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Abstract—Large stores of digital video pose severe computational challenges to existing video analysis algorithms. In applying these
algorithms, users must often trade-off processing speed for accuracy, as many sophisticated and effective algorithms require large
computational resources that make it impractical to apply them throughout long videos. One can save considerable effort by applying
these expensive algorithms sparingly, directing their application using the results of more limited processing. We show how to do this
for retrospective video analysis by modeling a video using a chain graphical model and performing inference both to analyze the video
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1 INTRODUCTION
New technology is giving rise to large stores of digital
video. Their size has increased much faster than the
computational resources needed to effectively process
them. At the same time, as we develop increasingly
sophisticated and accurate vision algorithms, they also
demand greater computational resources. Consequently,
it is important to develop strategies for applying vision
algorithms with greater efficiency to video data.

The scope of the problems we face is evident. Surveil-
lance systems can contain thousands of cameras. Real
time processing of huge data sets is extremely chal-
lenging; retrospective or forensic analysis creates even
greater problems when one must rapidly examine hours
or days of video from thousands of cameras. For exam-
ple, British police were required to examine 80,000 CCTV
tapes from a network of 25,000 cameras [1] to discover
the image of a bomber after the terrorist attack in London
in 2005 [2]. Automatic processing is needed to speed up
this analysis, but one cannot hope to process all available
video in such cases; it is essential to direct processing to
portions of video most likely to be informative.

In this paper, we develop a new method for controlling
processing, so that available resources are directed at
the most relevant portions of the video. In our pro-
posed approach, we initially perform some inexpensive
processing of a video by applying a cheap but less
accurate algorithm combined with sparse application of
a more expensive and accurate algorithm. We then use
an inference algorithm to determine to which frames we
should apply further expensive processing.
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Our work makes two critical assumptions. First, that
expensive algorithms exist that can perform a task quite
accurately (e.g., >90% accuracy). While many real-world
vision tasks are still too challenging for this, recent
growth in the number of vision companies and appli-
cations illustrate that high accuracy is often achievable
in simpler tasks (eg., face detection in cameras [3]) or
in controlled environments (eg., detection and tracking
in stores[4]). Moreover, in vision systems with a human
in the loop, a human analyst may be regarded as a
very accurate, and very expensive algorithm. Second, we
assume that a much cheaper, but less accurate algorithm
is available, and that it is desirable to use the output
of this algorithm to direct the attention of the expensive
algorithm most profitably. We want to stress that our
work does not aim to solve vision problems that are
beyond the reach of existing algorithms, but rather to
speed up the solution to problems that are currently
solvable, albeit only at considerable cost.

To combine information from features produced by
cheap and expensive algorithms, we present a graph-
ical model for video analysis. We use a second-order
Markov model with a node for each frame, and a state
variable that indicates whether this frame is relevant to
a query. For example, the state might indicate whether
the frame contains a visible face. Each state has two
potential observations. The first observation is always
given; it is obtained by running a cheap algorithm on
all frames. For example, cheap background subtraction
might provide a clue as to whether people are currently
visible. The second observations is only obtained if a
more expensive and accurate algorithm is applied to
that frame (in this example, a face detector). As in a
Hidden Markov Model (HMM), each observation di-
rectly depends on the current state. In addition, in our
model each observation directly depends on the previous
observation. This captures the phenomenon that errors
made by an algorithm are often correlated from one state
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to the next. This model allows us to effectively combine
information from cheap and expensive algorithms to
improve performance.

Our primary contribution is a new algorithm that
uses this model to determine where in a video to apply
the expensive algorithm. We build on prior work by
Krause and Guestrin [5] that shows that one can use
a dynamic programming algorithm to determine the
optimal places at which to make observations in a first-
order Markov chain. While this work is readily extended
to our graphical model, it requires Θ(B2n3) computation
time, where n is the number of nodes in the Markov
chain, and B is the number of places at which we will
apply the expensive algorithm. In our setting n is the
number of frames in the video and B is also O

(
n
)
, so

this algorithm is not practical for video analysis.
We solve this problem with a new algorithm that pro-

duces an approximately optimal answer efficiently. More
precisely, we make an additional assumption about the
concavity of the reward from observations as the budget
increases, a law of diminishing returns that we show is
generally valid in our setting. Then, we show that by
applying part of the total budget to make observations
at a uniform step size, we can find an allocation of the
remaining observations that will be at least as good as
the optimal batch allocation, and that requires a modest
amount of computation. This allocation makes use of
rewards computed by Krause and Guestrin’s algorithm,
applied to small sections of the video.

Our approach is quite general, and can be applied
to a wide range of scenarios in which multiple algo-
rithms are combined into a single system. Our final
contribution is to experimentally demonstrate the value
of this algorithm in two very different vision tasks:
motion and face detection. To detect motion efficiently
we combine a very cheap and a more expensive back-
ground subtraction algorithm. For the second task, we
use background subtraction to trigger face detection. We
show that our algorithm can be used to significantly
improve performance.

The paper is organized as follows. In Section 2 we
discuss related work. In particular, we describe a dy-
namic programming algorithm [5] that determines the
optimal place to make observations. We then describe
our new algorithm in the context of Markov Chains
in Section 3. Then, we introduce our graphical model
for video analysis and describe how to apply the new
algorithm to this model in Section 4. In Section 5, we
show experiments.

2 PRIOR WORK

We first review background subtraction and face de-
tection algorithms. Next, we describe work on visual
computing that deals with issues of resource constraint.
We then discuss work on feature and label acquisi-
tion. Finally, we describe the algorithm by Krause and
Guestrin [5] in detail.

2.1 Background Subtraction
Background subtraction detects moving objects in video,
usually taken by static cameras. This typically involves
building a background model. Wren et al. [6] use a
Gaussian estimate of the background distribution of
each pixel. Lo and Velastin [7] use the median of the
previous n frames as the background model. Elgammal
et al. [8] propose a non-parametric model based on
kernel density estimation to approximate the pdf of
each pixel. In Kim et al. [9], background values are
quantized into codebooks to handle periodic motion.
Rittscher et al. [10] represent the background using a
hidden Markov model, which can discriminate between
foreground, background, and shadow. Cheung et al. [11],
Piccardi [12], and Yilmaz [13] give a general review of
this problem. We describe in more detail two methods
we use in our experiments.

In frame differencing (FD), the background model of
the frame at time t, ft, is the frame in the previous time
step, ft−1 (Jain and Nagel [14]). Given a threshold, Th,
|ft − ft−1| > Th gives the foreground region of ft.

Stauffer and Grimson [15] use a mixture of Gaussians
(MoG) for the background model. With the assumption
that a more compact distribution with a higher mode
is more likely to be the background, MoG selects back-
ground components whose ratio between its peak value
and standard deviation is greater than a certain thresh-
old. Finally, it uses recent pixel values to update the
model parameters. This method is much more sophis-
ticated than the FD method, and requires significantly
more computational resources. Zivkovic [16] improves
this work by using recursive equations that can also
simultaneously select the appropriate number of com-
ponents in the mixture model. We call this method the
improved adaptive Gaussian mixture model (IAGMM),
and we use it in our experiments.

2.2 Face Detection
Yang et al. [17] provide a comprehensive survey of face
detection methods and organize them into four major
categories. First, top-down knowledge based methods
represent a face using human knowledge, which usu-
ally captures relationships between facial features such
as eyes, nose, and mouth. Yang and Huang [18], for
example, use a hierarchical knowledge-based method to
detect faces. Second, bottom-up feature based methods
seek invariant features, such as eyebrows, hair texture,
and skin color, for detection. Hsu et al. [19] propose a
skin-tone color model which they use to generate face
candidates for verification by facial features (see also
Jones and Rehg [20]). The third category is template
based methods, in which correlation between an input
image and the template is used to detect faces. Sinha
[21], for example, builds a face template by capturing
the invariance between the relative brightness of facial
regions. The last category includes appearance based
methods, which in general use statistical analysis and
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machine learning techniques. Various methods, such as
support vector machines [22] and neural networks [23],
and naive Bayesian classifiers [24] have been proposed.

Viola and Jones [25] achieve a breakthrough in per-
formance that has been widely adopted. With integral
images for fast computation, their scheme uses a set of
features that are similar to Haar wavelets. They then con-
struct classifiers by selecting a small number of impor-
tant features using Adaboost. Finally, the scheme detects
faces inside an image region by applying classifiers in a
cascade. At each level of the cascade, one uses a classifier
with a very low false negative rate, although the false
positive rate might be high. Subsequent classifiers are
run only when previous classifiers indicate a positive
result. Lienhart and Maydt [26] extend this work by
adding an efficient set of 45◦ rotated features to the
original feature set and by using a new post-optimization
procedure for a given boosted classifier. Their work
shows significantly lower false alarm rates, and we use
this method to detect faces in our experiment.

There have been many other extensions to the Viola-
Jones method. For example, Huang et al. [27] extend the
cascade of classifiers structure to a Width-First-Search
(WFS) tree structure. Mita et al. [28] introduce a new
feature, called the joint Haar-like feature, for detection.
Xiao et al. [29] use a boosting chain to integrate historical
knowledge of successive learning of strong classifiers.

2.3 Visual Computing under Resource Constraints

Many methods have been developed to handle resource
constraints in computer vision. Weiss and Taskar [30]
generalize the approach of Viola and Jones and apply
it to a range of applications, including handwriting
recognition. Felzenszwalb et al.[31] develop cascades for
object detection using deformable models such as picto-
rial structures. Vijayanarasimhan [32] recently introduce
a novel framework for object detection and classification
in still images under resource constraints. They design
a grid based model that is used to determine the best
image regions to look at and the best features to be
extracted. This process is guided by the principle of
value-of-information (VOI) to find the most evidence at
the least cost.

In video processing, performance is often an issue, as
many effective algorithms are too slow to run in real-
time, and even fast algorithms may require enormous
amounts of time when used to perform retrospective
analysis of large quantities of video. One common strat-
egy is to run cheap, lower level algorithms such as
motion detectors to determine when something inter-
esting might be happening. When these detect motion,
higher level algorithms are then deployed. While this
approach is used heuristically, but very effectively in
a wide range of applications, we will mention two
representative works that formalizes this. First, Krishna
et al. [33] propose an algorithm switching approach to
handle background subtraction. The system starts by

processing each frame with a uni-modal model. When
the system shows poor segmentation quality, it switches
to use the MoG model. Second, Barotti et al. [34] use al-
gorithm switching to handle lighting changes and solve
bootstrapping problems in motion detection. When the
system detects sudden global illumination variation, the
motion detection switches from background subtraction
using a single Gaussian to FD.

2.4 Feature and Label Acquisition

The machine learning community has looked at the
problem of determining which features to acquire in or-
der to correctly classify instances. In this setup, instances
are described by a set of features each of which has
an associated acquisition cost, and a total budget limits
feature acquisition. Some example strategies are [35],
[36]. The biggest difference between this line of work
and ours is that the feature-value acquisition community
treats each instance as independent. However, in our
case, the information we want to extract in nearby frames
of video is highly correlated, and we should be able to
do better if we take these correlations into account.

Another related area of work is label acquisition:
instead of obtaining features, we can query an oracle to
determine an instance’s label directly. Given a network
of instances, such as a sequence of frames, a network of
friends, etc, acquiring the label for an instance helps in
correctly classifying the rest of the network. The question
is then which instances should be queried in order to get
the best performance on the remaining ones. Rattigan et
al. [37] queries the instances that are structurally impor-
tant, e.g. highly connected instances, central instances,
etc. Bilgic and Getoor [38] build a classifier that can
predict which instances might be misclassified and query
a central instance only if it is predicted as misclassified.
Active learning work [39] is very related to this problem,
and it has been applied to visual recognition [40], [41].
However, active learning acquires labels to construct
training data to learn a model, whereas label acquisition
described here is applied to an already learned model to
guide probabilistic inference.

These methods have been quite successful in practice,
but they are heuristic approaches and have no theoretical
guarantees (partly because they are applicable to general
networks). However, for the class of chain graphical
models such as HMMs, Krause and Guestrin [5] show
how to solve the label acquisition problem optimally. We
describe their work next.

2.5 Optimal Observation Plans

Krause and Guestrin [5] present VoIDP, an Dynamic Pro-
gramming to optimize Value of Information, for selecting
observations for the class of chain graphical models.
Since we build on this method, we now describe it in
some detail, although we consider a special case of their
work that is suitable to our problem.



4

They optimize an objective function based on a class
of reward functions, R, that are defined using the
probability distribution of a set of random variables
S = {X1, · · · , Xn}. This set of variables forms a chain
graphical model, that is, i < j < k, implies that Xi is
conditionally independent of Xk given Xj . For example,
consider a HMM unrolled for n time slices. Then the
n hidden state variables form a chain graphical model.
Suppose that for each of these variables, it is possible to
observe its hidden state at a fixed cost. This corresponds,
in our problem, to the supposition that an expensive
algorithm is extremely accurate, and reveals the hidden
state. Let O be the set of observed variables and o be the
values of these variables. O = o is used to denote each
variable in O takes its corresponding value in o.

The reward function R is built upon a local reward
Rj , which is a functional on the probability distribution
P (Xj |O = o). While this reward could be quite general,
in this paper we consider only Xj that are binary vari-
ables, and use

Rj(P (Xj |O = o)) =

max(P (Xj = 1|O = o), P (Xj = 0|O = o))−
min(P (Xj = 1|O = o), P (Xj = 0|O = o)) (1)

That is, given a set of observations, we receive a greater
reward as we become more certain of the value of
each state. This reward is equivalent to considering the
expected number of correct classifications. We will also
use the notation:

Rj(Xj |O) ,
∑
o

P (O = o)Rj(P (Xj |O = o)), (2)

That is, given the choice of a set of variables, O, to
observe, Rj(Xj |O) denotes the expected reward we will
receive from these observations.

Assume that there is a fixed budget B for selecting
observations, we then must select observations O to

maximize J(O) = R(O) =
∑
j

Rj(Xj |O),

subject to ‖O‖ = b ≤ B, (3)

where j is the index over the state variables S, b is the
number of observed state variables O, and B is the total
budget for the whole chain. Observations can include
variables at any time step in the chain since we consider
processing a video after it is recorded. This corresponds
to the ”smoothing” version of the problem [5].

The conditional independence property in the chain
graphical model simplifies the local reward. With this
property, the local reward R(Xj |O) = 1 in the case that
Xj ∈ O. In the case that Xj /∈ O, we have R(Xj |O) =
R(Xj |Oj), where Oj is a subset of O containing two
observations. These are the last observation preceding
Xj and the first observation in O that follows Xj .

Furthermore, Krause and Guestrin [5] consider both a
conditional planning setting of this problem, in which
the best observation is made and then the optimal next

observation is computed, and this is repeated k times,
and a subset selection setting of the problem, in which
one decides on the locations of the best observations with
a total cost of k first, and then makes these observations.
Our algorithm uses the conditional planning variant
since it in general produces the best performance.

They solve this problem by noting that once an ob-
servation is made, it splits the problem of determining
future observations into conditionally independent com-
ponents before and after the observations. This allows
for a dynamic programming solution. They define a
value, Ja:b(xa, xb; k), which denotes the reward produced
by the optimal plan with a budget of k over the interval
from variables Xa to Xb, given that these variables have
been observed to have states xa and xb. Then they note
that Ja:b(xa, xb; k) can be recursively computed given the
value of Jc:d(xc, xd; l) for all a ≤ c ≤ d ≤ b and l < k.
The recursive formula is

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0), max
a<j<b

{∑
xj

P (Xj = xj |Xa = xa, Xb = xb){Rj(Xj |Xj = xj) +

max
0≤l≤k−1

[Ja:j(xa, xj ; l) + Jj:b(xj , xb; k − l − 1)]}}}, (4)

where the base case is

Ja:b(xa, xb; 0) =

b−1∑
j=a+1

Rj(Xj |Xa = xa, Xb = xb). (5)

The recursive formula basically iterates over each split
point j between a and b to find one that returns the
highest reward (or performs no further observations if
they do not increase the reward). For each split point,
the reward is the expectation taken over all possible
assignments of value to the split point. All possible
budget allocations between the two split subsequences
are considered when the value of split point is fixed.

To initialize, the algorithm adds two independent
dummy variables, X0 and Xn+1, which have no reward
and observation cost but have default states, to the head
and tail positions of the chain. Thus the optimal reward
for a chain of n variables with a budget of B is computed
as J0:n+1(x0, xn+1;B).

This algorithm corresponds to the smoothing version
of VoIDP in a conditional plan setting, and we refer
it as VoIDP-SCP in this paper. According to Theorem
2 in [5], the complexity of this algorithm in terms of
number of evaluations of local rewards for our binary
state variables is

Θ(B2n3). (6)

3 EFFICIENT OBSERVATION PLANS

We now present a novel algorithm, Dynamic Progam-
ming Allocation (DPA), that is efficient enough to apply
to problems with very large values of n. DPA approx-
imates the optimal algorithm and is much faster. In
the next sections, we will show how this algorithm
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can be applied to video processing. DPA first uses B′

observations from the total budget, B, to make uni-
form observations. This splits the Markov chain into
M = B′ + 1 consecutive intervals where the first and
last variables of each interval are observed. This breaks
our problem up into a series of smaller problems of
the same size. These problems are not independent,
however, since the remaining B′′ = B−B′ budget must
be parceled out between all these intervals. We show
that, with an additional, reasonable assumption, this
can be done optimally. Once the budget is allocated to
intervals, observations can be allocated within intervals
using VoIDP-SCP.

DPA maximizes the sum of rewards over all intervals
to allocate budget between them. That is, let ki be the
budget allocated to interval i. Let Ji(ki) be the reward of
VoIDP-SCP for interval i with a budget of ki. We want
to find k1, k2, · · · , kM such that they

maximize
M∑
i=1

Ji(ki), subject to
M∑
i=1

ki = B′′. (7)

To perform this optimization efficiently, we rely on the
empirical observation that for each interval, the optimal
reward typically forms a concave curve as the budget
increases. That is, the plot of Ji(ki) against ki as ki
increases is concave in general. This is a kind of law
of diminishing returns property. We denote these kinds
of curves as Reward-Budget (RB) curves, and the as-
sumption that these curves are concave will allow us to
optimally allocate our budget. We will experimentally
verify that this assumption is reasonable. Given this
assumption we can compute the ki with our proposed
algorithm, Dynamic Progamming Allocation (DPA).

Dynamic Processing Allocation (DPA)
1) Use B′ observations to make uniform observations

to break the chain model into consecutive disjoint
intervals separated by the observed variables;

2) Allocate the remaining budget B′′ to these inter-
vals. No observation is taken in this step;

3) Use VoIDP-SCP to determine the observation loca-
tions within each interval; observations are taken
in a conditional mode.

It remains to describe how we perform the second
step of this algorithm. Let Ni be the maximum possible
budget for interval i, typically the number of unobserved
state variables in the interval. We first compute the
reward curve for each subsection up to its maximum
budget. That is, we compute Ji(k), for 1 ≤ k ≤ Ni, using
VoIDP-SCP. Next, we define the reward increment as

∆Ji(k) ≡ Ji(k)− Ji(k − 1), (8)

where k = 1, · · · , Ni. Assuming concavity, we have

∆Ji(k) ≤ ∆Ji(k − 1) (9)

Fig. 1: The example chain graphical model. We assume that X1

and X9 are observed in advance, shown with gray shading.
The state of a node can be 1 or 2, and we show the actual state
on the top of each node.

for all ks. Next, we sort all the reward increments in
descending order. Finally, the budget for each interval
is set to the number of increments it has in the top B′′

positions of the sorted list. We call this allocation method
batch budget allocation. Intuitively, we can see that this
always assigns observations to the sequences where they
will create the most incremental benefit. We prove this in
Section 3.2 and discuss the complexity of the algorithm
in Section 3.3.

We expect this algorithm to do much better than an
optimal batch algorithm, since the B′ observations we
use to break the problem into intervals also provide
very useful information, and because we can use an
optimal conditional plan within each interval, which can
be much better than the optimal batch plan.

However, we note that it is possible to improve the
running time of budget allocation at the cost of some
additional memory. This is because DPA requires us to
compute Ji(k) for all k, while in practice, most intervals
are allocated small budgets, and we only need to com-
pute the RB curve up to this budget. This leads to the al-
gorithm incremental budget allocation, which performs
step 2 of DPA a bit differently. This method returns the

Incremental Budget Allocation - Step 2
1) Initialize the budget of each interval to be zero;
2) Compute the reward increment ∆Ji(1) for i =

1, 2, · · · ,M ;
3) Select the highest increment, and add one to the

budget of the corresponding interval I;
4) If the total budget, B′′, has been used, terminate

and use the current budget allocation for each
interval as the final budget allocation;

5) If not, compute the next reward increment for
interval I, and use it to replace the current reward
increment for this interval. Go back to step 4.

same output as the batch allocation method. In section
3.3, we show that it is asymptotically faster, especially
when we have a small budget. In addition, when the
subsection size is large, we can avoid computing the RB
curve up to its maximum budget for each subsection,
this will save a significant amount of processing time.
We use DPA with incremental budget allocation in our
experiments.

3.1 An Example
We use an example to illustrate how DPA works and
how VoIDP-SCP is different. Consider a chain graphical
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(a) DPA with batch bud-
get allocation

(b) VoIDP-SCP

(c) RB curve - interval 1
(left interval)

(d) RB curve - interval 2
(right interval)

Fig. 2: (a) shows how DPA with batch budget allocation
determines the observation locations. We use gray to highlight
observed nodes. The interval size is 5, so the initial observation
is X5, which is highlighted by a double-line boundary with a
thick inner line. (c) and (d) show the RB curves for left and
right intervals respectively. The observation locations for each
of these two intervals are determined by VoIDP-SCP, and are
highlighted by a single-line thick boundary. (b) shows how
VoIDP-SCP determines observations locations, which are also
highlighted by a single-line thick boundary. It shows how the
chain is split into sub-chains by sequential observations.

model with nine state variables whose value can be
either 1 or 2. The prior probability of being in each state
is 0.5. The transition probability of switching from one
state to the other is 0.2. Figure 1 shows this model and
displays one set of states generated by it on the top of
each variable. For simplicity, we assume the first and last
states are known in advance. Fig. 2 shows how DPA and
VoIDP-SCP determine the observation locations with a
budget of 4.

First, we note that for this example, it is most likely
that the initial states have a value of 1, and that at some
point in the chain there is a single transition from 1
to 2. To correctly determine the state values, the main
goal is to find the location of this transition. It is also
possible that there are really three transitions, and a
secondary goal will be to check on that. Next, we note
that VoIDP-SCP is able to perform a binary search to find
such transitions. It turns out that the optimal strategy
for this situation involves first determining the value
of X3. If this state is 1, then the remaining budget is
sufficient to allow a binary search to be performed on

states X4-X8, to find the transition from 1 to 2. This
strategy therefore guarantees that the transition from 1
to 2 will be found, and maximizes the chances that any
additional transitions will be found.

Suppose instead we run DPA, with a budget of 4,
and B′ = 1. The algorithm begins by determining the
state of X5, to break the problem into two equal parts.
When this state is found to be 1, the algorithm then
allocates its budget between these two subsequences.
To allocate the remaining budget to each interval, it
computes the RB curves up to its maximum budget for
both intervals, as shown in Fig. 2(c) and 2(d). Notice that
both curves satisfy the concavity property. In addition,
the reward increment under a small budget for the right
interval is higher than those for the left interval. This
is because the state of the first and last nodes for the
right interval indicate a state transition. As a result,
the right interval obtains a higher budget. In fact, DPA
allocates two observations to the right side of the chain,
which is enough to perform a binary search for the
state transition, and one observation to the left side. This
final observation on the left side is more likely to find
something interesting than if allocated to the right side,
once the binary search has occurred.

We now consider how incremental budget allocation
works in this example. After the observation of X5, the
chain is split into two intervals as shown in Fig. 2(a)
and the remaining budget becomes 3. The incremental
algorithm then initializes the budget for both intervals
to be 0 and computes J1(0), J1(1), J2(0), and J2(1) for
∆J1(1) and ∆J2(1). Since ∆J1(1) = 0.3626 < ∆J2(1) =
1.0000, it increases the budget for the right interval by 1.
The remaining budget becomes 2 and it computes J2(2)
for ∆J2(2). It again increases the budget for the right
interval by 1 because ∆J1(1) < ∆J2(2) = 1.0000. The
remaining budget becomes 1 and it computes J2(3) for
∆J2(3). After this, because ∆J1(1) > ∆J2(3) = 0.1176,
it increases the budget for the left interval by 1. All the
budget has been allocated, and the algorithm terminates
with a budget of 1 for the left interval and 2 for the right
interval. Notice that compared with batch allocation,
incremental allocation does not compute J1(2) and J1(3).

DPA is not optimal in two ways. First, an optimal set
of observations may not include X5. Second, allocating
one observation to the left subsequence and two to the
right subsequence may not be optimal; future observa-
tions could determine that a different allocation would
be better. On the other hand, in VoIDP-SCP shown in
Fig. 2(b), the initial observation X3 is determined after
computation and comparison of the expected reward of
observing X1, · · · , X9 with all possible budget distribu-
tions. This is a considerable amount of computation. In
DPA, this interval is split into two shorter intervals, and
reward can be more cheaply computed for each subchain
separately.
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3.2 Proof of Correctness

We now provide a proof that the batch budget allocation
is correct based on the problem formulation in (7); it
follows directly that the incremental budget allocation
must also be correct.

We use the following new notations, definitions, and
facts. With a budget of B, we let k̂B1 , k̂

B
2 , · · · , k̂BM be

an optimal budget allocation, where M indicates the
number of subsequences among which we must divide
the budget. Let k̄B1 , k̄B2 , · · · , k̄BM be the budget allocation
by the algorithm. Since the algorithm picks only the top
B reward increments from Z to distribute budget, it is
clear that

∑M
i=1 k̄

B
i = B. The following theorem proves

the correctness of the allocation algorithm by showing
that summation of reward from each subsection under
the batch budget budget allocation is equal to that under
the optimal budget allocation.

Theorem 1:

M∑
i=1

Ji(k̄
B
i ) =

M∑
i=1

Ji(k̂
B
i ). (10)

To prove Theorem 1, we introduce Lemma 1 and
Lemma 2. Lemma 1 shows that the sum of all re-
ward increments for each subsection using batch budget
allocation is equal to the sum of the top B reward
increments in Z. Lemma 2 proves the the sum of all
reward increments for each subsection under the opti-
mal allocation cannot be greater than that under batch
allocation. Finally, we prove Theorem 1 by adding the
reward increment to the reward with zero budget for
each subsection to establish the equality.

Denote the sorted list of rewards gained by an addi-
tional observation as Z and the sum of the top B reward
increments in Z as ∆L. In addition, we define ∆Ji(0) ≡ 0
to handle the case that some interval has a budget of 0.
Then we define ∆ĴBi ≡

∑k̂Bi
j=0 ∆Ji(j), which means ∆ĴBi

is the sum of all reward increments for interval i with a
budget of k̂Bi . Similarly, we define ∆J̄Bi ≡

∑k̄Bi
j=0 ∆Ji(j).

Lemma 1:
M∑
i=1

∆J̄Bi = ∆L. (11)

Proof: For an interval i, by the procedure of the algo-
rithm, there must be k̄Bi reward increments from interval
i in ∆L. Let the sum of these increments be ∆Li. In case
that no such increment exists, we let ∆Li ≡ 0. Suppose
∆J̄Bi 6= ∆Li. By concavity, we know that ∆Li must
include some reward increment ∆Ji(x) such that x > k̄Bi
and ∆Ji(x) < ∆Ji(k̄

B
i ) ≤ ∆Ji(k̄

B
i − 1) ≤ · · · ≤ ∆Ji(1).

Thus, there must be at least k̄Bi + 1 reward increments
in the top B positions from interval i. But this conflicts
with the fact that the top B positions only contain k̄Bi
such increments. Thus, it can only be that ∆J̄Bi = ∆Li.
Finally, because

∑M
i=1 k̄

B
i = B, we have

∑M
i=1 ∆Li = ∆L.

Therefore,
∑M
i=1 ∆J̄Bi =

∑M
i=1 ∆Li = ∆L.

Lemma 2:
M∑
i=1

∆J̄Bi ≥
M∑
i=1

∆ĴBi . (12)

Proof: Any reward increment not in the top B po-
sitions of Z must be less than or equal to any reward
increment in the top B positions because Z is sorted.
So by Lemma 1,

∑M
i=1 ∆J̄Bi = ∆L must be greater than

or equal to the sum of any B reward increments from
Z. Because

∑M
i=1 k̂

B
i = B and Z contains all reward

increments from all intervals, we know that
∑M
i=1 ∆ĴBi is

also the sum of B reward increments from Z. Therefore,∑M
i=1 ∆J̄Bi ≥

∑M
i=1 ∆ĴBi .

By the definition of ∆Ji(k), we know that Ji(k) =
∆Ji(k) + Ji(k − 1). Using induction, it is trivial to show
that Ji(k) =

∑k
j=1 ∆Ji(j) + Ji(0). Because we define

∆Ji(0) ≡ 0, then

Ji(k) =

k∑
j=0

∆Ji(j) + Ji(0). (13)

With this formula, we can finally prove Theorem 1.
Proof: By equation (13), we have

M∑
i=1

Ji(k̄
B
i ) =

M∑
i=1

[

k̄Bi∑
j=0

∆Ji(j) + Ji(0)]

=

M∑
i=1

[∆J̄Bi + Ji(0)] =

M∑
i=1

∆J̄Bi +

M∑
i=1

Ji(0). (14)

Similarly,
M∑
i=1

Ji(k̂
B
i ) =

M∑
i=1

∆ĴBi +

M∑
i=1

Ji(0). (15)

Then by lemma 2, it follows that
∑M
i=1 Ji(k̄

B
i ) ≥∑M

i=1 Ji(k̂
B
i ). Finally, because the budget allocation,

k̂B1 , k̂
B
2 , · · · , k̂BM , is optimal, we have

∑M
i=1 Ji(k̄

B
i ) =∑M

i=1 Ji(k̂
B
i ).

3.3 Complexity Analysis
We now determine the complexity of DPA in terms of
the number of local reward evaluations.

Theorem 2: With batch budget allocation, the number
of local reward evaluations computed with DPA is:

O
( 1

ε4
n
)
, (16)

and with incremental budget allocation, it is

O
( 1

ε4
B
)
, (17)

where ε is a number less than 1 such that ε = M
n .

The inverse of ε reflects the subsection length. This
complexity is a vast improvement over Θ(B2n3) for
VoIDP-SCP. A brief outline of the proof is as follows.

Proof: Let the total budget be B = B′ + B′′, where
B′′ is the remaining budget allocated to each subsection
after the initial uniform sampling with a budget of B′.
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The proof with batch allocation is straight forward.
In the budget allocation stage, VoIDP-SCP is run with a
budget up to the number of unobserved state variables,
which is O

(
1
ε

)
for each subsection. Step 1 of the algo-

rithm requires no computation of rewards, and Step 3
can reuse the rewards computed in Step 2. With M = εn
and using the complexity of VoIDP-SCP, we have the
complexity of DPA as:

O
(
M ·O

(
O
(1

ε

)2 · (1

ε
)3
))

= O
(
εn(

1

ε
)2(

1

ε
)3
)

= O
( 1

ε4
n
)

(18)
For incremental budget allocation, the complexity is

similarly determined by the budget allocation step.
However, VoIDP-SCP in this case is run on each sub-
section with a budget up to its allocated budget plus
one. For analysis, we can ignore the constant one and
the complexity is

O
( M∑
j=1

(k̃2
j (

1

ε
)3)
)

= O
( 1

ε3

M∑
j=1

k̃2
j

)
(19)

where k̃j is the allocated budget for interval j. Because∑M
j=1 k̃j = B′′ and k̃j ≤ 1

ε for all j,
∑M
j=1 k̃

2
j reaches

its maximum by letting as many intervals have budget
1
ε as possible. Each of the other intervals either has 0
budget or has the remainder of the total budget. As a
result, the number of intervals that have nonzero budget
is dB′′/ 1

ε e = O
(
(B′′/ 1

ε )
)

= O
(
(εB′′)

)
. Thus, we conclude

that the number of local reward evaluation is in

O
( 1

ε3

M∑
j=1

k̃2
j

)
= O

( 1

ε3
· εB′′ · (1

ε
)2
)

= O
( 1

ε4
B
)

(20)

4 DATA FUSION FOR FRAME SEQUENCES

In this section, we first describe how we model a video as
a graphical model. This model is a Markov chain which
emits cheap and expensive features. Therefore, we can
apply DPA to this model and Section 4.2 describes this.

4.1 A Graphical Model for Video
The graphical model is a Markov model, where each
frame of video corresponds to a node. Each node con-
tains a state variable that represents the property we
wish to infer, such as whether a face or a moving object
is present. Each node can emit two observable quantities,
corresponding to cheap and expensive features extracted
from the frame. This is similar to a hidden Markov
model (HMM), but here we also model dependencies
between observations. In our model, the value of a cheap
feature at time t is not conditionally independent of the
rest of the model given the state at time t, but is also
dependent on the cheap feature at times t−1 and t+1. We
do this to capture the fact that when an algorithm makes
an error in one frame, it is quite likely to make a similar
error at an adjacent frame. This model can be considered

(a)

(b)

Fig. 3: Markov models for video sequences. State variables
are labeled “X”, cheap observations are labeled “c”, and ex-
pensive observations are labeled “e”. They all have numbered
subscripts indicating their time steps. (a) The model we use
when expensive features are not available at every frame; (b)
The model we use when all frames have expensive features.

a type of autoregressive hidden Markov model [42]. We
have experimentally verified in Section 5.5 that if we
assume conditional independence between consecutive
cheap features, the model will become overconfident
about the evidence of the cheap features, resulting in
less accurate inference.

We typically have expensive features for a small frac-
tion of frames, so it is less important to model the
dependency between them. In addition, we assume the
expensive feature is accurate when predicting the state.
Therefore, we assume expensive features depend only on
the state. However, in cases where we have an expensive
feature at every frame, we model their dependencies the
same way we do with cheap features (see Figure 3).

4.2 Applying DPA

We have described DPA for the case of simple, chain
graphical models. However, it is straightforward to ap-
ply it to the model in the previous section, since it has a
chain structure and the same conditional independence
property. We assume that the expensive feature is ac-
curate in predicting the state of a node. This allows an
expensive feature to play the role of an observation in
our algorithm. In practice, expensive features do make
mistakes. This means that the states before and after the
frame at which we apply an expensive feature are not
truly conditionally independent, but only approximately
so. We experimentally evaluate the consequences of this
approximation in the next section.

Finally, cheap features also provide useful informa-
tion. Thus, we make the recursive formulas for com-
puting the optimal reward be conditioned on applicable
cheap features. Denoting ca:b as the cheap feature over
the interval from variable Xa and Xb, the formula (4)
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and (5) for computing the optimal reward become

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0),

max
a<j<b

{
∑
xj

P (Xj = xj |Xa = xa, Xb = xb, ca:b){

Rj(Xj |Xj = xj , ca:b) + max
0≤l≤k−1

[Ja:j(xa, xj ; l) +

Jj:b(xj , xb; k − l − 1)]}}}, (21)

where the base case is

Ja:b(xa, xb; 0) =

b−1∑
j=a+1

Rj(Xj |Xa = xa, Xb = xb, ca:b).

(22)
Finally, when predicting the state of frames and using

formula (21) and (22) to determine where to sample
expensive features, we need to determine the proba-
bility distribution of each state based on observations.
We can easily extend the standard Forward-Backward
algorithm [43] to do this.

5 EXPERIMENTS

We now apply DPA to two vision tasks involving mo-
tion detection and face detection. Our main goal is to
show that inference can be used to efficiently allocate
processing in two very different tasks. We begin by first
describing some common characteristics of our experi-
ments in the next section. We then present the results
for the two tasks in section 5.2 and 5.3. Section 5.4 and
5.5 discuss how the expensive and cheap features can
affect DPA. Section 5.6 shows how the subsection size
affects the performance and running time of the algo-
rithm. Finally, section 5.7 discusses how the concavity
assumption holds for our sampling method.

5.1 General Experiment Setup

We use DPA described above to determine the locations
at which to run the expensive algorithm. We uniformly
sample the expensive feature at every 20 frames to break
the sequence, while also running the cheap algorithm at
every frame. We compare to several baseline algorithms.
For all algorithms, when all the cheap and the necessary
expensive observations have been made, we predict the
state of each frame using the inference model in Fig. 3(a)
since expensive features are not available in every frame.
Competing algorithms are always provided the same
total budget. We describe the budget in terms of its
percentage of the total number of frames.
• The first baseline method is uniform sampling, which

runs the expensive algorithm at a uniform step size.
This method is in essence equivalent to running the
expensive algorithm at a lower frame rate.

• The second baseline method is most-relevant sam-
pling. We first run the cheap algorithm at each frame
and perform inference using the model in Fig. 3(a)
to obtain the conditional probabilities of all state
variables. We then run the expensive algorithm on

the frames that are most likely to satisfy our query.
This is equivalent to using the cheap algorithm to
prune the least interesting frames.

• The third and last baseline method is most-uncertain
sampling. Similar to the most-relevant sampling
method, we again run the cheap algorithm at each
frame and then perform inference to obtain con-
ditional probabilities. Then, we run the expensive
algorithm on frames that have the greatest uncer-
tainty, measured by the entropy of the conditional
probability.

• Finally, to calibrate the performance of algorithms
on different tasks, we compared to an idealized
method, ceiling sampling, in which we run the cheap
and expensive algorithms at all the frames, i.e, the
budget is equal to 100%. We use Fig. 3(b) to model
the frame sequence because the expensive feature is
available everywhere. This method should provide
an upper bound on performance.

To compare these methods, we used 4-fold cross
validation on each video. We recorded each video at
30 frames per second. We then uniformly sampled 3
frames per second to generate the training and testing
sequences, as this is a reasonable frame rate for real
world surveillance videos [44]. By beginning sampling at
different locations, we produced 10 different sequences
for training and also for testing. All ten sequences are
used as training data. We also use all ten for testing,
helping to smooth the results a bit. The performance
measure we used was the 11-point average precision of
the precision recall (PR) curves [45]. That is, we take
the average precision for 11 uniformly spaced levels of
recall. This is averaged over all 40 testing sequences from
the 4 folds. We varied the total budget from 5% to 25%
of n. Because the subsection size is 20, DPA and uniform
sampling have the same performance at a budget of 5%.
We next provide more details about the experiments for
both tasks.

In addition to these three baseline methods, we also
considered a greedy selection scheme. This acquires one
expensive observation at a time [38], [46], choosing the
observation that provides the greatest increase in overall
expected reward. That is, given that we have already
applied the expensive algorithm to all frames in O, we
next choose the expensive observation, Ej , that maxi-
mizes R(O ∪ Ej) − R(O). Unfortunately, this approach
is not suitable for our problem. First, to implement this
approach, at each iteration we must perform inference
for each possible value of Ej over the whole video to
determine R(O ∪ Ej), and repeat this for each j. This
requires an impractical amount of run time. We have
performed preliminary experiments in which we choose
ten observations at a time after each round of inference.
However, not only is this still slow, but this approach
performs poorly compared with other baseline methods.
So we omit this method from further experiments.
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Fig. 4: Top: examples from video used in the motion detection
task. Middle: output of FD. Bottom: output of IAGMM.

5.2 Motion Detection

We first evaluated these algorithms in a simple back-
ground subtraction task. We collected three half hour
videos at thirty frames per second, for a total of n ≈
55, 000 per video, with each frame at 240 × 320 reso-
lution. We hand-labeled each frame as “interesting” if
it contained a moving object, such as a person or car,
“uninteresting” otherwise.

As a cheap algorithm, we used FD [14] and we used
IAGMM [16] as the expensive algorithm. For FD the
feature was the number of foreground pixels in a frame
after applying a threshold of 10. This avoided postpro-
cessing, saving a significant amount of time. It is an in-
teresting question for future work to determine how best
to build a background model suitable for the expensive
algorithm based on sparsely sampled frames. However,
in this experiment we wish to focus on the effectiveness
of our algorithm in directing application of IAGMM.
Therefore, we build a background model using all re-
cent frames and then apply IAGMM only at sampled
locations. After applying IAGMM, we performed an
opening and a closing morphological operation. We then
extracted the area of the largest connected component
to generate features, which were then discretized. We
had tried 8 different features, the area of the component,
the width of its Bounding Box, and the diameter of a
circle with the same area as the component. They all
produced similar performance, and we chose the area
of the component to show results. Figure 4 shows some
examples; the other video and output are similar.

Next, we tested our concavity assumption on these
videos, since DPA assumes that the reward curves were
concave. Table 1 shows the results. We can see that over
a half of all intervals produce concave reward curves,
while most of the non-concave ones have very small
convexities.

We show 11-point average precision results on the
three videos in Fig. 5. In all three videos, our method
outperforms the baseline methods. We also observe from
the plots that uniform sampling outperforms both most-
relevant sampling and most-uncertain sampling. We pos-
tulate that the reason may be that the cheap algorithm
does not produce high quality features and so decisions

Fig. 5: 11-point average precision values for the background
subtraction task.

TABLE 1: Concavity of RB curves for the motion detection
tasks.

Video Video 1 Video 2 Video 3
Number of intervalsa 2720 2720 2720
concave (%) 56.21 67.39 59.93
concave or ≈ concaveb(%) 94.34 97.28 94.45
Median of the rest 0.0468 0.0181 0.0834
a The total number of intervals over the 40 testing sequences.
b RB curves which are not concave but with a nonconcavity

measure not greater than 0.01.

based purely on the cheap algorithm are unreliable. In
these videos, FD faces difficulties because leaves often
move in the background.

5.3 Face Detection

Next, we applied our approach to the problem of identi-
fying frames containing a face. As with the last task, we
collected three half-hour videos. We hand-labeled each
frame as “interesting” if there is a frontal or profile face
in it and labeled it as “uninteresting” otherwise.

For the cheap algorithm, we used IAGMM with the
area of the largest connected component as a feature
since it is relatively good at detecting the motion of
a human and is still computationally cheap compared
to the face detector. The expensive algorithm was the
face detection algorithm based on OpenCV [47], using
the scheme in [26]. We used both frontal and profile
face detectors and the expensive feature was a binary
indicator of whether the detectors found a face. Fig. 6

Fig. 6: Top: frames from video used in face detection. Middle:
output of IAGMM. Bottom: output of the face detector.
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TABLE 2: Concavity of RB curves for the face detection task.

Video video 4 video 5 video 6
Number of subsections 2720 2840 2800
concave (%) 80.22 66.16 68.61
concave or ≈ concave (%) 98.16 98.45 99.07
Rest median 0.0970 0.1014 0.1014

Fig. 7: 11-point average precision values for the face detection
task.

shows examples from one of these videos, the others are
similar.

We again first measured the concavity of the reward
curves for the face detection videos. The results are
given in Table 2. Again, the reward curves are largely
concave. We show the 11-point average precision results
on the three videos in Figure 7. Our method outperforms
the baseline methods in two videos, video 4 and 5,
under all budget percentages. However, in video 6, our
method has no advantage over uniform sampling when
the budget is small, but as the budget increases, the
advantage of our method becomes clear.

5.4 Accuracy of Expensive Features
The accuracy of the expensive feature can cause vari-
ations in performance of DPA, since our decisions are
based on the assumption that the expensive feature is
very accurate. The prediction error rates of the expensive
feature in the six videos are .0147, .0417, .0391, .0582,
.0828, and .2339 respectively. Note that the error rate

Fig. 8: Mean of average precision as the accuracy of the
expensive features decreases.

Fig. 9: Comparison of using constant synthetic cheap features,
and cheap features from real data with and without feature
dependency modeling, using a frame rate of 30, 6, 3, 2, and 1
frames per second. As in Fig. 5, the x axis is budget and the y
axis is average precision.

is highest in the sixth video, the video on which our
method has no clear advantage over uniform sampling
when given a small budget.

Radovilsky et al. [48] shows that inaccurate obser-
vations lead to bounded loss on the subset selection
version of VoIDP. To investigate how the accuracy of the
expensive features affects our method, which is based
on a conditional plan setting of VoIDP, we compare
performance of different methods using synthetic expen-
sive features with different accuracies for each video.
Based on ground truth, we generate expensive features
by randomly choosing a set of frames to make its value
incorrectly reflect the actual states. We varied the size of
the set to be 0%, 10%, 20%, 30%, and 40% of the total
number of frames, and a smaller set is always the proper
subset of a larger set. To measure the performance of a
method, we use the mean of average precision for budget
going from 5% to 25%. Fig. 8 shows the performance
of different methods as the accuracy of the expensive
features decreases. We observe that an accuracy over
85% in general is needed to give DPA an advantage over
other methods.

5.5 Usefulness of Cheap Features and Feature De-
pendency Modeling
Ideally, combining both features in DPA to determine
the expensive feature sampling locations should give
better results than purely using expensive features. To
show this, we replace the cheap feature with a constant
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synthetic feature. Under this setting, the sampling lo-
cations and inference only depends on the expensive
features. In addition, to show the importance of feature
dependency modeling, we also compare to the result
of using both types of features but without modeling
the dependency between cheap features. That is, we
remove the link between consecutive cheap features in
Fig. 3(a), and the model becomes a standard HMM. We
also experiment with varying frame rates, hoping to
capture feature dependency at different levels.

Fig. 9 shows the performance when the frame rate is
30, 6, 3, 2, and 1. Under 3 frames per second, which is
the frame rate in the experiments above, we observe that
combining both features and modeling dependency has
a clear advantage over using only the expensive features.
Without dependency modeling, however, inference per-
formance can sometimes be worse. For other frame rates,
modeling feature dependency still has a clear advantage
than that with no modeling. But we do observe that
combining both features has no advantage when the
frame rate is 30 or 6 frames per second. In particular,
using purely expensive features has better performance
for the first three videos for background subtraction at
30 frames per second. However, when the frame rate is
2 or 1 frame per second, the advantage of combining
both features becomes clear again. In particular, even
using the model without feature dependency is better
than that using just expensive features when the frame
rate is 1 frame per second. This is likely due to the
issue of how well our model fits the data. When the
frame rate becomes higher and higher, the dependency
between errors made by cheap features is stronger and
stronger, and our model cannot capture this well enough.
As a result, the cheap feature is overconfident in some
locations, and suppresses the correct decisions by the
expensive features. Using a better model that captures
this dependency adequately is one possible solution, and
we discuss this more in section 5.8. Real world videos,
such as surveillance videos, need to run for a long time
in general. A small frame rate is more suitable for storage
and power issues [44]. At the same time, when cheap
features are not helpful, DPA will still provide significant
benefits by using information from expensive features to
control processing.

5.6 Size of Subsections and Running Time

The size of subsections determines B′, the budget used
for uniform sampling. With larger subsections, more
budget can be used within the subsections. However, a
smaller subsection size does have advantages in terms of
running time. Fig. 10 shows performance of DPA as the
subsection size decreases. In general, we observe that
a larger subsection size has better performance at the
same budget level. This is because more budget can be
allocated by VoIDP-SCP with a larger subsection size,
and the allocation is affected less by the uniform sam-
pling. However, at a high budget level, performance of

Fig. 10: 11-point average precision values as size of subsections
varies in DPA.

Fig. 11: Left: running time of VoIDP-SCP at a budget of 25% of
the sequence length. Right: running time of DPA at a budget
of 25% averaged over all testing sequences from all videos. We
use the multi-dimensional array to store the memory table in
the dynamic programming. This allows the fastest table lookup
speed. These measures are taken using a server with two
2.66GHz quad-core Xeon processors with 48GB of memory)

different subsection sizes start to converge. In addition,
the performance at size 60 has no advantage over that of
size 40 in many cases. This may indicate a saturation of
performance as the size increases. The left side of Fig. 11
shows an example of the running time of VoIDP-SCP
as the size of the subsections increases. The plot shows
that we cannot afford to run VoIDP-SCP on the whole
testing sequence in our experiment, which has length
over 1000. The right side shows the running time of
DPA with increasing subsection size averaged over all
testing sequences from all videos. Each testing sequence
is about one fourth of a 30-minute video at 3 frames
per second. A large subsection size, such as 40 or 60,
requires a fair amount of running time. A small size,
such as 10, runs very fast, but suffers from disadvantages
discussed above. In our experiments, we choose 20 as the
subsection size, which has reasonable performance and
fast running time.

5.7 Concavity

Our algorithm assumes that the RB curve is concave.
Empirically, we find that this assumption holds well
in our two, real-life domains. We have also performed
experiments with synthetic data to get a sense of when
this assumption might fail. We generate data from a
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Fig. 12: Percentage of subsections from all sampled sequences
whose nonconcavity measure is not greater than a varying
threshold. Each sampled sequence has a length of 2000, produc-
ing 100 subsections with a subsection size of 20. The threshold
values are 0, 0.0001, 0.001, 0.01 and 0.02. The legend indicates
probability for each state to stay in its current value. All other
parameters of the model are sparsely sampled to cover their
value ranges. Going from top to down in the legend, the
number of sampled sequences used to generate the curve is
1728, 1750, 1956, and 1960 respectively.

Markov process as shown in Figure 3(b). Our experi-
ments indicate that the key factor in determining the
concavity of the RB curve is the probability of a state
change from one node to the next. When states persist,
RB curves tend to be concave. Figure 12 shows the
variation in concavity with the probability that a state
persists from one time step to the next. Each curve pools
results from a large number of simulations in which
other parameters of the model vary. We also explored
other state transition cases, such as when one state tends
to persist while the other does not. However, their results
are not as good as the case that both states tend to
persist. We note that in our tasks, and in many other
video analysis tasks, node states will persist; once an
interesting event begins in a video it will tend to last for
at least a few seconds. Therefore, we expect our results
to be applicable in many settings.

5.8 Discussion
Our experiments demonstrate that DPA can make two
potential contributions to video processing. First, we
have shown that it is possible to use a Markov model to
integrate cheap and expensive features to improve sys-
tem accuracy. Second, we have shown that by sparsely
applying expensive features, our algorithm can use the
results of inference to direct processing to portions of the
video where further processing is most beneficial.

At the same time, we note that these potential benefits
are dependent on some important assumptions. First,
inaccurate expensive features will affect the performance
of DPA. The advantage of DPA will decreases as the
accuracy of the expensive features decreases. The results
in section 5.4 indicate that an 85% accuracy is in gen-
eral needed to allow DPA to outperform other baseline
methods. In many complex video analysis problems in
unconstrained environments this accuracy is not yet
achievable. For this reason we feel that DPA will be most

relevant in two situations. First, in many controlled, or
partially controlled environments, vision algorithms can
achieve high accuracy. Second, in some applications a
human analyst may serve as an expensive feature. It will
be an interesting problem for future research to explore
the use of DPA in integrating algorithmic output with
human analysis.

It might also be of interest to modify VoIDP-SCP so
that rather than considering all possible state assign-
ments for each potential split point, it considers all
possible expensive feature assignments. Such a method
requires modification of formulas 4 and 5 for dynamic
programming such that they are based on values of
features rather than values of states. Since the feature
space is in general much larger than the state space,
this will be more computationally intensive. A similar
idea has been exploited in the work by Radovilsky
et al. [48]. However, they consider a subset selection
setting of the problem which determines all sampling
positions before samples are made, while we consider
a conditional plan setting in which the next sampling
position is conditioned on the sampled observations.
These two problems have different recursive formulas
for dynamic programming [5], and their approach may
not be directly applicable to our problem.

A second issue that deserves further exploration is the
modeling of dependency between features. Section 5.5
shows that this can improve inference. However, at
high frame rates (eg., 30 fps) our model is still not
able to properly capture these dependencies. It will be
interesting to consider more sophisticated models, such
as Conditional Random Fields (CRFs) [49]. CRFs can
capture arbitrary dependencies among input observation
variables, by conditioning on all inputs.

Finally, we have demonstrated our approach on rel-
atively simple sample video that we have collected. It
would be of interest to define tasks for which expensive
features can achieve high accuracy in real-world surveil-
lance datasets, such as i-LIDS MCTTR dataset [50]. On
these challenging datasets, it might, for example, be of
interest, to consider problems in which state-of-the-art
algorithms act as a cheap feature and a human analyst
serves as an expensive feature.

6 CONCLUSION

Our main goal has been to design inference algorithms
that can be used to direct video processing. This allows
us to replace simplistic methods such as reducing the
frame rate with principled decisions that carry theoret-
ical performance guarantees. We believe that this is a
quite general framework that can be applied to many
video processing tasks and may be extended in the
future to more complex graphical structures.

To this end, we have made two more detailed contri-
butions. First, we propose a graphical model that maps
onto a video frame sequence and allows us to combine
features from expensive and cheap algorithms to do
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inference. We show that in practical situations, there is
much to be gained by this combination. Second, we have
shown how to build on an existing algorithm that was
designed for short chains to create an algorithm that
runs efficiently on long video sequences. Specifically, we
show that by applying an expensive algorithm in some
extra locations, we can determine future sensing loca-
tions efficiently. Experiments with two concrete video
processing tasks, low-level background subtraction and
the higher level task of face detection, show that these
can be mapped onto our framework. The effectiveness
of DPA’s inference algorithm in these tasks illustrates the
potential of our approach for general video processing.
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