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Face recognition under changing lighting conditions is a challenging problem in computer vision. In this
paper, we analyze the relative strengths of different lighting insensitive representations, and propose effi-
cient classifier combination schemes that result in better recognition rates. We consider two experimen-
tal settings, wherein we study the performance of different algorithms with (and without) prior
information on the different illumination conditions present in the scene. In both settings, we focus on
the problem of having just one exemplar per person in the gallery. Based on these observations, we
design algorithms for integrating the individual classifiers to capture the significant aspects of each rep-
resentation. We then illustrate the performance improvement obtained through our classifier combina-
tion algorithms on the illumination subset of the PIE dataset, and on the extended Yale-B dataset.
Throughout, we consider galleries with both homogenous and heterogeneous lighting conditions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

There are many algorithms in the literature that address the
problem of lighting insensitive 2D face recognition. This is a chal-
lenging problem because lighting drastically affects the appear-
ance of a face. In this paper, we attempt to address this problem
by understanding the relative merits of different lighting insensi-
tive representations. We make two main contributions. First, we
compare a number of algorithms (both class-based, and class-inde-
pendent) from the perspective of how well they capture different
properties of the human face such as, changes in albedo, and
changes in surface normal orientations. After analyzing the relative
strengths of these algorithms, we propose effective classifier com-
bination schemes that encode such information to produce better
recognition performance.

1.1. Relation to prior work

There are quite a few works in the literature that provide a com-
parative study of lighting invariant face recognition algorithms. For
instance, Ruiz-del-Solar and Quinteros [1] investigate a set of illu-
mination compensation and normalization approaches in an eigen-
space-based face recognition setup. They compare the algorithms
based on the modeling stages required, simplicity, speed and rec-
ognition rates. France and Nanni [2] compare the recognition rates
of a set of image based and 3D model based algorithms, and then
ll rights reserved.
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propose a simple fusion algorithm based on the sum rule to high-
light the advantage of classifier fusion.

We mainly differ from the existing surveys in two aspects. First,
we study how robust different representations are, in capturing
face properties (such as changes in albedo, and surface normal ori-
entation) under lighting variations. Next, we are specifically inter-
ested in performing recognition when there is only one exemplar
for each person in the gallery. On top of this, we consider galleries
with both homogenous and heterogeneous lighting across different
subjects. This setting, though restrictive, applies to many real-life
conditions wherein we may have only one sample picture of a per-
son (with arbitrary lighting condition) for recognition. This makes
the problem much more challenging. We consider two experimen-
tal settings. One (in Section 3), when there is no prior training
information on the effect of typical lighting changes on faces,
where we analyze the performance of five class-independent rep-
resentations. And the other (in Section 4), which provides some
training data showing the possible lighting conditions, wherein
we also include four class-based algorithms in the analysis, since
they can use the prior lighting information to learn to perform
classification.

1.2. Contributions of this paper

Given this experimental setup, we make the following three
observations to enable better understanding of lighting insensitive
face recognition. First, after reviewing nine algorithms we consider
in Section 2 (spanning both class-based and class-independent ap-
proaches), in Section 3.1 (and in Section 4.1) we compare their per-
formance on the PIE data set [3]. We find that two very simple
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Fig. 2. Sample images from the extended Yale-B dataset [4].
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methods perform the best. Overall a very simple comparison meth-
od using the direction of the image gradient performs better than a
number of more recent approaches.

Second, we note that a face contains quite different sources of
information, including albedo changes (e.g., eyebrows), regions of
rapid change in surface orientation (e.g., nose) and smooth regions
(e.g., cheeks). By looking at individual regions, we can get a better
understanding of how well each algorithm makes use of each
source of information. In Section 3.2 we show experimentally that
the relative performance of different class-independent algorithms
varies between different regions of the face. To gain intuition, we
then consider very simple idealizations of different face regions,
and highlight extreme differences of performance for different
surfaces.

Finally, these results suggest that we may be able to achieve
better performance by combining different representations, bene-
fiting from their different strengths. We show that this is indeed
true, demonstrating performance gains with a very simple combi-
nation scheme (in Section 3.3) that adaptively integrates informa-
tion from different class-independent representations on the
various facial sub-regions, and then (in Section 4.2) by combining
information from both class-based and class-independent methods
using an SVM that automatically learns the relative importance of
these algorithms.

It will be an interesting topic of future research to determine
how best to integrate these representations into recognition algo-
rithms that allow for small changes in pose and facial expression,
such as those seen in the recent FRGC data set. However, in this pa-
per we wish to isolate the effect that lighting change alone has, and
to understand this effect thoroughly. For this reason, we experi-
ment using the illumination portion of the CMU-PIE data set [3]
(shown in Fig. 1), and the extended Yale-B dataset [4] (shown in
Fig. 2), which controls other sources of variation. We then evaluate
the scalability of these representations on images with more con-
trolled lighting conditions, but with other image variations, using
the ORL face database [5]. In addition to a standard experimental
set-up, in which all gallery images are created with identical light-
ing, we also consider the more challenging case, in which every
gallery image is produced by randomly chosen lighting. This simu-
lates some of the challenges of real-world data sets.
2. Description of algorithms

We compared nine algorithms, including both class-based ap-
proaches and class-independent approaches, in our experiments.
Although this set of algorithms is certainly not exhaustive, it does
give a good sample of different approaches to lighting insensitive
face recognition. A brief description of these approaches is given
below.
Fig. 1. Sample images from the CMU-PIE dataset [3].
Eigenfaces [6] is a standard benchmark for face recognition. It
projects face images into a low-dimensional linear subspace found
using principal component analysis. Although not especially well
suited to handling lighting variation, it provides a useful point of
comparison.

The Fisherfaces algorithm [7] (see also [8]) projects images into a
direction that not only separates different classes, but also mini-
mizes the within-class scatter. This was explicitly proposed as an
effective way to capture variations due to lighting.

Bayesian face recognition [9] models variations between images
from the same or different individuals using mixtures of Gaussians.
The similarity measure is computed based on the maximum-a-pos-
teriori rule, as opposed to the Euclidean norm. In principle, it can
model changes due to lighting.

Correlation filters [10] introduce the use of spatial frequency do-
main methods for lighting insensitive face recognition. A separate
filter is trained for every subject (using their 2D Fourier transform
representation) such that it produces sharp correlation peaks for
the images belonging to that subject, and low values otherwise.

Instead of modeling the illumination variations using face-spe-
cific information (as in [10]), the image preprocessing algorithm
[11] estimates the luminance map present in the image in order
to compensate for it, and thereby produces the reflectance map
that contains the true information about the facial features of the
subjects. This preprocessed image can then be fed into any classi-
fier. We used Eigenfaces [6] to perform classification, as suggested
in [11].

Along similar lines, the self-quotient image [12] estimates the
reflectance of the image by convolving the image with a smoothing
kernel and then dividing the original image by the smoothed image
(which mostly contains the low frequency components that corre-
spond to illumination effects), and has shown very good perfor-
mance on PIE data. In this work we used a much simpler
isotropic smoothing instead of anisotropic smoothing (as sug-
gested in [12]). In this form, the algorithm amounts to smoothing
the image with a Gaussian, and then pixel-wise dividing the origi-
nal image by the smoothed image. We obtained the same results
given by the authors for the original algorithm, but the results
could be different on other datasets.

Another algorithm that displays insensitivity to illumination is
the Eigenphases [13] method. This algorithm uses the phase infor-
mation from the frequency domain representation of the image for
classification. It is known that the phase information retains most
of the intelligibility of the image when compared to the magnitude
information of the spectral components, and the authors demon-
strate this for the task of face recognition.
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The Whitening approach described in [14] is specialized for
smooth regions wherein the albedo and the surface normal of
the neighboring pixels are highly correlated. This means that the
pixel independence assumption made implicitly in computing
the sum of squared distances (SSD) is not optimal. This algorithm
tries to increase the dissimilarity between the images of different
objects by decorrelating the image intensities by applying a Whit-
ening operator. We use the simple Laplacian of Gaussian operator
for whitening, as suggested in [14].

Finally, classification based on the gradient direction of the
images has also been shown to work well on surfaces, including
faces, having properties that change much more rapidly in one
direction than in the other (e.g., [14,15] reviews many papers that
use this method, going back to the early 1990s). We implement
this method by computing the SSD between the gradient directions
in two images. There are other methods that perform well for light-
ing invariant recognition such as, Gabor Jets [16] and Normalized
correlation [17] using small windows. However these two methods
have been shown to be quite similar to gradient direction in [14]
and hence they are not included in our experiments
3. Setting 1: no training set (on the possible lighting conditions)

In this section, we analyze the performance of the algorithms in
the absence of any prior information on the lighting conditions
present in the scene. Under such conditions, since the class-specific
algorithms do not have sufficient exemplars to learn the lighting
variations present in the scene, we consider only the class-inde-
pendent representations. We then divide the face into several re-
gions to study the relative performance of these algorithms. We
provide intuitive explanations for the variations in their perfor-
mance, and then use this information to design an effective classi-
fier combination algorithm.
Table 1
Performance of algorithms on homogenous gallery and heterogeneous gallery.

Algorithm Homogenous gallery Heterogeneous gallery

Self-quotient 97 64
Gradient direction 95 78
Preprocessing 88 66
Eigenphases 74 60
Whitening 60 40
3.1. Initial comparisons

We compare the five class-independent algorithms using a
standard experimental protocol for PIE data. Each image in this
dataset contains one of 68 individuals viewed from the frontal pose
and illuminated by a point source of light from one of 21 different
directions, without the ambient lighting conditions as shown in
Fig. 2. For all the experiments we used properly cropped faces
(by removing the scene background present in the dataset images
and retaining only the facial region).

In many applications we do not have access to multiple images
of a person with the same pose under different illumination condi-
tions. Hence algorithms that perform well with a minimum num-
ber of images of a person are normally preferred. Therefore for
all the 68 subjects, we use one illumination condition as the gallery
(which contains sample images of the subjects) and the remaining
20 illumination conditions as the probes (which will be compared
with all the images in gallery). This is a standard set-up, adopted in
many previous papers.

The result of this experiment is given in Fig. 3, which shows rec-
ognition rates when each lighting condition is used as the gallery.
It can be observed that whitening [14] performs much worse than
the other class-independent algorithms. But we retain [14] for the
experiments involving sub-regions of the face because it is sup-
posed to perform better in smooth regions.

One difficulty with these results is that the performance of the
best algorithms is perfect in many cases, making it difficult to dis-
tinguish between them. To address this, we also consider a much
more challenging recognition task, in which each individual’s gal-
lery image is randomly chosen. This makes recognition much more
difficult, since it is likely that faces of different individuals taken
F
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under similar lighting will appear to be more similar than faces of
the same individual taken under very different lighting. However,
this difficulty reflects the challenges of many real-world problems,
such as sorting personal photos, in which gallery images taken un-
der controlled conditions are not available. Results, averaged over
twenty different trials, are given in the Table 1.

Overall, the self-quotient and gradient direction produce the
best performance with a homogenous gallery, with gradient direc-
tion performing much better with a gallery formed from heteroge-
neous lighting. This is rather surprising, since gradient direction is
very simple, and is the earliest of these approaches. These results
suggest that gradient direction would be an appropriate bench-
mark algorithm when new methods are proposed.
3.2. Facial sub-regions

Next, we explore the performance of these algorithms in more
detail. As noted, the face provides different sorts of information
due to variations in albedo and shape. To get an idea of how differ-
ent algorithms make use of this information, we divide the face
coarsely into seven regions (Fig. 4): eyes, nose, lips, two cheek re-
gions and two chin regions. We experiment with the algorithms in
these regions, and then provide simple models, to gain a better
intuitive understanding of the results.

Some existing works on studying the contributions of different
face regions include Nanni and Maio [18], and Nanni and Lumini
[19]. In [18], features are extracted from different sub-windows
of a face using a bank of Gabor filters and Karhunen–Loeve trans-
form. The features obtained by each pattern are used to train a Par-
zen window classifier to perform face recognition. On the other
hand [19], combines wavelet coefficients from selected sub-bands
of several wavelet families and performs face authentication.



Fig. 4. Face sub-regions.
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3.2.1. Experiments
For each region, both the gallery and the probe contain the same

facial features cropped from the face. For all 68 subjects, one illu-
mination condition was used as the gallery and the remaining
lighting conditions were used as probes.

The results of recognition experiments on different facial fea-
tures are provided in Fig. 5. We show results for all 68 individuals
using gallery images that contain the same lighting. This avoids the
need to average over random trials, and still provides sufficient dif-
ficulty to evaluate the methods without a ceiling effect, because
recognition using a single face region is quite difficult. We per-
formed recognition just as in the last section, but using isolated fa-
cial regions.

We find that the relative performance of the different algo-
rithms varies in the different facial sub-regions. Some of the most
noticeable effects are: the self-quotient image algorithm [12] per-
forms the best in all regions except for the nose region; gradient
direction performs well everywhere except for the cheek region;
Whitening [14] performs poorly, but relatively better in the cheek
region.
3.2.2. Analysis of simple models
To analyze these results, we model the effects of lighting varia-

tion on three simple types of scenes. These are related to important
facial characteristics. We make the following observations. First,
the face contains albedo variations, especially in the eyes, eye-
brows and lips. Second, we consider regions of very high curvature
or discontinuity in surface normals, especially at the nose. Finally,
the remainder of the face contains regions of smooth variation in
shape with little change in albedo. We model these three types
of regions with very simple, synthetic models, for which it is easier
to understand algorithm performance. We do not expect results
with these simple models to perfectly match experiments on faces,
since any one face region contains a mix of all three effects. How-
ever, we do see that our models explain some of the general trends
of our experiments.
3.2.2.1. Planar models with albedo variations. Through this model,
we would like to characterize planar objects that exhibit very large
variations in albedo. Towards this end, we create images contain-
ing an outer rectangular box of fixed size and an inner rectangular
box of variable size (Fig. 6).

This representation has some degree of correlation with the eye
region of the face, which has large variations in albedo, due to the
eye and eyebrow, while it has much smaller variation in shape.
Specifically, the inner rectangle can be related to the human eye
while the outer rectangle corresponds to the region surrounding
the eyes. We assume that the rectangular surface is lambertian
and that the point light source is at a far distance from the object.
The illumination conditions of the two rectangles are varied by
changing the position of the point light source. To capture varia-
tions between individuals, the position and size of the inner rect-
angle are changed by small amounts for all possible illumination
conditions. Ninety different illumination conditions were gener-
ated for 400 possible positions and sizes of the inner rectangle.
Based on this synthetic dataset, the following results were ob-
tained (Table 2). A recognition setup, like the one discussed in Sec-
tion 3.2.1, was adopted.

As in the case of the human face, self-quotient and gradient
direction based methods perform very well in these synthetic con-
ditions. The gradient direction method works very well due to the
presence of rich information of the gradient angle change in the
boundary between the two rectangles.

The self-quotient image algorithm works well because there is a
no change in the surface normal and there is a sizable change in the
albedo. In these conditions [12], points out that self-quotient is
invariant to lighting changes. This algorithm is shown to capture
the albedo changes very well. Whitening does badly as the albedo
is not smooth, and is not whitened by the filter we use.

3.2.2.2. Shape variations in smooth objects. In this model, we at-
tempt to simulate the case wherein the object is predominantly
smooth, with gradual variations in its shape. Such a variation can
be captured by a small piece of a smooth cylinder (Fig. 7). We con-
struct this model by considering cylinders of different radii
(accounting for the different subjects) and varying the position of
the point light source for each cylinder. This representation corre-
lates with the human cheeks where different human cheeks vary in
curvature, without discontinuities in shape or much variation in al-
bedo. Again we assume that the cylindrical surface is lambertian
and that the point light source is distant from the object.

The dataset contains cylinders of 11 different radii with 9 illu-
mination conditions and the results are given in Table 3. We see
that the gradient direction based method performs very poorly,
matching the fact that it is also the least effective method on hu-
man cheeks. Even though gradient direction is invariant to lighting
for a cylinder, there is no variation in direction of gradient between
subjects, while the gradient direction does not capture the changes
in curvature. The self-quotient algorithm works well because the
Gaussian kernel which is used to filter the image attenuates differ-
ent frequencies in different ways. The intensity is basically a sine
wave, and when we divide it by the smoothed sine, we get a con-
stant function whose magnitude encodes the cylinder’s curvature.
The intensity of the resulting representation therefore captures the
dominant frequency of the initial image. The algorithm uses this
criterion to classify these images and is thereby invariant to
changes in illumination. Whitening’s good recognition rates are
in line with the prediction in [14] that it will perform well on
smooth surfaces. Eigenphases performs well because the phase
spectrum of the signal will be a function of the frequency informa-
tion present in the signal. This frequency information helps this
algorithm to classify the query images properly and thereby give
good recognition rates.

3.2.2.3. Shape variations in objects with discontinuities. Through this
model, we capture the variations in the shape of an object that has
some discontinuities. The motivation behind this model is to obtain
an approximate representation of the human nose, which can be
modeled as a prism. We consider the two sides visible from the fron-
tal view of a prism to represent the nose (Fig. 8). This model, how-
ever, does not exactly represent the nose because, we do not
consider the effects caused by the dark holes in the bottom region
of the nose. A human nose may be a combination of our simple prism
model, and a model of albedo variation, such as our eye model.

The shape of this pyramidal surface is changed to represent dif-
ferent individuals and the position of the light source is moved to
create different lighting conditions. The experiment consisted of 12
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Fig. 5. Performance comparison of class-independent algorithms on different regions without training. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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subjects with 10 illumination conditions each and the results are
given in Table 4.
The self-quotient image does not perform well due to the
change in the orientation of the surface normal between the differ-



Fig. 6. Rectangle model. Top: variation in illumination. Bottom: variation in albedo.

Table 2
Performance of algorithms on the rectangle model.

Algorithm Recognition rate
(Rectangle model)

Recognition rate
(Human eyes)

Self-quotient 100 90.3
Gradient direction 100 88
Preprocessing 49.4 73
Eigenphases 49.4 71.4
Whitening 17.6 58.2

Fig. 7. Cylinder model. Top: variation in illumination. Bottom: variation in
curvature (see that as the curvature increases from left image to right image in
the bottom row, the change in the lighting pattern gets slower.

Table 3
Performance of algorithms on the cylinder model.

Algorithm Recognition rate
(Cylinder model)

Recognition rate
(Human cheek)

Self-quotient 100 56.5
Gradient direction 9.1 41.5
Preprocessing 100 49.2
Eigenphases 100 44.1
Whitening 100 50.8

Fig. 8. Triangle model. Top: variation in illumination. Bottom: variation in shape.

Table 4
Performance of algorithms on the triangle model.

Algorithm Recognition rate
(Triangle model)

Recognition rate
(Human nose)

Self-quotient 42.7 57
Gradient direction 100 57.6
Preprocessing 57.8 59.1
Eigenphases 46.7 54.3
Whitening 28.7 34.8
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ent regions in the triangular model. Lighting variations can change
the ratio of the intensity in two regions of the prism, and the self-
quotient cannot undo this. Thus we find that the self-quotient
algorithm is not very effective in capturing shape variations, as
predicted in [12]. This matches the fact that the nose is the only re-
gion in which self-quotient is not the best. Gradient direction
works well because it captures the variation in the shape of the tri-
angles. Whitening does not perform well due to the absence of
smooth variations in the surface. The preprocessing algorithm is
formulated in such a way that, it controls the illumination varia-
tions both in regions where the luminance changes smoothly and
in regions where there are discontinuities. So, this algorithm per-
forms relatively well in all the regions.

Our results are related to, but also differ somewhat from the
discussion in [15] and [14]. They point out that representations re-
lated to the direction of the gradient are insensitive to lighting var-
iation for surfaces that change rapidly in shape or albedo in one
direction but not another, while whitening approaches are better
suited for smooth surfaces that vary slowly in both directions. First,
we show that algorithm performance can vary depending on
whether variations occur in shape or in albedo. Second, we show
with our cylinder example that variations within a class must also
be considered when determining the effectiveness of a representa-
tion. In some cases, gradient direction may not discriminate within
a class, while features such as curvature do.

3.3. Classifier combination

The fact that different approaches perform well on different
parts of the face suggests that we can improve overall performance
by combining methods. To demonstrate this, we experimented
with a simple method for combining representations.

First, the outputs of the two top performing algorithms for
every feature (including the entire face) are combined by normal-
izing the SSD for every gallery-probe combination and then adding
the normalized results of the top two algorithms. For example, self-
quotient image and gradient direction algorithms were combined
for the entire face and eyes, self-quotient image and preprocessing
algorithms were combined for the nose region and so on. We show
the results of adaptively integrating different representations on
various facial regions in Table 5 and Fig. 9, for the task of recogni-
tion with a homogenous gallery.

It can be seen that our classifier combination algorithm results
in a substantial improvement in situations, like the nose, where the
best individual algorithm doesn’t perform that well. For regions
such as the entire face, the performance improvement is only mod-
erate since the best individual algorithm by itself has recognition
rates close to the ceiling. These results, in effect, drive home the
point that an effective classifier combination algorithm should take
into account the relative strengths of the individual classifiers in
capturing different characteristics of the object of interest.



Table 5
Performance comparison of combined classifier with the best individual
algorithms.

Region Recognition rate
of the combined classifier

Recognition rate of the
best individual algorithm

Entire face 99.1 97.1
Eyes 95.7 90.3
Lips 83.3 80.6
Nose 69.3 59.1
Chin 64.9 59.5
Cheek 62.8 56.5
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With this encouraging result in hand, we would like to formu-
late a combination algorithm that automatically learns the relative
strengths of the individual algorithms, rather than having a user
specifying which algorithms to combine based on observation. To-
wards this end, in Section 4, we consider the setup of having some
prior information on the different lighting conditions present in
the scene such that one can get a feel of the relative performance
of different classifiers and thereby learn the ideal combination
strategy before testing it out on the subjects of interest. Since we
have a representative training set, we now include the four class-
based algorithms (discussed in Section 2) into our analysis.

4. Setting 2: with prior training on different lighting conditions

In this section we first analyze the performance of different
algorithms in the presence of training data that contains represen-
tative lighting conditions present in the scene. We then combine
the most informative algorithms using a support vector machine
(SVM) framework, which learns the combination parameters
automatically.

4.1. Initial comparisons

We compare the five class-independent algorithms, along with
the four class-based algorithms on the PIE dataset. We use all 21
illumination conditions of the first 34 subjects for training. The
algorithms were then tested on the remaining 34 subjects, with
one homogenous exemplar lighting condition (for all the subjects)
in the gallery. This test is done mainly to analyze the effect of train-
ing on the different class-based algorithms. The class-independent
algorithms, of course, were tested directly on the second half of the
34 subjects.
F
o
in
to
The result of this experiment is given in Fig. 10, which shows
the recognition rates when each lighting condition was used as
the gallery. Similar to the experiments conducted without training
data (in Section 3.1), the algorithms based on self-quotient image
[12], and the direction of image gradients [15] perform the best.
Yet another observation is that the three class-based methods
(Fisherfaces [7], Bayesian face recognition [9], Eigenfaces [6]),
and whitening [14] perform worse than other algorithms. So, we
exclude [7], [9], and [6] from the experiments for classifier combi-
nation. However, we retain [14] since it adds considerable value in
the cheek region (as shown in Section 3.2.1). For the correlation fil-
ters algorithm [10] (and for the class-based algorithms in general),
we do not perform the analysis on different facial sub-regions be-
cause it is a learning algorithm, and it is difficult to give intuitive
explanation of its performance variations (if any) on different facial
regions. Now that we have representative algorithms from both
class-based and class-independent streams, we discuss our pro-
posed combination strategy in the next sub-section. Specifically,
we consider the recognition setup wherein the gallery and the
probes have heterogeneous lighting conditions, in order to over-
come the ceiling effect in the recognition rates of certain algo-
rithms, and also because this setup simulates a more
representative real-world setting.

4.2. Classifier combination

Along similar lines with the discussion in Section 3.3, we expect
that we can achieve better performance by using learning to deter-
mine the best way of combining information. We do this by train-
ing a support vector machine (SVM) [20] to perform a verification
task, as done previously by [21], for instance. Given a pair of
images, the SVM is trained to determine whether they come from
the same or different individuals. The radial basis function (RBF)
kernel was used to map the inputs to a higher dimensional space.
The SVM was trained using intra-personal pairs and extra-personal
pairs from the first 34 subjects of the PIE dataset, and tested with
randomly generated pairs from the remaining subjects. The light-
ing conditions used for training and testing were also disjoint.
The input to the SVM is the (absolute) difference between the
two images after processing them to create six different represen-
tations based on gradient direction, self-quotient, eigenphases,
whitening, image preprocessing and correlation filters. We con-
trast the performance of an SVM that uses all six representations
with six SVMs that each use just one of the representations. [22]
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have used a similar approach, training an SVM with just differences
in gradient direction.

The result of the SVM combination is given in Fig. 11 in the form
of Correct Accept Rate (CAR) vs. Correct Reject Rate (CRR) curves; It
can be seen that the combination results in a good improvement in
verification accuracy. For example, the combined method has an
Equal Error rate of 7%, compared to 10% for the best individual
algorithm (using the gradient direction). In order to check the gen-
eralizability of these results, we experimented with the extended
Yale-B dataset [4]. This dataset has cropped faces of 38 subjects un-
der 64 different lighting conditions. All the other variations such as
pose, and expressions are fixed. We then performed a similar ver-
ification experiment, by training the SVM using the lighting condi-
tions corresponding to the first 18 individuals, and tested it using
the pair-wise differences obtained from the remaining 20 subjects.
The CAR–CRR curves for the SVM combination, as well as the indi-
vidual algorithms are given in Fig. 12. Once again, the representa-
tion based on the direction of image gradient is the best individual
algorithm, followed by the correlation filters. The proposed classi-
fier combination algorithm again results in a substantial improve-
ment in performance over the individual algorithms. These results
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again reinforce our observation that, combining different represen-
tations by learning their relative strengths is crucial to obtain good
performance improvement.
4.3. Experiments on faces with more controlled lighting

Our main focus is on understanding the role of different repre-
sentations when lighting changes. However, it is also important to
determine the relative sensitivity of these methods to other image
variations. If a representation is insensitive to lighting variation,
but highly sensitive to changes in expression, for example, it may
be less useful in a general face recognition system.

To evaluate this we have experimented using the ORL dataset
[5], which has large variations in pose and expression, but small
variations in lighting. Fisher discriminant analysis (LDA) [7] has
been shown to be effective on this data [23], helping to compen-
sate for the correspondence problem that this data gives rise to.
Therefore we use LDA as the base method, in combination with
the lighting insensitive representations. Due to the challenges of
this data (see Fig. 13), we adopt the widely used leave-one-out
testing protocol.

Fisher discriminant analysis [7] was performed on the training
images using the six different lighting insensitive representations
used in Section 4.2. An optimal set of parameters were determined
for each representation to learn the inter-class and intra-class vari-
ations. For the combined classifier, learning was done by concate-
nating all the six representations. The test images were then
projected onto the learned subspace to perform recognition. This
setup was repeated ten times, by taking one of the possible ten
images per person in the test set. The average recognition rate over
these ten trials are reported in Table 6 below. We also compare our
results with the previously reported results on this dataset, from
[24] and [23], which primarily uses the intensity image of the face
to learn the classifier.

It can be seen that some of the lighting invariant representa-
tions, like gradient direction [15] perform well under general
imaging conditions, and the combined representation does pro-
vide improvements in the recognition rate. At the same time it
seems that the self-quotient image [12] is particularly sensitive
to non-lighting variations. But we would like to make a point here
regarding the amount of training data used. All our previous
experiments (until Section 4.2) were done with just single image
per person in the training set. Our study mainly focuses on how
lighting invariant a representation can be, given it sees just one
image of the person in arbitrary illumination. But when there
are other sources of variations in the dataset, such as expression,
registration, scale and pose, we need to have multiple images of a
person in the training set in order to learn a good classifier. It is
an interesting future work to design classifiers capturing the con-
tributions of different representations, to perform robust face rec-
ognition (with very few training examples) under multiple
sources of variations.
5. Discussion

Besides the performance gains obtained through classifier com-
bination, another interesting observation of this work is that a sin-
gle classifier based on the direction of image gradient works very
well. Throughout the experiments discussed here, the gradient
direction algorithm clearly performs the best with just one exem-
plar per person in the gallery (with both homogenous and hetero-
geneous gallery lighting conditions). In order to emphasize the
significance of this observation, we compare our results with two
recently reported algorithms from the literature.



Fig. 13. Sample images from ORL face database [5].
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5.1. Comparison with the work of Tan and Triggs [25]

First we consider the work by Tan and Triggs [25], which pro-
poses enhanced local texture feature sets for illumination robust
face recognition. They introduce Local Ternary Patterns (LTP), a
generalization of the Local Binary Pattern (LBP) texture descriptor
[26], and show it to be more discriminant and less sensitive to
noise. They then couple this descriptor with a preprocessing step
that compensates for lighting, and use a distance transform based
similarity metric to obtain good recognition results. We now com-
pare the results of gradient direction with those reported by [25].

For the experiments on the extended Yale-B dataset [4], the
frontal face images with most neutral lighting sources
(‘A+000E+00’) were used as the gallery. The probe was divided into
five subsets, according to the angle between the light source direc-
tion and the central camera axis (12�, 25�, 50�, 77�, 90�), containing
Table 6
Recognition rates on the ORL face database [5].

Algorithm Recognition rates

Gradient direction [15] 95.75
Eigenphases [13] 90.75
Preprocessing [11] 81.75
Self-quotient [12] 80
Whitening [14] 94.25
Correlation filters [10] 96.25
Combination 98.5

Fisherfaces [24] 98.5
ICA [24] 93.8
Eigenfaces [24] 97.5
Kernel Eigenfaces [24] 98
2DPCA [23] 98.3

Table 7
Comparing the overall recognition rates of Tan and Triggs algorithm [25] with that of Gra

Algorithm Subset # (number of probes)

1 2
(263) (%) (456) (%)

Tan and Triggs [25] 100 100
Gradient direction [15] 100 100
frontal images of all 38 subjects. The results obtained by the Tan
and Triggs algorithm [25], and by using gradient direction based
classifier (with L1-Norm as the distance measure) [15] are given
in Table 7.

It can be seen that we obtain slightly better results using the
gradient direction algorithm [15]. We then compare our results
on the PIE dataset [3], wherein again, images of all 68 subjects with
neutral lighting sources were used as gallery, and the remaining
images were used as the probe. In this setup, we obtain the maxi-
mum possible recognition rates like [25], as shown in Table 8.
Through these experiments, we observe that a simple classifier
based on the image gradient orientation offers similar (and in some
cases, better) recognition performance.

5.2. Comparison with the algorithm for face recognition using sparse
representations [27]

Next, we consider a more recent work by Wright et al [27],
using the theory of sparse representations for face recognition.
The main motivation behind this work is to represent a test face
image as a sparse combination of the ’most identical’ images pres-
ent in the training set, so that the occlusions present in the test
data can be effectively factored out. The authors also illustrate
the potential applications of such an approach for handling varia-
tions in illumination. They provide results for lighting invariant
face recognition on the extended Yale-B dataset [4] by using sparse
representation-based classification (SRC) on different sets of fea-
tures including, Eigenfaces [6], Fisherfaces [7], Laplacianfaces
[28], Randomfaces (obtained by performing random projections
on the input faces), and downsampled faces. The gallery for their
experiments contained half of the available lighting conditions
(i.e. 32 per subject), with the lighting chosen randomly for different
subjects. The results obtained using their best image representa-
dient direction algorithm [15] on the extended Yale-B dataset [4].

3 4 5
(455) (%) (526) (%) (714) (%)

100 99.2 97.2
100 100 99.73



Table 8
Comparing the overall recognition rates of Tan and Triggs algorithm [25] with that of
Gradient direction algorithm [15] on PIE dataset [3].

Algorithm Recognition rates

Tan and Triggs [25] 100
Gradient direction [15] 100

Table 9
Performance of SRC based face recognition algorithm [27] on the extended Yale-B
dataset.

Dimension of the face image Recognition rate of E-random faces [27]

30 90.72
56 94.12
120 96.35
504 98.26

Table 10
Performance of gradient direction algorithm [15] on the extended Yale-B dataset.

# Heterogeneous gallery lighting
per subject

Recognition rate of gradient direction
algorithm [15]

1 59.1
2 75.8
4 93.5
6 98.6
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tion (E-random faces), with different dimensions for the face im-
age, is reproduced in the Table 9 below.

We now compare these results with that obtained using the
direction of image gradient [15]. We used the L1-Norm to compute
the distance (since it gave better performance than the L2-Norm, of
about 5% improvement in the recognition rate). We varied the
number of (random) lighting conditions for every subject in the
gallery, and the results averaged over multiple trials are given in
Table 10. The input image dimensions used for our experiment is
1920 (i.e. 48*40).

The important result, as we see, from the Tables 9 and 10 is,
although the input image dimensions of our experiment is higher
than that of [27], the simple classifier based on the direction of im-
age gradients [15] performs better than [27] with just six lighting
conditions in the gallery (when compared with 32 in the case of
[27]). Overall, the message we would like to convey from the com-
parisons given in Section 5.1, and Section 5.2 is that the gradient
orientations [15] retain most of the person-specific information
even under very challenging lighting conditions, and it is interest-
ing to see how this information can be better utilized in dealing
with more challenging face recognition settings.

6. Conclusions

We have compared a number of approaches to illumination
insensitive face recognition, both experimentally and using an
analysis of simple idealizations of face features. Based on all the re-
sults obtained, we make the following observations: (1) Gradient
direction works very well under both homogenous gallery and het-
erogeneous gallery settings. We suggest that it should be a baseline
algorithm for future methods, especially since it is so simple to
implement. (2) The self-quotient image and gradient direction
based algorithms work extremely well under homogenous gallery
lighting. (3) Not all the methods that use training data perform bet-
ter than simpler methods that use general image processing. This
suggests that these methods do not get as much out of training
as might be possible. An exception to this is the correlation filters
algorithm, which offers better recognition rates than most of the
class-independent algorithms, but still is not as good as the direc-
tion of gradient (even when the training data has a very good rep-
resentation of different lighting conditions). (4) Different
representations work well in different parts of the face. For exam-
ple, the self-quotient image is less effective in the nose region,
while the gradient direction performs poorly in the cheek region.
We are able to explain these results using a simple idealization
of facial features. (5) Consequently, it is possible to improve perfor-
mance by combining different representations. We demonstrate
this using two classifier combination algorithms. The first algo-
rithm adaptively integrates information from individual classifiers
on various facial regions, whereas the other learns the best combi-
nation strategy using a SVM framework. It remains an interesting
topic for future work to characterize the strengths and weaknesses
of these approaches when both lighting and pose or facial expres-
sion vary.
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