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Abstract—We consider the problem of matching images to tell whether they come from the same scene viewed under different lighting

conditions. We show that the surface characteristics determine the type of image comparison method that should be used. Previous

work has shown the effectiveness of comparing the image gradient direction for surfaces with material properties that change rapidly in

one direction. We show analytically that two other widely used methods, normalized correlation of small windows and comparison of

multiscale oriented filters, essentially compute the same thing. Then, we show that for surfaces whose properties change more slowly,

comparison of the output of whitening filters is most effective. This suggests that a combination of these strategies should be employed

to compare general objects. We discuss indications that Gabor jets use such a mixed strategy effectively, and we propose a new mixed

strategy. We validate our results on synthetic and real images.

Index Terms—Image comparison, Illumination, Gaussian random surface,Whitening.

Ç

1 INTRODUCTION

IMAGE comparison is central to computer vision tasks such
as tracking and object recognition. Lighting variation

significantly affects surface appearance and makes image
comparison difficult. For this reason, many approaches
have been suggested for building representations of images
that are insensitive to lighting variation. However, the
relative advantages of these different representations are
often not clear. In this paper, we show that two different
classes of representations are appropriate for two quite
different classes of scenes. By understanding these two
situations, we are able to suggest new illumination-
insensitive representations, including a hybrid representa-
tion that can be effective for both classes of objects.

We will discuss two classes of surfaces that we call
nonisotropic and isotropic. These terms refer to local proper-
ties of a scene. By a nonisotropic surface, we will mean a
surface whose properties change rapidly in one direction
and slowly (or not at all) in another. This includes, for
example, surfaces that have large curvature in just one
direction, such as a cylinder, or surfaces with disconti-
nuities in orientation or albedo. In contrast, an isotropic
surface will be one in which variation is more or less similar
in both directions. The isotropic surfaces we will discuss in
this paper are smooth, i.e., their surface properties vary
slowly. An isotropic surface with identical, abrupt changes
in both directions is less common.

Chen et al. [7] have already demonstrated that the direction
of the image gradient is relatively insensitive to lighting
variations for nonisotropic surfaces, because it is approxi-
mately aligned with the direction of greatest surface change
over a range of lighting conditions. This representation has
been suggested by many other authors, (e.g., ( [21], [41], [7],
[8], [11]). We will show that a number of other image
representations are equivalent to, or closely related to the
image gradient dirction and, therefore, also most suitable for
nonisotropic surfaces (some of this material was first
presented in [35]). Specifically, we show that methods based
on the image gradient direction are equivalent to normalized
correlation in the limit, when the correlation window is small.
We also demonstrate that comparison of the gradient
direction is equivalent to comparison using the normalized
outputs of oriented derivative filters (as done, for example, by
[40]). We will briefly show a weaker relationship between
gradient direction comparisons and those using histogram
equalization or mutual information. These relationships help
us to understand when these representations are appropriate
and also to predict that these representations will lead to
similar matching performance.

Isotropic surfaces offer a different challenge, because the
direction of the gradient depends more on lighting than on
surface anisotropies (an earlier version of our work on these
surfaces was presented in [34]). We begin by providing a
simplified, analytic model of isotropic surfaces. We use this to
consider image properties produced by isotropic, Lambertian
objects with a single point source. While this model is
simplified, we believe it captures some of the most significant
effects of lighting and provides insight into those aspects of
image comparison, which we can test empirically.

Specifically, we use results from signal detection theory
to show that, for this model, we should apply a whitening
filter to the images before comparison. Whitening does not
produce a representation that is less sensitive to lighting
variation, but rather provides a more statistically valid
image comparison by allowing us to compare quantities
that are more independent. Our analysis demonstrates that
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standard filters, such as the Laplacian of the Gaussian,
provide effective representations for isotropic surfaces
because they tend to whiten images. We also show that,
for a specific domain, we can learn a whitening filter that is
more effective than generic whitening filters.

Given that two quite different comparison methods
succeed in different domains, it is natural to consider
combining them into one, complete method. In Section 5,
we begin this endeavor. We present some simple ap-
proaches to combining whitening and gradient direction
methods. Perhaps the most elegant is using a jet of oriented,
second derivative operators, which combines gradient
direction effects that are due to normalization with
whitening effects from the second derivative operator. We
analyze the effectiveness of this method. We also show that
Gabor jets can be understood also as a simple method of
combining the two. These combined methods are all
somewhat simple and there is clearly room for more
effective methods to be developed in future work.

Our main contribution is a better understanding of how
the properties of image surfaces influence the effectiveness
of different approaches to image comparison. This helps us
to understand when existing representations will be
effective and to see close connections between some of
these methods that have not previously been pointed out.
This can provide insight for practitioners who are seeking
the best representation for their domain and also suggests
new approaches to lighting insensitive image matching.

2 BACKGROUND

In this section, we will begin by discussing some prominent
effects of variation in lighting and camera parameters. We can
divide these into two sets: The first and simplest are additive,
multiplicative, or other monotonic changes in intensity, while
the second are the more compex variations caused by changes
in lighting direction. We will then review past approaches to
lighting insensitive comparisons. Most of these are geared to
handling the first set of variations. In addition, the direction of
image gradient has been shown to have some insensitivity to
changes in lighting direction.

Image intensities arise from the interaction of camera
properties, light, shape and materials. In image matching, we
seek to compare images in a way that is sensitive to
differences in shape and material, which are usually related
to object identity, and as insensitive as possible to lighting
effects and camera characteristics, which are independent of
this identity.

Changes in camera parameters affect image intensities
significantly, but largely independently of whatever scene
properties produced them. Some main effects include
additive (offset) or multiplicative (gain) changes in inten-
sity. Also, gamma correction can alter intensities more
drastically, but still monotonically.

Changes in light intensity also have a multiplicative
effect on image intensities. This is also independent of scene
geometry. Changes in lighting direction, however, can
interact with scene geometry in complex ways. In the
simplest case of complex Lambertian objects, a change in
lighting direction causes some scene points to appear
brighter as the light strikes them more directly, while other
scene points become dimmer as the light becomes more
oblique. This means that the variation in intensities can be

far from monotonic. Locally, changes in lighting direction
can also affect the direction of the image gradient. As an
example, consider a white, Lambertian sphere, illuminated
by a directional source of light. The point on the sphere
facing the light will be brightest, if it is visible in the scene.
The image gradient at other points on the sphere will point
in the direction of this brightest point and, so, will be
completely determined by lighting direction.

Chen et al. [7] show that no image properties are invariant
to the effects of lighting variation on 3D scenes, even for the
case of Lambertian objects with no shadows. However, they
also show through a statistical analysis that gradient direction
can be insensitive to variations in lighting direction. Essen-
tially, they demonstrate that when a surface is nonisotropic,
greater curvature or variation in material properties in one
direction tends to cause greater variation in image intensities
in that direction. To discuss this, it will be useful to distinguish
the direction of the image gradient from the polarity-free
direction, i.e., the direction modulo�. For example, either side
of a roof may appear darker, depending on the direction of the
light. Therefore, for a roof shape, the polarity of the image
gradient is quite sensitive to the lighting direction. However,
for most lighting directions, the image gradient points in a
direction perpendicular to the roof ridge. We describe this
situation by saying that the polarity-free direction of the
image gradient is insensitive to lighting direction.

We will give short shrift to other lighting effects, such as
shadows, interreflections, and specularities. These effects
can be extremely complex; for example, a mirror can
produce any image and a shadow can have any shape. Little
work on image matching has explicitly accounted for these
effects. However, we note that there is a good deal of work
on using cues such as color or polarized light to identify
specularities (see Oren and Nayar [33] for a survey), and
this could be of value in image matching. We also note that
one effect of cast shadows is to make some regions of an
image darker, and that methods of image comparison based
on local descriptions, normalized for intensity, may be
insensitive to such effects.

Since lighting and camera variation often have an additive
and multiplicative effect on image intensities, it is natural to
cope with illumination by normalizing the mean and variance
of image intensities prior to comparison. Normalized cross-
correlation follows this normalization with correlation, and is
a standard way to manage the effects of lighting change (e.g.,
[22]). Brunelli and Poggio [6], for example, use normalized
correlation for face recognition, and Nayar and Bolle [32]
normalize using ratios for lighting invariant recognition of
planar objects. Normalization may be performed on the entire
image, or it may be applied to a small window. Small
windows are used for recognition by, for example, Brunelli
and Poggio, and are commonly used for image matching in
stereo or tracking (see, e.g., Trucco and Verri [46]). Inspired by
the retinex lightness constancy algorithm [29], others have
also locally normalized images by dividing intensities by a
low frequency signal that estimates slowly varying lighting
(e.g., [19]). However, it has not been claimed that normal-
ization can compensate for changes in lighting direction for
images of complex, 3D scenes.

A related approach is to transform image intensities to
make the image histogram constant (histogram equaliza-
tion, (e.g., [17]) or to give it a specific profile (histogram
specification, e.g., [38]). Kittler et al. [26] compare a number
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of normalization methods, including histogram equaliza-
tion, for face recognition. These methods are invariant to
any monotonic change in intensities throughout the image,
though not to changes in lighting direction.

Many approaches apply normalization to the output of
multiscale oriented filters instead of raw pixel intensities
(e.g., [30], [40], [18], [28], [42]). A vector of Gabor filters
applied to a common location has been called a jet (e.g.,
[30]), and we will use that terminology for other filters as
well. By using filters that integrate to zero, such as
derivative of Gaussians or Gabor filters, these jets become
invariant to additive changes in the image. Normalizing the
total magnitude of all filter responses produces invariance
to multiplicative image changes. This invariance to offset
and gain is often one motivatation for the use of multiscale
oriented filters (e.g., [49], [50], [10], [5], [24]).

Methods based on image gradients have been widely
applied to images of nonisotropic surfaces. Edge detection
is a classic method appropriate when a scene contains
discontinuities in shape or albedo since this generally leads
to discontinuities in the image. However, the magnitude of
image gradients can be sensitive to lighting, making edges
sensitive to lighting direction and intensity (see, e.g., [43]).

Therefore, a number of authors have proposed using the
direction of the image gradient alone for image comparison
([3], [4], [21], [41], [12], [7], [8], [11]). In some cases, the
motivation for this has been that the gradient direction is
also invariant to changes in offset and gain in the image
(e.g., [8], [11]) and indeed to any monotonic change in
image intensity ( [41]). As mentioned above, Chen et al. [7]
provide a statistical analysis to show that the direction of
gradient is also insensitive to changes in lighting direction
for nonisotropic scenes.

There are many possible ways to compare images using
gradient direction. Perhaps the simplest is to compute the
sum of squares of the differences between two gradient
direction images. We will call this comparison “DIRP” and
the polarity-free version “DIR,” for short. Chen et al. also
suggest a somewhat superior method, which relies on the
distribution of direction differences and uses the statistics of
image pairs that come from the same scene, under different
lighting conditions.

Finally, we note that there has been much work on
lighting insensitive object recognition that uses cues outside
the scope of this paper, such as 3D knowledge of the scene
(e.g., [44], [16], [2]), color (e.g., [45], [15]), and multiple
images (e.g., [31], [51]).

3 IMAGE COMPARISON OF SMOOTH ISOTROPIC

SURFACES

As described above, the image gradient directions asso-
ciated with nonisotropic surfaces are relatively insensitive
to lighting variation. Smooth, isotropic surfaces offer a
much different challenge, with no known quasi-invariants.
We approach these surfaces by considering one image as a
model and any other image of the same object, associated
with a different illumination, as a corrupted version of it.
The difference between the model and the corrupted
version is considered an error. Then, we focus not on
insensitivity to lighting but on finding good ways to
measure the magnitude of its effect.

Our first observation is that the common sum-of-squared-
differences (SSD) measure is not adequate. SSD is justified by
the (usually implicit) assumption that the difference between
a model and its corrupted version is white Gaussian noise. In
this case, matching an image to the model that minimizes the
SSD is a maximum likelihood (ML) decision. This is clearly
not the case for the difference between two smooth images,
where the gray-level values, both in the images themselves
and in the difference image, are highly correlated.

In this section, inspired by the work of [27], we use a
simple model of smooth surfaces as Gaussian random fields
to help us understand these correlations. For these surfaces,
illumination changes lead to difference images that are
colored Gaussian noise. Then, an (ML) decision can be
made by minimizing the Mahalanobis distance between the
images [9, Chapter 2]. Equivalently, we can decorrelate the
difference image by a whitening operator before evaluating
its energy (the whitened SSD) [47, Chapter 4.3]), which
turns out to be preferable for our purposes.

3.1 A Covariance Model of Smooth Surfaces

To whiten a surface’s images, its covariance structure must
be known. We shall first derive some properties of the
covariance associated with smooth surfaces. To that end, we
model smooth surfaces as locally approximately planar, with
the surface specified as a random height function relative to
the tangent plane. This way, both the surface height and the
associated normals make small random perturbations about
a common value. Such a surface will be smooth when
nearby surface heights and normals are highly correlated.
In the following derivation, we use the Gaussian random
field and the Lambertian imaging model as in [27], which
aims at estimating the illumination direction from texture
images. This goal is quite different from ours; we aim to
characterize the covariance of the image for whitening.

3.1.1 A Covariance Model for Images of an

Approximately Planar Lambertian Surface

Locally, a smooth surface is modeled as approximately
planar, with small perturbations relative to the tangent plane.
A local coordinate system ðex; ey; ezÞ is specified so that the ez
is normal to the plane and ex; ey lie on it in arbitrary
directions. The perturbation is specified as a (smooth)
function hð�xÞ ¼ hðx; yÞ, which is an instance of an isotropic
Gaussian random field [1]. Specifically, we assume that the
random field is homogeneous (stationary), associated with
zero mean,E½hðx; yÞ� ¼ 0, and with Gaussian autocorrelation

CSð�xi; �xjÞ ¼ �2
Se
�k�xi��xjk2=�2

:

The surface is modeled as Lambertian, with uniform
albedo �; (see [48] for a generalized Gaussian model with
varying albedo).

The imaging model is as follows: The surface is
illuminated by a distant light source from the direction
cos�ðcos�ex þ sin�eyÞ þ sin�ez. That is, the lighting is
characterized by its elevation � relative to the tangent plane
and by its azimuth � relative to ex. Let I0 be the normal
irradiance of the source at the surface. The view direction is
normal to the surface (that is, ez). We assume that � is large
enough and the object’s relief is shallow enough so that the
effect of shadows and interreflections is negligible. Then,
the irradiance at the point �x ¼ ðx; yÞ is

100 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 1, JANUARY 2007



Iðx; yÞ ¼ �I0
sin�� cos�ðhxcos�þ hysin�Þ

ð1þ h2
x þ h2

yÞ
1=2

; ð1Þ

where hx; hy are the partial derivatives @hðx;yÞ
@x ; @hðx;yÞ@y , respec-

tively. For shallow smooth surface, where hx; hy << 1,

Iðx; yÞ � �I0 sin�� cos�ðhxcos�þ hysin�Þ
� �

: ð2Þ

The resulting irradiance is also a random field and with the
approximation (2) it is Gaussian as well.

Proposition 1 (Lambertian Image as Gaussian Random
Field). Let IðxÞ be the irradiance (image) associated with the
Gaussian random surface and the imaging model, described
above. Then, IðxÞ is (approximately) a Gaussian random field,
with expected value, variance, and autocorrelation given by:

E½IðxÞ� ¼ �I0sin�

�2
I ¼ �2I2

0cos
2�

2�2
S

�2

CIð�xi; �xjÞ ¼ �2I2
0cos

2�
2CSð�xi; �xjÞ

�2

1þ 2

�2
k�xi � �xjk2cos2ð�� argð�xi � �xjÞÞ

� �
;

ð3Þ

where �xi; �xj are two points where the random field is specified,
and argð�xÞ indicates the angle between �x and ex.

The proof is simple and relies on basic properties of
random fields; see the Appendix. Interestingly, the image
associated with an isotropic surface is not isotropic; the
degree of anisotropy is inversely proportional to �, which
indicates the smoothness of the surface. For rough surfaces
the image is highly anisotropic and [27] use this to
determine the lighting direction, based on different expres-
sions than the ones we derive. However, we also have:

Proposition 2 (Isotropy and multiplicative covariance
properties). For smooth surfaces and short distances, the
image autocorrelation is approximately isotropic and constant
up to an illumination dependent multiplicative factor.

Proof. For smooth surfaces and short distances,
� >> k�xi � �xjk, implying that the second term in
the autocorrelation is negligible. tu
This property is important for whitening because, as we

shall see below, it implies that the whitening procedure may
be carried out efficiently. To demonstrate the multiplicative
property, we conducted the following simple experiment: We
took a high resolution image of a real, approximately
Lambertian sphere, illuminated by a point source. We
divided the image into 50� 50 pixel patches and calculated
the covariance in every patch, for all pixel pairs contained in
7� 7 neighborhoods. Fig. 1 shows the estimated covariance
as a function of the distance. Each curve represents a different
patch. The plots confirm that covariance in different patches
differs by a multiplicative factor.

3.1.2 A Covariance Model of a Smooth Surface

We assume that a smooth surface locally (but not
necessarily globally) behaves as an approximately planar
one. When we move across the smooth surface, the tangent
plane surface normal changes, but the (distant) light source
direction stays the same. For a Lambertian surface, this is

the same as keeping the surface normals constant but
changing the light source direction. According to Proposi-
tion 2, this doesn’t change the structure of the autocorrela-
tion function, but only changes the scale factor.

Note that the covariance varies when the viewing direction
does not coincide with the normal. Therefore, we do not
expect the covariance to have the same structure for regions
where the object’s normal deviates significantly from the
camera direction. For smooth objects, the fraction of such
image regions is small. Moreover, such regions are often close
to the object boundary and therefore not isotropic.

3.2 The Whitening Technique

Consider two images specified by the simple imaging model

described above, and associated with the same surface and

with two illumination sources s1; s2. Note that by linearity, the

difference between the two images is just another “image”

obtained by taking the inner product between the normals of

the same surface and an imaginary illumination direction

s1 � s2. Note that this image may take negative values.

Therefore, the difference image may also be modeled as a

Gaussian random field or colored Gaussian noise.
In principle, a colored Gaussian noise signal (or image) I

with a covariance matrix C ¼ E½IIT � can be decorrelated by

multiplying it by a matrix W , the rows of which are the

scaled eigenvectors of C, 1ffiffiffiffi
�i
p ei. (ei is the ith eigenvector of

C and �i is the corresponding eigenvalue.) That is,

E½ðWIÞðWIÞT � is the identity matrix. Calculating the

covariance matrix and its eigenstructure is, however,

computationally prohibitive and requires an unreasonable

number of examples. Fortunately, if the signal’s depen-

dency is local and stationary, whitening may be carried out

much more easily by modeling the signal as an autore-

gressive (AR) process [23, Chapter 6]. An 1D sequence In is

called an AR process of order p if it can be generated as the

output of the recursive causal linear system

In ¼
Xp
k¼1

akIn�k þ "n; 8n; ð4Þ

where "n is white noise. The term �In ¼
Pp

k¼1 akIn�k in (4) is

the best linear mean squared (MS) predictor of In, based on

the previous p samples. Given a random sequence (with

possible dependencies), an AR model can be fitted using

SVD to estimate the overdetermined parameters ak that
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minimize the empirical MS prediction error
P

nðIn � �InÞ2.

For Gaussian signals, the prediction error sequence "n ¼
In � �In is white, implying that a simple convolution with

the filter W 0 ¼ ð1;�a1; . . . ;�apÞ is a whitening process for I.
To decorrelate the difference image we use a 2D AR

model with a “causal” neighborhood model (see [23,
Chapter 6]), as illustrated in Fig. 2. We use a “causal”
neighborhood (as in the 1D case) because a noncausal
neighborhood would not lead to decorrelation [23].

Note that scaling all the gray levels by the same factor

would give a correlation function that is the same up to a

multiplicative constant. This is essentially what happens

when the angle between the tangent plane normal and the

illumination direction changes. Fortunately, this does not

change either the fitted AR coefficients or the resulting

whitening filter, implying that it can be space invariant.

The whitening filter depends on the image statistics.

Intuitively, for smoother images, the correlation is larger

and decorrelating it requires a wider filter. For images that

are not so smooth, the decorrelation may be done over a

small range and the filter looks very much like the

Laplacian, known to have some whitening effect [39]. This

is not surprising because a rough image may be character-

ized as a moving average over a noise image with a small

filter, and such averaging may be inverted with a Laplacian.

Therefore, for rougher images, we do not expect perfor-

mance better than that of an alternative procedure using the

Laplacian. As we shall see later, the performance difference

is significant for smooth objects.

The whitening method works in principle for any surface.

It is more attractive for smooth and isotropic surfaces where

illumination insensitive descriptions are not known. It is also

more accurate, in this case, because the multiplicative

covariance property (Proposition 2) depends on� being large.
Our theory is limited to the case of a class of surfaces drawn

from the same random process. In any real application, we

expect to deal with surfaces that have varying degrees of

smoothness; even a single surface may have smoother and

rougher parts. This means the optimal whitening filter will

depend on the specific surface, which cannot be known when

we are comparing images. We deal with this pragmatically by

learning a whitening filter based on images of a set of similar

surfaces. This is appropriate when we are matching images

within a specific domain. Theoretically, we cannot expect

such a filter to perfectly whiten all images of interest, but we

show experimentally that it leads to an effective method of

image comparison for smooth, isotropic surfaces.

3.3 Whitening Images from Different Objects

Discriminating between smooth objects using their images

is difficult not only because of illumination induced

changes but also because of the smoothness itself. This

smoothness implies that if images of two different smooth

objects are similar at a single pixel, they are likely to be

similar in a substantial neighborhood about that pixel. For

this reason, it is more likely that images of different smooth

objects will be more similar than images of different rough

objects. Whitening, as a high pass filter, makes images of

smooth objects less correlated and, hence, more distinctive.

Decorrelating the models is important in the design of

digital communication signals. It is formally proven that for

the lowest error rate, the correlation between each pair of

signals should be as low as possible. For two signals, the

lowest correlation is �1 and the optimal signals are

antipodal. For a large number of signals, such correlations

between all signal pairs are not possible and the best we can

get are decorrelated signals [47, Chapter 4.2]; (see a related

discussion in [25]).
Intuitively, the type of change caused by whitening may

be understood as follows: Let S denote a 3D surface, with

normals N̂i;j and albedos �i;j. Denote Ni;j � N̂i;j�i;j. Let

I1;i;j ¼ NT
i;js1 be one of its images, associated with illumina-

tion vector s1. Let W be a whitening filter, represented

discretely as a matrix with elements Wk;l ; �n � k; l � n.

Applying this filter to the image I1, we get the output

image I 1:

I 1;i;j ¼
Xn
k¼�n

Xn
l¼�n

Wk;lI1;i�k;j�l:

Define now a new surface, S, such that its scaled surface

normals are

N i;j ¼
Xn
k¼�n

Xn
l¼�n

Wk;lNi�k;j�l:

By linearity, the whitened images may be considered as

images of the “whitened” surface S. While the original

normals are highly correlated, the whitened normals will be

white noise, with randomized directions and sizes. The

randomization of sizes is analogous to changing the smooth

surface by splattering it with gray paint in random

locations, which makes the surface visually distinctive

from other surfaces. Of course, whitening does not make

signals different; it just makes explicit the differences that

already exist.

While a white noise image is fully correlated with itself,

the correlation of such an image with any nonzero

translation of it is zero. It is even more unlikely that two

unrelated objects will be highly correlated after whitening.

We have tested this observation empirically on images of

smooth real objects (see Section 6.2 for a description). We

took 91 pairs of images (normalized to unit energy), where

every pair is associated with different objects and the same

illumination, and computed their inner products and

correlations (i.e., inner products after average substraction)

before and after whitening. Fig. 3 shows the resulting
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distributions. As expected, the images are highly correlated

before whitening and are much less correlated after

whitening. Note that simply removing the average does

result in some decorrelation but is much less effective than

the proposed whitening.

4 IMAGE COMPARISON OF NONISOTROPIC

SURFACES

In this section, we focus on image comparison methods for
nonisotropic surfaces. We will show that methods based on
normalization are closely related to the direction of
gradient. We will consider normalization of local windows
of pixels or of the output of oriented filters that compute the
derivative of a Gaussian. We will also make brief comments
about comparisons based on histogram equalization and
mutual information.

4.1 Normalized Correlation in Small Windows

First, we discuss normalized correlation between windows

with linear intensity patterns. This analysis is only relevant

for small windows.

Proposition 3. For windows with intensity that is a linear

function of image coordinates, normalized correlation com-

putes the cosine of the difference in gradient direction.

Proof. Normalized correlation starts with subtraction of

the mean from each window. Assume I1 and I2 are

zero mean windows with locally linear intensity. We

can choose the x axis so that the y component of rI1

is 0. With these assumptions, without loss of general-

ity, I1 ¼ ax; I2 ¼ bxþ cy. Then, the corresponding gra-

dients are ax̂ and the bx̂þ cŷ, where x̂ and ŷ are unit

vectors in the x and y directions. The angle between

them, �, satisfies

cos � ¼ ab

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2
p ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ c2
p : ð5Þ

The correlation between I1 and I2 is:1Z 1

�1

Z 1

�1

ðabx2 þ acxyÞdxdy ¼ 4

3
ab:

To compute the normalization factors corresponding to

I1 and I2, we use

kI1k2 ¼
Z 1

�1

Z 1

�1

a2x2dxdy ¼ 4

3
a2;

kI2k2 ¼
Z 1

�1

Z 1

�1

ðb2x2 þ c2y2 þ 2bcxyÞdxdy ¼ 4

3
ðb2 þ c2Þ:

Then, the normalized correlation is

I1 � I2

kI1kkI2k
¼ 4ab

3

ffiffiffiffiffiffiffi
3

4a2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4ðb2 þ c2Þ

s
¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ c2
p ¼ cos �:

ut

This demonstrates that with small windows, normalized

correlation is similar to DIRP because, like the square of the

difference in angle, the cosine function is also monotonic in

this difference and changes more rapidly as the difference

increases (up to �
2 ).

4.2 Oriented Derivatives of Gaussians

Many authors have remarked that jets of multiscale, oriented

filters provide some insensitivity to lighting variation. We

now analyze a simple version of these approaches using a

vector of oriented derivative of Gaussian filters at one scale.

We show that comparing the output of these filters effectively

computes the cosine of the difference in the direction of

gradient of the two images. We call this method, which is

sensitive to polarity, “DOGP.” With a slight variation, it

computesasimilarquantity that is invariant topolarity,which

we call “DOG.” LetD�ð~xÞdenote the directional derivative of

G ? I in the direction �, where G denotes a Gaussian filter,

?denotes convolution and � indicates the angle relative to the

x axis. Define the vector of the output of these filters at

~x: Dð~xÞ ¼ ðD�1
ð~xÞ; D�2

ð~xÞ; . . .D�kð~xÞÞ. Typically, k ¼ 8 with

equal spacing. We will also consider a common, polarity

insensitive variation in which the absolute value of the filter

output is used: Dað~xÞ ¼ ðjD�1
ð~xÞj; jD�2

ð~xÞj; . . . jD�kð~xÞjÞ. The

resulting vectors are normalized prior to comparison.

The simplest comparison is correlation, in which case we

compute D1�D2

jjD1jjjjD2jj .

Suppose that the direction of the gradient at ~x is along

the x axis (this will be without loss of generality when our

analysis moves to the continuous domain) and the

magnitude of the gradient is Mx. Then, D�ð~xÞ ¼Mx cosð�Þ
and we have

Dð~xÞ ¼Mx cosð0Þ; cos 2�

k

� �
; . . . cos

2ðk� 1Þ�
k

� �� �
:

That is, Dð~xÞ is a vector that discretely samples the cosine

function, scaled byMx. If we compute derivative of Gaussians

at a point, ~y, in another image, at which the direction of the

gradient is 	 and its magnitude is My, we have

Dð~yÞ ¼My cosð�	Þ; cos 2�

k
� 	

� �
; . . . cos

2ðk� 1Þ�
k

� 	
� �� �

:
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1. The size of the integration interval is chosen arbitrarily because its
magnitude will be canceled by normalization.

Fig. 3. Distribution of correlations between images of different objects

before whitening (black on the right), after removing average (light gray),

and after whitening (dark gray).



DOGP compares jets by computing Dð~xÞ�Dð~yÞ
kDð~xÞkkDð~yÞk . To analyze

this, it is useful to approximate the discretely sampled

cosine with a continuous function. So, we take

kDð~xÞk �Mx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 2�

0

ðcosð�ÞÞ2d�

s
¼Mx

ffiffiffi
�
p

:

Similarly, kDð~yÞk �My

ffiffiffi
�
p

and, therefore,

Dð~xÞ �Dð~yÞ
kDð~xÞkkDð~yÞk �

1

�

Z 2�

0

cosð�Þcosð�� 	Þd� ¼ cosð	Þ:

This is the same comparison measure that normalized
correlation performs when a small window is used.

Next, we consider what happens when we take the
absolute values of filter outputs. Since a derivative of
Gaussian oriented in the direction � produces a result with
the same magnitude as one oriented toward �þ �, we only
apply filters in a range of directions from 0 to �. We obtain

Dað~xÞ �Dað~yÞ
kDað~xÞkkDað~yÞk

� 2

�

Z �

0

jcosð�Þjjcosð�� 	Þjd�:

We can assume, without loss of generality, that 0 � 	 � �
2 .

We obtain

2

�

Z �

0

jcosð�Þjjcosð�� 	Þjd� ¼

2

�

 
�

2
cosð	Þ þ sinð	Þ

2
� 	 cosð	Þ þ cosð	Þ sinð2	Þ

2

� sin	 cosð2	Þ
2

!
¼ 2

�

"	�
2
� 	



cosð	Þ þ sinð	Þ

#
:

This first equality is obtained by breaking the integral into

intervals of constant sign. The second equality follows from

trigonometric identities.
In fact, 2

� ½ð�2 � 	Þ cosð	Þ þ sinð	Þ� � 2
11 cosð2	Þ þ 9

11 . To
show this, we can expand the two functions with Legendre
polynomials. The coefficients of the two functions in this
basis are shown in Table 1. They are almost identical. The
two functions are plotted in Fig. 4.

Therefore, DOG essentially compares image gradients by
taking the cosine of twice the difference in angle. This
comparison is insensitive to the polarity of this difference
since it is periodic with a frequency of �. Within this range,
it is monotonic with the difference in angle and qualita-
tively identical to the comparison method in DIR.

Note that these functions are a continuous approxima-
tion of the discrete functions actually computed. However,
for image matching, we have verified that a discrete version
with k ¼ 8 produces numbers that generally differ by two
percent or less from a continuous version (to compute this,

we numerically integrate with a very large k), and performs
matching identically with k ¼ 8 and larger values of k.

Note that by using a set of eight filters, we obtain a highly
redundant feature set. However, if we compare these jets by
taking inner products, we can see that this is a discrete
approximationofacomparisonofacontinuousfunctionof the
gradient. A nonredundant set of two oriented filters would
provide a poor approximation of this continuous function,
while eight orientations provide an excellent approximation.

4.3 Histogram Equalization and Mutual Information

We now briefly discuss the connection between compar-
isons based on the direction of the gradient and those based
on histogram equalization (HE) or mutual information (MI).
First, consider histogram equalization that consists of a
monotonic transformation of pixel intensities. HE does not
change the shape of isoluminant contours in the image. So,
two images are identical after histogram equalization only if
they have identical isoluminant contours. The direction of
the gradient is always orthogonal to the isoluminant
contours, implying also that the gradient directions are
identical at all locations. HE also does not alter the polarity
of a gradient because it transforms intensities monotoni-
cally. Therefore, whenever two images are identical after
HE, the original images will be judged identical by DIRP.

A similar relationship exists between mutual information
and DIR. Given an image A, a new image B will maximize
mutual information with A whenever any set of pixels that
have identical intensities in A all have a single (possibly
different) intensity in B. Therefore, B has maximum mutual
information with A only if it has identical isoluminant
contours and, therefore, identical gradient directions with A.

The converse relationships need not hold. Two isolumi-
nant contours may have identical intensities in one image
but not in the other. This will lead to images with identical
gradient directions that HE and MI will judge to be
different. Intuitively, gradient direction, HE, and MI all
measure the similarity in the shape of isoluminant contours.
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TABLE 1
Coefficients Obtained by Expanding Each Function in Terms of Legendre Polynomials

Fig. 4. The solid line shows the comparison value calculated by DOG

(2
� ½ð�2 � 	Þ cosð	Þ þ sinð	Þ�). The dashed line shows that this is very close

to 2
11 cosð2	Þ þ 9

11 .



However, HE and MI depend on global properties of the
image, such as whether distant points have identical
intensities, while DIR is more local. Which is better will
depend on the domain, but we expect DIR to be preferable
when the effects of lighting vary throughout an image.

5 APPROACHES TO COMBINING

So far, we have focused on two types of methods: those based

on Whitening and those equivalent to gradient-direction-

based methods. We have shown that Whitening is effective on

isotropic surfaces while the gradient direction is effective on

nonisotropic surfaces. We therefore expect to improve

performance on mixed surfaces by combining these methods.

In this section, we consider some simple, intuitive methods of

combining Whitening with the direction of the gradient.

The simplest method of combining is to sum the

outputs of two filters with proper normalization. Our

experiments on mixed surfaces show (see Section 6.4) that

this simplest combination of Whitening and direction of

gradient gives better results than either Whitening or

direction of gradient alone.

A more elegant way of combining these two methods is by

defining a jet of oriented whitening filters. We showed that the

Laplacian can be used for Whitening without learning specific

to a class of surfaces. So, a practical method of combining is to

use a jet of oriented second derivatives (JOSD). Specifically, let

L�ð~xÞdenote the result at position~xof convolving an image, I,

with a second derivative of a Gaussian filter, in which the

second derivative is taken in the direction �. By varying �, we

produce a set of filters and by convolving an image with these

filters we obtain a vector of values at each pixel: One for each

orientation. We form a jet of the magnitudes of these outputs,

Lð~xÞ ¼ ðjL�1
ð~xÞj; . . . jL�kð~xÞjÞ. As with other jets, we compare

points in two images by computing the jets J and I at

corresponding points and taking their normalized correla-

tion: J �I
kJkkIk .

JOSD is an effective combining method because 1) as a jet,

it is invariant to offset, gain, and polarity and, so, to lighting

changes at discontinuities, 2) normalized oriented filters

should produce different responses on nonisotropic surfaces

of different orientations, 3) as an approximation of Whiten-

ing, JOSD is effective on isotropic surfaces.
One can see a connection between the JOSD and Gabor

jets [14], [30]. The Gabor filter is complex. The real

component of the Gabor is the product of a cosine and a

Gaussian. For an orientation of zero, this component is

symmetric about the y-axis and is called the even

component of the Gabor. The imaginary part of the Gabor

is the product of a sine and a Gaussian, and is called the

odd component. The magnitude of the complex Gabor filter

is taken when forming the output of Gabor filters into a jet.

This captures the amplitude of the image in a band of

frequencies, but discards the phase.

It has been noted that the odd components of the Gabor jet

are quite similar to an oriented derivative of a Gaussian. Fig. 5

plots a comparison of the two functions. This similarity

suggests that a jet composed of only the odd components of a

Gabor will behave similarly to a jet of oriented derivatives of

Gaussians. Therefore, it will yield similar results to those

obtained by gradient direction comparison. We will call

image comparison based on odd Gabors GO. Our experi-

ments indeed show that the behavior of GO and DOG are very

similar qualitatively. Similarly, a jet of even Gabor compo-

nents (we will call it GE) behaves much like JOSD presented

above. While we do not analyze the differences between the

even components of Gabors and oriented second derivatives,

their similarity is clear from Fig. 5b.

We can therefore see that Gabor jets contain elements of

two different methods, one which compares images based

on the direction of the gradient and the second which is

itself similar to a combination of Whitening and a method

sensitive to the direction of the image’s second derivative.

We now examine the method by which the odd and even

Gabor components may be combined.

By taking the magnitude of the output of a complex Gabor

filter prior to taking the inner product between two jets, we

are extracting the amplitude of the response and discarding

the phase. The motivation for this is to achieve quasi-

invariance to small deformations in shape (phase has been

used separately for fine alignment of images [50]). However,

it is not clear that discarding phase should help achieve

illumination invariance. We conjecture that Gabor jets are

illumination insensitive largely because they combine even

and odd components of Gabor jets, which separately produce

illumination insensitivity. To test this conjecture, we experi-

mentally compare the performance of Gabor jets (GJ) and a

method we call GO + GE. GO + GE separately compares the

even and odd components of Gabor jets, and then adds the

resulting comparison measures. The details of these experi-

ments are given in Section 6.4, and the results can be seen in

Fig. 11. In brief, we compare GJ with GO + GE on both

isotropic and nonisotropic objects. In every case, GO + GE

outperforms GJ, except when the performance of both

measures is quite poor.

6 EXPERIMENTS

The experiments are designed to test our main claims:

1. Different representations provide illumination in-
sensitivity to different types of surfaces. Specifically,
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Fig. 5. (a) A cross section of the odd component of a Gabor filter
compared to a difference of Gaussian. The Gabor is shown as a dashed
line, while the difference of Gaussian is solid. (b) The even component of
a Gabor filter (dashed) compared to a second derivative of a Gaussian.



. Direction of gradient and related methods based
on local normalization are more effective on
nonisotropic surfaces.

. These methods are equivalent and are expected
to give the same results.

. Whitening methods are more effective on
smooth isotropic surfaces.

2. Combining surface dependent representations
is beneficial to illumination insensitive image
comparisons.

Direct measurement and analysis of the illumination

insensitivity of different representations is not straightfor-

ward because different objects are associated with different

degrees of change. Moreover, different representations use

different units (e.g., gray-levels and directions), which makes

comparison difficult. Finally, a constant representation (e.g.,

an image where all gray-levels are zeros) would be highly

stable but, of course, useless. Therefore, we chose to compare

the representations, indirectly, using a matching experiment

with ensembles of objects. A highly illumination insensitive

representation will maintain similarity of images of the same

object, while creating dissimilarities between images of other

objects. Therefore, it will give more accurate matching.

6.1 Recognition Methods

We applied the following recognition scheme as an

application of our approach to image comparison. For a

given collection of objects, we took reference images of each

object under the same lighting conditions. Then, we took

query images of these objects with different lighting

directions. A query image was compared to each reference

image and matched to the one that minimized the

appropriate comparison measure. We have tested the

following comparison measures.

LOG. We filtered each image with a Laplacian of

Gaussian, normalized the filtered images to unit length, and

measured the SSD between the query and each reference

image.

Whitening. For every set of images, we learned a

whitening filter as a 2D causal filter that minimizes the MS

prediction error. The size of the filter varied according to the

smoothness of the images. The whitening filter was trained on

the difference images obtained by subtracting reference

images from the corresponding images associated with the

same object under varying illumination. During testing (on

different images), we whitened each image, normalized the

whitened images to unit length, and measured the SSD

between the query and each reference image.

DIR. We first smoothed all images with a Gaussian.

We defined the direction of the gradient of the smoothed

image, I, as

rð~xÞ ¼ mod atan
@G ? I

@y
=
@G ? I

@x

� �
; �

� �
:

Discarding the polarity of an edge in order to compare the

directions of gradients in two images, rI; rJ , we took

minððrI � rJÞ2;modð�� jrI � rJ j; �Þ2Þ.

DOG, GO, GE, GO + GE, GJ, JOSD. These methods use

jets of oriented first derivatives of Gaussians (DOG), the odd

(GO), or even (GE) components of Gabor Jets (GJ), the sum of

these two (GO + GE) or jets of oriented second derivatives

(JOSD). All these methods involve a Gaussian, selected so that

the amount of smoothing is the same as with DIR.

NC. We perform normalized correlation in every

3� 3 window and use its absolute value to discard polarity.

This allows a fair comparison with DIR, which is also polarity

insensitive. Normalized correlation is an increasing function

of the match quality, between zero and one, so we use

1—(absolute value of the normalized correlation) as a

distance function, denoted “NC.” To integrate the results

over the whole image, we computed the magnitude of the
vector that contains these absolute normalized correlations.

6.2 Data Sets

Since the Whitening method requires training, we divided
image sets used in whitening experiments into training and
test sets.

6.2.1 Synthetic Very Smooth Set

Every scene was created as a sum of random harmonic

functions, with fixed amplitudes but random directions and

phases. This provides an ensemble of images with similar

statistical properties. These were rendered as Lambertian

surfaces with point sources.

The training set included 2,000 images with a fixed

illumination, deviating 67.5 degrees from the frontal

direction. Since the synthetic images are very smooth, we

trained a large whitening filter of 265 coefficients inside a

23� 23 window. The test was conducted on 5,000 triplets of

images. Two of each triplet were reference images produced

from random scenes illuminated by the same nearly frontal

illumination. The third was a query image synthesized from

the first scene, with a different illumination varying over a

hemisphere with deviation up to 67.5 degrees from the

frontal. A typical triplet is shown in Fig. 6.

6.2.2 Real Isotropic Set

We created 18 real, smooth objects from clay (Fig. 7). Even

though some parts of some objects were nonisotropic, we

consider these to be typical of real objects that are relatively

smooth and isotropic. We illuminated the objects by a single

light source moving along a half circle, so that its distance

from the object was roughly fixed. We used a camera placed

vertically above the object, and took 14 images of every
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Fig. 6. A typical triplet from the smooth synthetic experiment. Top row:
original images. Bottom row: whitened images. The first and third
column correspond to the same surface, while the second column
corresponds to a different surface.



object with different lighting directions at angles in the

range ½�65; 65� degrees to the vertical axis. One image of

each object, associated with a nearly vertical (frontal)

illumination, was chosen as the reference image.
A single whitening filter was constructed as follows: We

randomly picked two objects and trained the whitening filter

on the difference between reference images and correspond-

ing images associated with the same object and six other

illuminations—12 images in total (two objects x six illumina-

tions). We learned the whitening filter as a 2D causal filter

with 25 coefficients inside 7� 7 windows. (This size filter

produced best results for the given domain). All images of the

18 objects except the reference images were used as query

images (234 images).

6.2.3 Real Nonisotropic Set

For nonisotropic objects, we used the Yale database [7],

which contains 20 objects with abrupt changes in albedo and

shape. The database consists of 63 images of each object

with lighting direction varying over a hemisphere with

maximum deviation of 90 degrees from the frontal (see [16]

for more details on the lighting configuration). In our

experiments, we used 90� 90 pixel subwindows from each

image. Fig. 8 shows the subwindows from images of all

objects taken under frontal illumination.

The whitening filter was trained on 20 difference images

associated with two objects and 10 illuminations. Varying the

size of the whitening filter from a 3� 3 to a 7� 7 window had

no real effect on recognition performance. This is not

surprising because these objects are relatively rough. As in

the previous set, one image of each object, associated with

frontal illumination, was chosen as the reference image. The

rest of the images were used as queries.

6.2.4 Mixed Set

The mixed set contains 27 clay objects with different

degrees of isotropy (Fig. 10). We took 32 images of each

object with light varying over a quarter of a sphere. The

light was placed every 60 degrees (four positions) at

8 latitudes with the highest latitude as frontal light. The

lowest latitude was 86 degrees from the frontal.2

6.3 Testing Surface Dependent Representations

To test the contention that different types of surfaces require

different representations, we applied Whitening and the

Laplacian of Gaussian (expected to be good representations

for isotropic surfaces), and DIR, DOG, and normalized

correlation (expected to be good representations of noniso-

tropic surfaces) in the task of object recognition under varying

illumination on the 1) synthetic very smooth set, 2) real

isotropic set, and 3) real nonisotropic set.

In all our experiments, DOG and NC behaved almost

identically to DIR (this was also shown analytically in

Sections 4.1 and 4.2). Therefore, we do not show plots for

the DOG and NC methods. The experiments (Fig. 9) show that

Whitening outperforms other methods on isotropic surfaces.

LOG performs quite well on real isotropic surfaces. However,

on very smooth surfaces (synthetic images), its performance

degrades because its size is insufficient to handle the high

correlations between the gray-levels present on surfaces of

this type. DIR is not as good as Whitening and LOG on

isotropic objects, but outperforms them on nonisotropic

objects. Whitening and LOG are almost identical on non-

isotropic objects. This is to be expected since many objects in

this set contain abrupt changes in albedo or shape; thus, the

correlation in these objects is short range and the whitening

filter is similar to the Laplacian.
The above results support our conjecture that DIR and

other methods based on normalization (DOG, NC, etc.) are

best for image comparisons of nonisotropic objects, while

Whitening and LOG are best for images produced by

isotropic surfaces.

6.4 Testing Combined Methods

We tested the combined methods discussed in the paper

(simple combining, JOSD, GJ, and GO + GE) on three sets of

real objects: nonisotropic, isotropic, and mixed.

First, we see that even though the combined methods

perform differently on different sets, in general, they are

better than surface dependent methods, specifically

Whitening and DIR. Fig. 12 shows specific examples of

objects from different sets where one or even both of the
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2. The results, described in Fig. 11, are plotted for illumination angles in
the range ½0; 65�, which are available for all data sets.

Fig. 8. Examples of images from the “nonisotropic real set.” Top:

fragments of all objects captured under frontal lighting. Bottom: lighting

variation in the set with images of one object.

Fig. 7. Examples of images from the “real isotropic set.” The top two

rows show all the objects from the data set captured under frontal

lighting. The bottom two rows show the lighting variation in the set, with

images of one object.



surface dependent methods fail to recognize the object

while the combined method JOSD succeeds.

Next, we point out that GO + GE performs very similarly to

GJ. We interpret this as support for our conjecture that Gabor

jets work well under variable lighting because of the

individual performance of their constituents GE and GO,

and not because of the particular way in which GJ combines

these two filters. We noted earlier that qualitatively GO is

very similar to DOG and GE is very similar to JOSD. We

verified the posited similarity by comparing the performance

of these methods on the mixed set (Fig. 11d).

7 CONCLUSIONS

We have discussed two classes of illumination insensitive

representations and shown that they are effective when

applied to two different classes of surfaces. To clarify this

further, we have shown that a number of existing methods

are actually equivalent to comparisons based on the image

gradient direction, which is known to be effective for

nonisotropic surfaces, and we have shown that isotropic

surfaces can be effectively dealt with by a different strategy

based on whitening the image. Experiments clearly show

that which method is best depends on the surface type. This

leads to a better understanding of existing algorithms, as

well as to more effective methods of whitening when we

can learn a filter based on the relevant class of surfaces.

Our analysis also suggests that even more effective

representations will combine these two strategies. Such

mixed approaches can work effectively on a wider range of

surfaces. We demonstrate that Gabor jets seem to employ

such a mixed strategy, which helps to explain their effective-

ness at illumination insensitive recognition, and we develop
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Fig. 9. Experimental results of surface dependent representations: (a) smooth synthetic objects, (b) smooth real objects, and (c) rough real objects.

Fig. 10. Examples of images from the “mixed set.” Top: fragments of all

objects captured under frontal lighting. Bottom: lighting variation in the

set with images of one object.



new mixed strategies as well. The last few years have seen

dozens of papers on illumination insensitive image matching;

we hope that a deeper understanding of these methods will

assist practitioners in choosing the most effective methods for

their problem and help lay the groundwork for improved and

more widely applicable methods.

APPENDIX

PROOF OF PROPOSITION 1

Proof. The derivatives of Gaussian fields are Gaussian field
themselves and, so is any linear function of them. There-
fore,Iðx; yÞ isaGaussianrandomfield. Itsexpectedvalue is

E½Iðx; yÞ� � E �I0 sin�� cos�ðhxcos�þ hysin�Þ
� �� �

¼ �I0sin�

because, by homogeneity, E½hx� ¼ E½hy� ¼ 0. As for the

covariance,

CIð�xi; �xjÞ ¼ E½ðIð�xiÞ � E½Ið�xi�ÞðIð�xjÞ �E½Ið�xj�Þ�
¼ �2 I2

0 cos
2� ðcos2�E½hxð�xiÞhxð�xjÞ�

þ sin2�E½hyð�xiÞhyð�xjÞ�
þ sin�cos�E½hxð�xiÞhyð�xjÞ þ hxð�xjÞhyð�xiÞ�Þ:

ð6Þ

The expected values of the surface derivative products

are easily calculated by

E½hxð�xiÞhxð�xjÞ� ¼
@2CSð�xi; �xjÞ
@xi@xj

¼ CSð�xi; �xjÞ
2

�2
1� 2

�2
ðxi � xjÞ2

� �
;

E½hyð�xiÞhyð�xjÞ� ¼
@2CSð�xi; �xjÞ
@yi@yj

¼ CSð�xi; �xjÞ
2

�2
1� 2

�2
ðyi � yjÞ2

� �
;

E½hxð�xiÞhyð�xjÞ� ¼
@2CSð�xi; �xjÞ
@xi@yj

¼ �CSð�xi; �xjÞ
2

�2

� �2

ðxi � xjÞðyi � yjÞ

¼ E½hyð�xiÞhxð�xjÞ�:

ð7Þ

Inserting these terms in (6) and expressing xi � xj and

yi � yj as k�xi � �xjkcos and k�xi � �xjksin , respectively,

gives
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Fig. 11. Experimental results of the combined methods compared against surface dependent representations. All objects are real. (a) Nonisotropic.
(b) Isotropic. (c) Mixed. (d) Compares the performance of GE against JOSD and GE against DOG in the mixed set.

Fig. 12. Examples of some images where the combined methods

outperform surface dependent representations. (a) Whitening works,

DIR fails. (b) DIR works, Whitening fails. (c) Both Whitening and DIR fail.

JOSD works on all four images.
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I is
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