the images in a track to obtain a more
reliable clustering solution. The use of tracks is par-
ticularly useful if their images lie near a non-smooth
transition in the surface representing the object. In
addition, tracks can resolve accidental regions of inter-
section of the sets of images of two di�erent objects.
The role of tracks in surface clustering resembles the
role of curve fragments in perceptual grouping. Many
subjective contours are easier to perceive when curve
fragments are available (as opposed to only a sparse
set of points), in particular when the available frag-
ments include the corners and high curvature sections
of the boundaries of shapes [4].

Based on these observations we propose the follow-
ing algorithm for image clustering. Given a set of
images or sequences of images we �rst compute the
similarities between all pairs of input images. Next,
for every image we select the images that are most
similar and use them to estimate the local orientation
and dimension of the surface unit that includes the
image. We then consider every pair of surface units
and compute an a�nity measure that reects the dis-
tance between the units and their relative orientation.
Subsequently, for every pair of tracks we compute an
a�nity measure by integrating the a�nities between
their surface units. Finally, we turn our problem into
a graph partitioning problem by applying a standard
clustering algorithm to a graph obtained by assigning
weights according to the a�nities between the tracks.

In the next section we assume that the similarities
between the images are already given and proceed to

formalize the steps of the clustering algorithm. The
similarities are assumed to locally be Euclidean and
roughly linear. We will verify the accuracy of this as-
sumption for a particular similarity function in Sec. 5.
Based on these assumptions we describe a method for
estimating the dimension and orientation of surface
units directly from the similarities without embedding
them �rst in a Euclidean space. We then use these es-
timates to assign a�nities between tracks and perform
the clustering.

4 Computing a�nities between tracks
In this section we describe how to compute the

a�nities between tracks based on the similarities be-
tween the images. Since it is desired that the a�nities
between tracks will reect the distance and relative
orientation between their surface units we will need
to describe how these can be estimated. The di�-
culty is that the similarities between images are not
Euclidean and therefore it may not be possible to em-
bed the images in a Euclidean space without distort-
ing the similarity values. A common method to over-
come this problem is to use multidimensional scaling
(MDS) to �rst embed the images in a Euclidean space
in a way that minimizes the necessary distortion of
the distances [25]. MDS, however, is an iterative opti-
mization process that often converges to a local min-
imum, and so it may be slow and unreliable. As an
alternative, we show below how we can estimate the
dimension and orientation of surfaces directly from the
distances without �rst embedding them in space.

4.1 Estimating dimension
We assume that the similarities between the im-

ages are expressed as distances, that is, they are non-
negative and vanish for identical images. Given such
distances we turn to estimating the dimension of sur-
face units. The term surface unit is used here to de-
note a surface patch around a given image, which we
estimate from the set of nearby images. We next show
how the dimension of surface units can be estimated
directly from the distances.

Let p1; :::; pn be n points in Rd and let p0 denote
the origin. Suppose we wish to determine the surface
that passes through p0 whose distance to p1; :::; pn is
minimal. Denote by P a d� n matrix whose columns
are p1; :::; pn. Then the dimension of the surface can
be found by looking at the eigenvectors and eigenval-
ues of the scatter matrix PPT , where the dominant
eigenvectors point to the principal orientations of the
surface and the other eigenvectors point to directions
in which the surface is thick or curved.

Another matrix that is related to the scatter ma-
trix is the Grammian matrix, PTP . The Grammian
matrix has exactly the same eigenvalues as the scatter
matrix, and their corresponding eigenvectors are re-
lated by P , since PTPx = �x implies PPTPx = �Px.
Consequently, if x is an eigenvector of the Grammian
matrix with an eigenvalue � then Px is an eigenvec-
tor of the scatter matrix with the same eigenvalue.
The Grammian matrix contains the inner products
between all the pairs of points p1; :::pn. These inner
products can be recovered from the distances between



triplets of points. Given three points o, u, and v, let o
denote the origin, the inner product between u = u�o
and v = v � o can be computed as follows:

kv � uk2 = kuk2 + kvk2 � 2uTv:

Therefore,

uTv =
1

2
(kuk2 + kvk2 � kv � uk2);

and consequently

uTv =
1

2
(d2uo + d2vo � d2uv);

where the notation duv represents the distance be-
tween the points u and v. Notice that this way each
component of the Grammian matrix is determined by
a small number of points (up to three points). There-
fore, if only a few of the distances are corrupted they
will a�ect only a small portion of the Grammian ma-
trix.

The process of building the Grammian matrix re-
quires us to choose an origin. In general, we want
to take the centroid of the points to be the origin.
Denote by P̂ the matrix P after its columns are trans-
lated to bring their centroid to the origin. It can be
readily veri�ed that P̂ = PC where C = I � 1

n11
T ,

and 1 2 Rn is a vector whose components are all 1's.
Thus we need to multiply the Grammian matrix by C
from both sides.

Once the eigenvalues of the Grammian matrix are
recovered the dimension of the underlying surface unit
can be estimated. In the experiments below we allow
our objects to rotate in two directions. We thus expect
the surface units to be two-dimensional. If we �nd
the dimension of a unit to be higher than two it may
indicate that the images in this unit come from more
than a single object. We can thus rank the surface
units by the ratio between the second largest and third
largest eigenvalues. The larger this measure is, the
more likely it is that the surface is two-dimensional.

4.2 Estimating relative orientation
Next, we want to determine the relative orientation

of two surface units. Given two linear subspaces the
angles between them can be estimated as follows. Let
A and B be two d � n and d � m matrices whose
columns are orthonormal and span the two spaces.
The cosines of the angles between the two surfaces are
given by the singular values of BTA (see, e.g., [12],
pp. 584{585). Denote the points which determine the
two surfaces by p1; :::; pn (with the origin set at p0)
and by q1; :::; qm (with the origin set at q0), and denote
their associated matrices by P and Q respectively. In
our case we face two problems since P and Q are un-
known and since their columns are not orthonormal.
Nevertheless, we can recover the angles as follows.

A andB contain orthonormal representations of the
two surfaces. Such representations may include the
dominant eigenvectors of the scatter matrices associ-
ated with the surfaces, PPT and QQT respectively.

Recall that these eigenvectors are related through
P (and Q) to the corresponding eigenvectors of the
Grammian matrix. Thus, the columns of PX (where
X is a matrix whose columns contain the dominant
eigenvectors of PTP ) provide an orthogonal (but not
necessarily orthonormal) basis to the surface. To nor-
malize this basis we need to divide each column by
kPxk =

p
�. Let D� = diag

�
1=
p
�1; :::; 1=

p
�n

�
,

where �1; :::; �n are the eigenvalues of PTP , then we
may write A = PXD�. Similarly, we may write
B = QYD�, where Y is a matrix whose columns
contain the dominant eigenvectors of QTQ, D� =
diag

�
1=
p
�1; :::; 1=

p
�m

�
, and �i are the eigenvalues

of QTQ. Thus,

BTA = D�Y
TQTPXD�:

The eigenvectors and eigenvalues of the two scatter
matrices are known at this stage, so what is left to re-
cover is the matrix QTP . This matrix contains inner
products of the form (qj � q0)

T (pi � p0). These in-
ner products can be recovered from distances between
quadruples of points, as follows. Given four points, a,
b, u, and v the inner product between u� a and v� b
is given by

(u� a)T (v � b) =
1

2
(d2ub + d2va � d2uv � d2ab):

Finally, in this case too we need to choose an origin.
Again, we set the origin at the centroid of the points
by multiplying QTP by C from both sides.

4.3 Computing a�nities and clustering
Based on the dimension and relative orientation of

surface units we build the a�nities between surface
units as follows. Let r(u) denote the score assigned
to a unit u reecting its dimension. Let duv denote
the distance between the units (we take this to be
the distance between the two images around which
the units were formed), and let �1; :::; �n denote the
angles between the units (in our experiments n = 2)
then we de�ne:

C(u; v) = ed
2

uv
=���2

1
=�1�:::��

2

n
=�n ;

for some constants �; �1; :::; �n. The a�nity between
u and v is de�ned as

A(u; v) = C(u; v)r(u)r(v):

To obtain the a�nities between two tracks we sum
A(u; v) over all pairs of units in the two tracks.

Once we obtain the a�nities between the tracks
we build a complete graph whose nodes represent the
tracks to be clustered and set the weights of the edges
to be the a�nities between the tracks. At this point
we treat the problem as a standard graph clustering
problem. In our experiments we used a recursive appli-
cation of a normalized cut algorithm (as used in [26])
to partition the graph. This produces a binary tree
in which the hierarchy of the clustering is reected in
the levels of the tree.



5 Experiments
In this section we describe the experiments con-

ducted to validate our method. We begin by briey de-
scribing the similarity measure used, which penalizes
for the distortion of local features. As we demonstrate
in our experiments the measure is strongly a�ected by
viewing conditions and deteriorates fairly quickly with
a change in viewing position. Consequently, we will
show that standard clustering algorithms when given
this measure fail to detect satisfactory clusters of im-
ages. The measure, however, is fairly smooth, and
so we can use it to produce a�nities between tracks
in the manner described in the previous section. We
will show that using our method, when applied to a
database of 1710 segmented images of 18 objects, nat-
ural classes of objects emerge. Finally, we will show
that already with tracks of moderate lengths we man-
age to achieve excellent classi�cation results.

5.1 Similarity between images
Our measure of similarity is based on measuring

the distortion of salient local features between images.
While we restrict the scope of this paper to segmented
images, we have chosen a similarity measure that re-
lies on local features in the expectation that it can
be extended in the future to deal with segmentation
errors and occlusion.

Formally, we identify salient features using a win-
dow of 16 � 16 pixels. For every such window in the
image we measure the variance of grey-level values and
select those windows which have maximal variance. To
reduce the amount of computation whenever two se-
lected windows are very close to each other (less than
four pixels away) we keep only the one with higher
variance. Once we have selected the salient windows
we normalize their grey level values by bringing their
means to zero and variance to one. Then, for every
selected window in one image we compare it to all win-
dows (not only the salient ones) in proximate locations
in the other image. Given two windows let d denote
the distance between their location, and let r1; :::; r4
denote the Euclidean di�erence between their normal-
ized grey-values at four di�erent scales, then we de�ne
the similarity between the two windows, w1 and w2,
as

S(w1; w2) = e�(d
2=�+r2

1
=�1+:::r

2

4
=�4)

with � = 1250 and �1 = ::: = �4 = 1. Then, for every
salient window in one image we maximize this func-
tional over all windows in the other image, yielding:

S(w1) = max
w2

S(w1; w2):

Finally, we de�ne the similarity between the two im-
ages, S(I1; I2), to be the average of all S(w) taken over
all salient windows in both images.

The similarities de�ned above always return values
between zero and one. They return one when applied
to two identical images. When we rotate an object
slightly the similarity between the images degrades un-
til it reaches the level of noise. This produces a bell
shaped function (see Fig. 1(left)). This is a typical be-
havior of so called quasi-invariantmeasures, where the
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Figure 1: Left: The similarities between a side view of a shoe
(90�) and other images of the same shoe obtained by horizontal
rotations. Right: linear regression of the similarity values be-
tween images of a CAD model of a cow taken under rotation of
�20� in multiples of 2�.

width of the bell indicates the speed of degradation of
the chosen measure.

After computing the similarities we would like to
convert them to distances. The distance between
any two images should be non-negative, and vanish
for identical images. We achieve this by de�ning:
D(I1; I2) = � logS(I1; I2)):

Our method assumes that the distance measure is
roughly linear locally. An example of a linear regres-
sion for an object rotated by small amounts is shown
in Fig. 1(right). Notice that our distance measure is
non-Euclidean and does not even form a metric. The
process of evaluating the distance between two images
involves for every salient feature a search for the best
corresponding feature in the other image. This pro-
cess is not guaranteed to �nd a corresponding feature
or to keep consistent correspondences in di�erent com-
parisons. Thus, it is not di�cult to produce examples
that violate the triangular inequality.

5.2 Results
To test our method we have collected images of 18

objects (Fig. 2). For every object we took 95 images
according to the following procedure. The objects
were put on a turntable that was rotated about the
vertical axis by multiples of 10� from 0� to 180� pro-
viding 19 images per object. A camera mounted on
a robotic arm was rotated around the horizontal axis
of the object to �ve positions each di�ering by 10�.
The total number of images in our database, therefore,
was 1710 = 18� 19� 5. The objects were put before
a turquoise background cloth to allow their complete
automatic segmentation. After segmentation the im-
ages were translated and scaled uniformly so that the
object would �t a square of 250 � 250 pixels. The
images were then converted to black-and-white, and
the background intensity was set to three standard
deviations below the mean of the grey level values of
the object. We then compared all pairs of images to
determine the similarities between them.

Below we examine our results with respect to �ve
classes that emerged from the experiments, shoes, cars
(including the truck), vegetables, wild cats, and thick-
skinned animals (hippopotamus and rhinoceros). Suc-
cess rates were evaluated with two commonmeasures,
accuracy and purity. Given the images of a certain
class and given a computed cluster, accuracy is the
fraction of class members that are included in the clus-
ter. Purity is the fraction of clustered images that be-



l/n 8/12 6/16 4/24 2/48 1/95
Omit 4 8 17 29 23
Shoes 100(100) 98(100) 93(100) 83( 89) 62(100)
Cars 100( 98) 100( 97) 100( 96) 96( 94) 87( 90)
Veg. 100(100) 98(100) 100(100) 99( 99) 100( 98)
Cats 98(100) 97(100) 98(100) 94(100) 86(100)
Thick 100(100) 98(100) 87(100) 81(100) 78(100)
Mean 99(100) 98(100) 96( 99) 91( 96) 81( 98)
+kNN 99(100) 98( 99) 95( 98) 86( 90) 74( 96)

Table 1: Applying our method to the single images (right
column) and to random tracks from the database (averages over
20 runs). Top row: mean length and number of tracks. Second
row: tracks reported still unclassi�ed in the �rst, clustering
stage of our algorithm. Bottom row: performance after these
tracks are classi�ed using k-nearest neighbors.

l/n 8/12 6/16 4/14 2/48 1/95
Mean 93(85) 88(81) 85(75) 76(71) 68(68)

Table 2: Mean performanceof our methodwhen tested against
the images of single objects.

long to the class. High accuracy indicates that most
images of that class were clustered together, while high
purity indicates a small number of false positives. We
measure accuracy and purity for every class by select-
ing the cluster that maximizes the product of these
two measures.

Table 1 shows the result of applying our method to
the database. In typical applications the �ve classes
emerged as the top-most clusters. Already when the
method was applied to single images a signi�cant im-
provement over the standard algorithm was obtained.
The high purity values, in particular, indicate that
there was a tendency to split classes rather than to
confuse between classes. When the method was ap-
plied to tracks of moderate lengths a near perfect clus-
tering was obtained.

One di�culty in evaluating our results stems from
the following problem. In our method we estimate the
dimension and orientation of surface units. To avoid
instabilities in this process we insisted on having suf-
�ciently many images in each neighborhood. This led
to throwing away a signi�cant number of images from
the database. To control for this problem we clas-
si�ed the omitted tracks using a k-nearest neighbors
algorithm. As can be seen in Table 1, with tracks of
moderate lengths there was no noticeable di�erence in
the performance.

Finally, Table 2 shows the result of detecting the
images of individual objects with our method. In con-
trast with the classi�cation results we see here that
many objects were confused with other objects of the
same class. This is far from surprising. In an anal-
ogy to perceptual grouping consider an image contain-
ing sets of parallel curve fragments. Any attempt to
complete such fragments to curves will necessarily be
problematic because every fragment will �nd several
almost equally good completions. The same happens
with our clustering algorithm.

6 Conclusion
We have addressed the problem of clustering unla-

beled images of 3D objects in an attempt to develop
a method that will cause natural classes of objects
to emerge. Unlike existing approaches, our method
does not rely on extracting properties of the objects
that are invariant to changes in viewing conditions.
Instead, we have argued that the problem of cluster-
ing images can be solved by considering a large num-
ber of images of objects provided that the method of
clustering properly accounts for the relationships be-
tween the sets of images of the objects. Our method is
based on the observation that image clustering resem-
bles the problem of perceptual grouping of points and
curve fragments in images. Consequently, we have de-
veloped a method to partition the images into slowly
curving and parallel surfaces. We further use tracks
of images to overcome non-smooth transitions in these
surfaces and to resolve accidental intersections. We
have tested our algorithm on a fairly large database of
segmented images and demonstrated that the method
is capable of recovering natural classes of objects with
very few false positives.

A signi�cant portion of the paper was devoted
to dealing with a non-Euclidean similarity measure.
Many existing systems compute similarities using
some ad-hoc algorithm that does not guarantee that
the obtained similarities obey the metric rules. This in
fact is the case also with our similarity measure. We
circumvent this problem by assuming that the mea-
sure of similarity is roughly Euclidean locally, and by
developing methods to estimate the dimension and ori-
entation of the surfaces which represent the images of
objects directly from the distances. Our experiments
demonstrate the validity of this assumption.

Our clustering algorithm relies on a similaritymea-
sure that is based on measuring the distortion of local
features. We chose to use this measure because we
wanted a measure that could deal, in principle, with
segmentation errors and partial occlusion, and we in-
tend in the future to test it with such data. However,
we acknowledge that local features fail to capture im-
portant information about shape, and we can foresee
the use of other, more sophisticated measures, such as
ones that consider the apparent part structure of the
object (without assuming that part structure is invari-
ant to viewing conditions), in a similar framework of
clustering.

Examining the results of a clustering algorithm
when applied to common shapes is not a straightfor-
ward task. When people examine such results they
bring to mind all their past experience which leads
them to categorize objects the way they do. This ex-
perience may rely on non-visual cues, color, texture,
context, and other sources of information that extend
beyond the scope of the tested algorithm. A further
complication is that the quality of the clustering is
not independent of the speci�c objects on which it
was tested. The experiments demonstrate that our
method is capable of detecting natural classes for a va-
riety of objects. Nevertheless, we intend in the future
to test the algorithm on larger data sets of images in
order to obtain a better evaluation of its performance.



Figure 2: The objects (5 shoes, 2 cars, a truck, 2 peppers, 2 onions, a lion, a lioness, two tigers, a hippopotamus, and a rhinoceros).
The objects are shown in di�erent views to illustrate the variability of our database.

Finally, running the clustering algorithm on all
1710 images required signi�cant computational re-
sources, since it involved 1710� 1710 comparisons of
image pairs. This complexity is impractical if we wish
to consider signi�cantly more objects in the database
or to accumulate larger numbers of images for each
object (e.g., in order to deal with varying illumination
conditions or non-rigidities). Nevertheless, our com-
putations are essentially local, in the sense that only
similarities between pairs of images that resemble each
other matter for the computation. This implies that
in principle we do not have to compute the similari-
ties between all pairs of images, but to consider only
potential candidates that may resemble one another.
We intend in the future to study mechanisms to reduce
the amount of computation required by the method.
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