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Abstract. This paper presents a novel approach to parts-based object recognition in the presence of occlusion.
We focus on the problem of determining the pose of a 3-D object from a single 2-D image when convex parts
of the object have been matched to corresponding regions in the image. We consider three types of occlusions:
self-occlusion, occlusions whose locus is identified in the image, and completely arbitrary occlusions. We show
that in the first two cases this is a convex optimization problem, derive efficient algorithms, and characterize their
performance. For the last case, we prove that the problem of finding valid poses is computationally hard, but provide
an efficient, approximate algorithm. This work generalizes our previous work on region-based object recognition,
which focused on the case of planar models.
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1. Introduction

Recognizing a known 3-D object using a single 2-D
image is a central and difficult problem in visual recog-
nition. One of the key issues is developing adequate
representations to support flexible recognition of gen-
eral objects. Existing approaches are often well-suited
to only a small class of objects (e.g. polyhedra, ro-
tationally symmetric objects, low-order algebraic sur-
faces). In this paper we show how to make use of a very
simple and general representation of the parts of 3-D
objects to determine their pose. At the same time, we
also provide results on the fundamental computational

∗A preliminary version of this paper has appeared as “3-D to 2-D
Recognition with Regions” by D. Jacobs and R. Basri, IEEE Conf. on
Computer Vision and Pattern Recognition, San Juan 1997:547–553.
A brief overview of these and related results has appeared (Basri and
Jacobs, 1996).

complexity of determining the pose of 3-D objects in
the presence of occlusion.

A good representation for 3-D recognition should:
(1) be rich enough to describe the shape of 3-D ob-
jects; (2) have a 2-D analog that can be reliably com-
puted from an image; and (3) allow us to understand
aspects of the relationship between the 3-D representa-
tion and its 2-D projection that are needed to perform
useful recognition tasks. In this paper, we focus on the
capability of a representation to support pose deter-
mination, one of the most basic problems faced by a
complete recognition system.

1.1. Past Work

Interesting methods have been developed for 3-D to
2-D recognition. However, the representations these
methods use still have significant limitations. Many
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previous approaches have relied on finding a corre-
spondence between simple geometric features, such
as points or lines. Lowe (1985) and Clemens (1991),
for example, determine pose based on a match be-
tween line segments, while Fischler and Bolles (1981),
Huttenlocher and Ullman (1990), Horaud (1987),
Ullman and Basri (1991), Jacobs (1997), Rothwell et al.
(1993), and Alter and Jacobs (1998) use point features
to determine pose, and Thompson and Mundy (1987)
make use of vertices. It is fairly well understood how
to use local features for pose determination or indexing,
but they have significant weaknesses. Local features
often do not capture the shape of complex, curved 3-D
objects. And it may be quite difficult to locate 2-D im-
age features that correspond to the local features of a
non-polyhedral 3-D object, since the contour generator
of such objects is completely viewpoint dependent.

There has been some recent work that extracts and
matches point features from the outlines of smooth ob-
jects. Forsyth et al. (1992) use points derived from the
bitangents of objects to derive an invariant description
of the contour. This work, however, is limited to rota-
tionally symmetric objects. Vijayakumar et al. (1995)
show how to build an indexing function using bitan-
gents for more general curved 3-D objects. They show
the surprising result that a description based on bitan-
gents can be represented as 1-D curves in a lookup
table. These approaches use only a limited amount of
the structural information available, however.

Another approach to recognizing smooth 3-D ob-
jects involves describing the 3-D object and 2-D image
with algebraic surfaces and curves, and then register-
ing these algebraic descriptions. Kriegman and Ponce
(1990) have taken this approach, using elimination
methods to solve for object pose. While this approach
has provided significant insight into how the over-
all problem may be solved, it has the disadvantage
of requiring a somewhat complex, iterative solution
method. Specifically, their method requires a good es-
timate of pose to begin with, and then uses a variation
of Newton’s method to converge to the locally optimal
pose. Forsyth (1996) has shown how to use an alge-
braic description of an image contour to determine the
projective shape of the algebraic surface that produced
it. This result is not practical, however, as it is ex-
tremely sensitive to noise. In general, while algebraic
descriptions may be used to accurately represent a 3-D
model, it is extremely difficult to derive a correspond-
ing description of an image, since such descriptions
may be very sensitive to noise.

A number of other approaches attempt to repre-
sent 3-D models using a specific vocabulary of shapes,
typically based on an algebraic description, such as
generalized cylinders (Binford, 1971; Brooks, 1981;
Gross and Boult, 1990; Marr and Nishihara, 1978;
Ponce et al., 1989; Shafer and Kanade, 1983; Ulipinar
and Nevatia, 1995; Zerroug and Nevatia, 1994), su-
perquadrics (Pentland, 1987; Rivlin et al., 1995; Solina
and Bajcsy, 1990; Terzopoulos and Metaxas, 1991),
and geons (Bergevin and Levine, 1993; Biederman,
1985). Often these approaches handle only a limited
class of objects. For example, when generalized cylin-
ders are used a major difficulty lies in computing the
2-D projection of the 3-D axis and sweeping rule.
Image occlusion and noise make this problem espe-
cially difficult. Considerable effort has led to solu-
tions of this problem for only some restricted classes of
shapes.

Moment-based methods are somewhat related to
ours, in that they compute a description of image re-
gions to match to model volumes. These methods might
align regions based on their center of mass, or on
higher order moments. Examples of this approach can
be found in (Dudani et al., 1977; Hu, 1962; Nayar and
Bolle, 1996; Nagao and Grimson, 1994; Persoon and
Fu, 1977; Reeves et al., 1984; Richard and Hemami,
1974; Sadjadi and Hall, 1980). These methods do not
extend to the recognition of a 3-D object from a single
2-D image, however. First of all, volumes of 3-D points
always produce self-occlusion, since different subsets
of the surface of the volume are visible from different
viewpoints. Therefore, the center of mass of the pro-
jection of a model volume will not be the projection
of the center of mass of the 3-D point set. Second, the
center of mass of a surface that is curved in 3-D does
not project to the center of mass of its image, even
when there is no self-occlusion. This is because the ex-
tent to which different portions of the 3-D surface are
foreshortened will depend on the viewing direction. A
final disadvantage of methods based on moments is that
they are sensitive to occlusion by other objects in the
scene.

In summary, previous research has shown the diffi-
culty of finding general representations to support ob-
ject recognition. Representations capable of describ-
ing very large classes of objects have proven difficult to
use. Representations that facilitate tasks such as pose
determination are often restricted to particular classes
of objects, such as polyhedral, planar or rotationally
symmetric objects.
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1.2. Our Approach

We address the problem of 3-D recognition from a 2-D
image in a parts-based framework. That is, like most
work on the recognition of general, curved 3-D ob-
jects, we divide a 3-D object into its component parts,
and expect that a bottom-up grouping system will iden-
tify image regions that are candidate matches for these
parts. We use a simple, direct representation of an
object’s parts as general volumes in 3-D, using 2-D
areas to represent their image projection. This repre-
sentation can be applied to any 3-D shape (we discuss
restrictions concerning convexity later), and derived
from a 2-D image without any need to fit algebraic
constructs (e.g., conics, lines, corners) to parts located
in an image, or to compute other intermediate prop-
erties of parts such as their axes. Therefore, our first
two goals for a representation are satisfied very gener-
ally, with no assumptions except those imposed by a
parts-based approach to recognition.

The bulk of this paper will attack the third goal of a
representation by showing how we can relate 3-D vo-
lumes to 2-D regions for the important problem of pose
determination. This extends our previous results, which
focused on planar objects (Basri and Jacobs, 1997). At
the same time, we use this general representation to
show novel results about the fundamental complexity
of pose determination for general 3-D objects. To do
this, we divide the possible types of occlusions that
may make pose determination difficult into three con-
ditions. First, we consider self-occlusions. We provide
a simple algorithm that uses linear programming to
find pose, given correspondences between 3-D volumes
and 2-D regions. This is the same method that we ap-
plied to planar objects in (Basri and Jacobs, 1997),
although we provide some new results demonstrating
when this algorithm will produce correct results. Sec-
ond, we consider occlusions whose position has been
identified in the image. That is, we assume that each
edge bounding an image region is labeled as either a
region boundary, or an occlusion boundary. We show
that a variation on our original algorithm can handle
this case too. Third, we consider arbitrary occlusions
of unknown location. That is, we assume that a 2-D
region is a subset of the projection of the correspond-
ing 3-D volume, but that any of the boundaries of the
region may be due to occlusion. We show that the prob-
lem of pose determination in this case is fundamentally
harder, by showing that this is a superset of a problem in
computational geometry that is known to be hard. We

stress that this result is not specific to our algorithms. It
shows that for parts-based object recognition, the prob-
lem of pose determination is provably more difficult
when occlusions are of unknown location in an image
than when their position is known. This tells us, for ex-
ample, that many locally optimal poses can exist. This
can present problems for gradient descent algorithms.
However, we then provide an approximate algorithm,
which is computationally efficient, and show that in a
number of cases this leads to accurate results. Finally,
we show how to handle degenerate solutions, which
can especially occur with this approximate solution.

Our choice of representation is also general in that
it can include as a subset several commonly used local
geometric features, such as points, corners, line seg-
ments, or lines. Each of these features can be used
by our methods as a 3-D volume and a corresponding
2-D region. Therefore, when local features are present
in an object, these can be integrated into a common
algorithm with extended features.

While we focus on the pose determination problem,
we expect these results to fit into a complete recognition
system as follows. At compile time, we divide an ob-
ject up into component parts, preferably convex. At run
time, we use a grouping system to identify candidate
image groups. One might use intensity-based segmen-
tation or a system that finds salient convex sets of edges
(Jacobs, 1996). We then consider matches between im-
age groups and model parts, with a search that may be
directed with the addition of cues such as color, as was
done by Nayar and Bolle (1996). Pose is determined
using our current work, and then a hypothetical projec-
tion of the model may be confirmed or rejected using
additional cues. The steps of this process are illustrated
in numerous experiments described in Jacobs (1992).
That system robustly matched convex object parts, but
used a feature-based indexing system not suitable for
non-polyhedral 3-D objects. In our current paper, all
of these steps are also implemented, except we do not
experiment with search to match object parts, focus-
ing instead on determining the capability of our sys-
tem to produce accurate poses once the correct match
is found.

In Section 2 we describe algorithms for determining
pose in the case of self-occlusion alone (Section 2.1),
occlusion of known locus (Section 2.2), and arbitrary
occlusion (Section 2.3). Section 2.3 shows that arbi-
trary occlusion is difficult, and describes an approxi-
mate algorithm. In Section 3 we describe how much in-
formation each algorithm needs to uniquely determine
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pose. Section 4 describes how to recover from degener-
ate solutions, and Section 5 presents our experiments.

2. Using Volumes and Regions to Determine Pose

We assume that a hypothesized match exists between
a set of model volumes and image regions. Our goal is
to use this match to determine the pose of the model.
We will assume these volumes and regions are con-
vex throughout most of this section, and discuss issues
related to non-convexity at the end.

We assume that the model consists of a set of 3-D vo-
lumes denoted:V1, . . . ,Vk ⊂ R3, where each volume
is an arbitrary subset ofR3. Similarly, we assume that
the image consists of 2-D regions, which are each sub-
sets ofR2, and which we denote by:R1, . . . , Rk ⊂ R2.
Our solution methods will apply to the case where the
model and image sets are convex; if we wish to make
use of non-convex volumes or regions we should first
take their convex hulls. This means that our meth-
ods can naturally apply also when some or all of the
correspondences are between point features, or (possi-
bly partially occluded) line segments, since these are
convex.

Next, we suppose that the image was generated by
applying some transformation,T , that maps points in
the 3-D model to points in the image. For the most
part we will assume that this is a 3-D to 2-D affine
transformation. We denote a point in model space by
Ep = (x, y, z) and in image space byEq = (u, v). If
Eq = T( Ep) then we denoteu = Tu( Ep) andv = Tv( Ep).
Our goal is to identify the transformation that will best
explain the image regions as the product of their cor-
responding model regions.

As we point out in (Basri and Jacobs, 1997), the prob-
lem of finding a transformation that perfectly matches
a set of model volumes to their corresponding image
regions is a non-convex optimization problem. This
follows from the fact that the set of feasible trans-
formations need not be convex, or even connected.
Consider for example the case of a model square
matched to an identical image square. Matching the
model exactly to the image can be performed in four
ways (separated from each other by a 90◦ rotation).
Obviously, no intermediate transformation provides a
solution to this matching problem. While non-convex
optimization problems are often attacked using tools
such as gradient descent, we instead take the approach
of showing that different problem formulations can
make the matching process convex, and therefore easier

to optimize. In Section 3 we discuss the conditions un-
der which these formulations will produce the correct
model pose.

2.1. The Forward Constraints: Self-occlusion

First, we show that our problem becomes convex if we
merely require that every model point projects inside
the corresponding image region, by reviewing results
that we have shown in (Basri and Jacobs, 1997). For-
mally, theforward constraintsare satisfied by the trans-
formation,T , if and only if∀ Ep ∈ Vi , T Ep ∈ Ri (that is,
T Vi ⊆ Ri ). These constraints allow a volume to oc-
clude itself (i.e., two model points may project to the
same image point). They do not capture all possible
constraint, however, since they do not require that each
image point be explained by a corresponding model
point.

We first consider a projection model consisting of a
3-D affine transformation followed by an orthographic
projection, then we consider perspective projection.
Denote the linear part ofT by A, whereA is a non-
singular 2× 3 matrix with elementsti j , and the trans-
lation part byEt = (tx, ty). Then:

u = t11x + t12y+ t13z+ tx
v = t21x + t22y+ t23z+ ty.

(1)

This projection model and its equivalent has been re-
cently used by a number of researchers (Lamdan and
Wolfson, 1988; Ullman and Basri, 1991; Koenderink
and van Doorn, 1991; Tomasi and Kanade, 1992;
Jacobs, 1997). It is also equivalent to applying scaled
orthographic projection followed by a 2-D affine trans-
formation (Jacobs, 1997), that is, taking a picture of a
picture. Alternately, it is equivalent to a paraperspec-
tive projection followed by translation (Basri, 1996),
where paraperspective is a first-order approximation
to perspective projection (Poelman and Kanade, 1997;
Sugimoto, 1996).

To express the forward constraints, we note that since
R is convex, there exists a set of linesL R boundingR
from all directions such that for every pointEq ∈ R and
for every linel ∈ L R we can write

l (Eq) ≥ 0. (2)

Let the linel be expressed by the equation:Au+Bv+
C ≥ 0, where(A, B) is the unit vector normal to the
line. Then the constraintT V ⊆ R can be written as
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follows. Every pointEp ∈ V should be mapped byT
to some pointEq ∈ R, and so

A(t11x + t12y+ t13z+ tx)

+ B(t21x + t22y+ t23z+ ty)+ C ≥ 0. (3)

This constraint is linear in the transformation parame-
ters. Denote

EwT = (t11, t12, t13, tx, t21, t22, t23, ty)

the vector of unknown transformation parameters, and

EgT = (Ax, Ay, Az, A, Bx, By, Bz, B).

We can rewrite the forward constraints as

EgT Ew ≥ −C. (4)

We can similarly handle affine transformations fol-
lowed by perspective projection. In that case

u = f (t11x + t12y+ t13z+ tx)

t31x + t32y+ t33z+ tz

v = f (t21x + t22y+ t23z+ ty)

t31x + t32y+ t33z+ tz

where f is the focal length. The forward constraint
Au+ Bv+C ≥ 0 now contains the termt31x+ t32y+
t33z+ tz in the denominator. This term must be positive
since we require the object to appear in front of the cam-
era. So, we can multiply both sides of the inequality by
this term, again obtaining a linear constraint with the
same general form as Eq. (4), with different definitions
of Ew and Eg.

The set of forward constraints consists of all such
constraints obtained for each pairing of a bounding
line l ∈ L R and a model pointEp∈V . This gives us
one constraint for every point in the model volumes
and for every line tangent to the image regions. For
curved objects, therefore, the number of constraints is
infinite, but we may sample them as accurately as we
desire. The issue of sampling is addressed in (Basri and
Jacobs, 1995). For polyhedral volumes and polygonal
regions the number of independent constraints is finite,
and given by the product of the number of vertices of
the model volumes and the sides of the image regions.
The rest of the constraints are redundant.

We therefore seek a set of transformation parameters
that satisfy a set of linear constraints of the form:

EgT
i Ew ≥ ci , i = 1, . . . ,n. (5)

This can be written in matrix notation as:

G Ew ≥ Ec. (6)

We may find a set of parameters that satisfy these lin-
ear constraints using linear programming. To do this,
we must also specify a linear objective function. A
common way of doing this is by introducing an addi-
tional unknown,λ, in the following way.

maxλ

s.t. G Ew ≥ Ec+ λE1 (7)

A solution to Eq. (6) exists if and only if a solution to
Eq. (7) withλ ≥ 0 exists. (Note that other objective
functions, e.g., the perceptron function, can be used for
recoveringEw, see e.g., (Duda and Hart, 1973) for a dis-
cussion of solutions to the linear discriminant functions
problem.)

Whenλ ≥ 0 its value represents the minimal dis-
tance of a point to any line bounding the region (Fig. 1).
Maximizing λ amounts to attempting to contract the
model volume inside the image region as much as pos-
sible. Whenλ < 0 this attempt fails. In this case any
model point that violates the constraints is mapped to
a distance of no more than|λ| from a line bounding its
target regions.

Enforcing the forward constraints is therefore very
similar to finding a transformation that minimizes
the directed Hausdorff distance,h, from the transfor-
med model volume to the image region. This can be

Figure 1. The dark circles are positioned by the similarity transfor-
mation that maximizesλ relative to the larger, shaded circles.
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defined as:

h(M, I ) = max
m∈M

min
i∈I
‖m− i ‖

Hausdorff matching has previously been effectively
used in computer vision by, for example, Huttenlocher
et al. (1993a, 1993b), and Rucklidge (1997). These
papers primarily focus on the use of robust variants of
the undirected Hausdorff distance, which is defined as
max(h(M, I ), h(I ,M)), for aligning objects undergo-
ing 2-D transformations. Amenta (1994) specifically
discusses the efficient Hausdorff matching of convex
shapes undergoing translation and scaling. While re-
lated to these approaches, our work is different in that
we demonstrate new, efficient algorithms that compute
something similar to the directed Hausdorff distance.
These algorithms compute the pose of 3-D objects in
single 2-D images.

More specifically, solving the system Eq. (7) may
result in over-contraction. Consider, for example, the
case of matching a single volumeV to a single region
R. The forward constraints restrict the set of possible
transformations to those that map every pointEp ∈ V
inside the regionR. AssumeT is a feasible transfor-
mation, that isT V ⊆ R, then applying any contracting
factor 0 ≤ s ≤ 1 to V would also generate a valid
solution; namely,T(sV) ⊆ R. (We assume here with-
out the loss of generality that the origin of the model
is set at the centroid ofV .) Consequently, the case
of matching one volume with one region necessarily
introduces multiple solutions. The solution picked by
Eq. (7) is the one withs = 0. This will contractV to
a point, which is then translated to the point insideR
furthest from any of its bounding tangent lines. This
solution produces the largest value ofλ. Clearly, the
case of matching one volume to one region cannot be
solved by the forward constraints alone. However, we
will show that we can determine pose accurately when
we match a larger number of volumes and regions.

2.2. The Forward Constraints
with Known Occlusion

The forward constraints are suitable when there is only
self-occlusion; the backward constraints, as we will
discuss, hold in the presence of arbitrary occlusion.
We now consider one other possibility, that some model
volumes may be partially occluded in the image, but
that the extent of this occlusion is known. That is, we
assume that some portion of boundary of the image

regions may be caused by an occluding object in front
of the volume, rather than the boundary of the vol-
ume itself, but that we have identified those portions of
the region boundaries. This is a situation of consider-
able interest; for example, if we identify several differ-
ent parts of an object we may be able to determine that
some of these parts lie in front of and occlude others
(e.g., by identifying concave sections in the bound-
aries of a region corresponding to a convex volume).
Also, it is well-known in the psychology literature that
the knowledge that certain boundaries are due to oc-
clusions can greatly assist human perception (Rock,
1983). Suppose we have identified a region in the im-
age, but we know that some of the boundary of this
region is due to another, occluding object and is not
in fact the boundary of the region itself. By allowing
for the region to be extended in the direction of such
occlusions, we can construct a larger convex region
which we know should contain the projection of the
corresponding model volume.

This can be implemented with very little modifica-
tion to the above algorithm. Suppose we approximate
the border of a detected region with a set of line seg-
ments, some of which we know come from the bound-
ary of the region, and some of which come from an
occlusion. We apply the forward constraints, as de-
scribed above, using only those line segments that
originate due to the boundary of the object. Implicitly,
this restricts the model volume to project within the
largest possible convex region that is consistent with
the known region boundary.

2.3. The Backward Constraints:
Unknown Occlusions

We can allow for arbitrary, unidentified occlusions in
the image with thebackward constraints. The back-
ward constraints are the inverse of the forward. Instead
of requiring that each model volume project completely
inside each corresponding image region, the backward
constraints require that each image region lie com-
pletely inside the projection of each corresponding
model volume. That is, the backward constraints are
satisfied by the transformation,T , if and only if for
every point,Eq, in every image region,Eq ∈ T Vi (that is,
Ri ⊆ T Vi ).

It is preferable to enforce the backward constraints,
rather than the forward constraints, when recognizing
objects in the presence of occlusion. Typically, when
a model volume is occluded by a different object or a
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different model volume, a region detector will locate
image regions that are subsets of the true, unoccluded
regions. In this case, the true transformation may map
a model volume so that part of the volume accounts
for the visible portion of the region, and part of the
model volume is mapped outside this region. There-
fore, the backward constraints express precisely our
state of knowledge about the pose when we allow for
arbitrary occlusion of the image regions.

As we show in (Basri and Jacobs, 1997), in the case
of planar objects we may solve the backward con-
straints using linear programming. This is because the
transformations that we use to relate a planar model
to a planar image (similarity, affine or projective) are
invertible. Therefore, requiring that the viewing trans-
formation maps the model volumes so that they com-
pletely enclose the corresponding image regions is
equivalent to requiring that the inverse transformation
map the image regions completely inside the corre-
sponding model regions. For planar models, the for-
ward and backward constraints have an identical form,
with the role of the image and model reversed, and so
we may find poses that satisfy them using the same
method.

In the case of a 3-D model and a 2-D image, the 3-D
to 2-D viewing transformation is no longer invertible,
however. It is therefore not obvious how one can apply
the backward constraints in this case.

In fact, we can prove that it is not possible to directly
extend our planar results on the backward constraints
to 3-D models. To do this, we now show that there is
a close connection between the problem of solving the
backward constraints and the computational geometry
problem of finding aline traversal, i.e., finding a line
that intersects a set of 3-D solids. We will show that for
one special case, finding a pose that satisfies the back-
ward constraints is equivalent to finding a line traversal
of the model volumes. This will show that dealing with
the backward constraints is at least as difficult as the
problem of finding a line traversal of the volumes.

Suppose first that we have an arbitrary set of model
volumes, but that every image region consists of only
a single point, and that these points are identical, de-
noted byq̄ (see Fig. 2). The backward constraints are
satisfied by a transformation if and only if the 3-D line
that projects tōq intersects every model volume. Such
a transformation exists if and only if there exists a sin-
gle line that intersects each of the model volumes. This
shows that the problem of solving the backward con-
straints is at least as hard as the problem of determining

Figure 2. On the left, we show three model volumes projecting to
three, overlapping image regions. On the right, we imagine that these
regions are occluded, except for one point which they all share. In this
case, the problem of solving the backward constraints is equivalent
to that of finding a line traversal of the model volumes.

whether a line traversal exists for a set of 3-D volumes.
Note that this reasoning applies equally to orthographic
or perspective projection.

Unfortunately, Amenta (personal communication)
has shown that finding a line traversal ton arbitrary
3-D volumes is not an LP type problem, because it
can containO(n) solutions that are disconnected in
the space of all possible lines. This implies that gra-
dient descent methods of solving the backward con-
straints may produce locally optimal solutions that are
not globally optimal. Moreover, existing algorithms
for finding line traversals are not nearly as efficient
as our linear programs, and do not appear to be ex-
tendible to solving the backward constraints without
adding considerably greater complexity. For example,
Pellegrini (1990) gives an algorithm for finding a line
traversal of general polyhedra with edges that have only
a constant number of different possible directions. This
algorithm requiresO(n2 log(n)) time forn polyhedra.
It is not clear how to improve upon this result if the
polyhedra are restricted to be convex. Solving the for-
ward constraints for such polyhedra would require only
O(n) expected time, because each polyhedron would
produce a constant number of constraints, yielding a
total of O(n) constraints, and because fixed dimen-
sion linear programs can be solved inO(n) expected
time (Seidel, 1990). And solving the full backward
constraints will be much harder than solving the line
traversal problem, because the image regions will not,
in general, all consist of a single point, and because a
full 3-D to 2-D projection must be considered.

Our result is significant because it is not merely a
comment on our algorithms; it reflects on the difficulty
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of a basic problem in recognition. We have shown
that the general problem of determining 3-D model
pose in a 2-D image, when one allows for arbitrary
occlusions of unknown locus, is at least as hard as a
difficult computational geometry problem. Moreover,
Amenta’s construction (personal communication) uses
only volumes that are lines in 3-D. This implies that the
problem is difficult even when we restrict ourselves to
very simple shapes.

Our result is also somewhat surprising because the
forward and backward constraints each encode some
of the constraints that together imply a perfect fit be-
tween model and image. The backward constraints
allow for partial occlusion of the model, while the for-
ward constraints, in some sense allow for partial “oc-
clusion” of the image (some of the image region may
go unexplained). Moreover, for the case of planar ob-
jects, these constraints are symmetric, and give rise to
equally complex problems. It is therefore somewhat
unexpected that they would give rise to problems of
such different complexity for the case of 3-D objects.

There is, however, a special case for which the line
traversal problem can be solved efficiently. This is
when the set of 3-D volumes are all axial rectangu-
loids, (i.e., their sides are aligned with thex-, y-, and
z-axes). Amenta (1992) gives an efficient algorithm
for this case, and subsequently (Megiddo, 1996) has
refined this result, showing that this problem can be
solved by linear programming. We will now extend
this result to propose a useful approximation algorithm
for finding object pose, in which we approximate model
parts using their bounding axial rectanguloids.

Based on Megiddo’s method (1996), we can solve
the backward constraints using linear programming,
for the case where the model volumes are axial rect-
anguloids and the projection model is affine. (Notice
that since we are free to change the coordinate frame
of the model, in fact we only require the models to
be rectanguloids with parallel sides.) To do this, it is
helpful to think of affine projection in the following
way. First, the set of 3-D model points are extended in
any one direction to a set of parallel lines; then a 3-D
affine transformation is applied to this set of lines so
that they are made normal to the image plane. Each
3-D point projects to a 2-D point where its correspond-
ing line intersects the image plane. Now we may think
of the inverse of this transformation as applying a 3-D
affine transformation to the set of lines normal to the
image plane, that intersect each image point. Speci-
fically, let {pi } denote a set of image points. Let{ni }

denote the corresponding set of lines, so thatni is nor-
mal to the image plane and includespi . Then{pi }, are
the projection of a set of model points,{qi }, if and only
if there exists a 3-D affine transformation so that each
line, ni , is transformed to includeqi . The backward
constraints, then, are satisfied by an affine transforma-
tion that maps each normal line so that it intersects the
corresponding model volume.

We now show how to express the constraint that an
image pointpi ∈ Ri must be the projection of some
point in an axial rectanguloid,Vi , as a linear constraint
on the inverse of the 3-D affine transformation that
maps the model into the scene. We letT−1 denote this
inverse transformation, with components denoted by
t−1. SupposeVi has a lower corner of(xl , yl , zl ) and an
upper corner of(xh, yh, zh). Then the transformed line
intersects this rectanguloid if and only if there exists a
point on the line whosex, y andzcoordinates lie within
these ranges. Consider a line normal to thez= 0 image
plane passing through the point(u, v). If we transform
this line byT−1, and parameterize it byτ , then a point
on this transformed line has the coordinates:

pi =
(
t−1
11 u+ t−1

12 v + t−1
x + t−1

13 τ,

t−1
21 u+ t−1

22 v + t−1
y + t−1

23 τ, t
−1
33 τ

)
,

for any choice ofτ . The backward constraintpi ∈ T Vi

is satisfied if and only if it is possible to satisfy the
following inequalities:

xl ≤ t−1
11 u+ t−1

12 v + t−1
x + t−1

13 τ ≤ xh

yl ≤ t−1
21 u+ t−1

22 v + t−1
y + t−1

23 τ ≤ yh

zl ≤ t−1
33 τ ≤ zh.

Assume now thatt−1
13 , t

−1
23 > 0 (in practice we must

run four linear programs to account for the different
possible signs oft−1

13 andt−1
23 ). Then we have:

xl − t−1
11 u− t−1

12 v− t−1
x

t−1
13

≤ τ ≤ xh− t−1
11 u− t−1

12 v− t−1
x

t−1
13

yl − t−1
21 u+ t−1

22 v+ t−1
y

t−1
23

≤ τ ≤ yh− t−1
21 u− t−1

22 v− t−1
y

t−1
23

zl

t−1
33

≤ τ ≤ zh

t−1
33

.

These inequalities are satisfied if and only if every
quantity constrained to be less thanτ is smaller than
every quantity constrained to be bigger thanτ . Namely,
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we can replace them with nine inequalities (three of
which are trivial) that do not mentionτ at all. These in-
equalities appear non-linear, but we can linearize them
with a change of variables. Let:

s11 = t−1
11

t−1
13

, s12 = t−1
12

t−1
13

, s13 = 1

t−1
13

, wx = t−1
x

t−1
13

,

s21 = t−1
21

t−1
23

, s22 = t−1
22

t−1
23

, s23 = 1

t−1
23

, wy =
t−1
y

t−1
23

,

s33 = 1

t−1
33

,

and we get six non-trivial constraints:

s13xl − s11u− s12v − wx ≤ s23yh − s21u− s22v − wy

s13xl − s11u− s12v − wx ≤ s33zh

s23yl − s21u− s22v − wy ≤ s13xh − s11u− s12v − wx

s23yl − s21u− s22v − wy ≤ s33zh

s33zl ≤ s13xh− s11u− s12v−wx

s33zl ≤ s23yh− s21u− s22v−wy.

These inequalities are homogeneous, reflecting the
fact that some components of the transformation are
redundant. We can get around this by settingt−1

33 = 1,
creating difficulties only in a degenerate case. We can
therefore express the backward constraints for rectan-
guloids with parallel sides as a set of linear inequalities,
and solve them using linear programming, as we did the
forward constraints. For the case of non-rectanguloid
model volumes, we can approximate the backward con-
straints by replacing each model volume with the axial
rectangloid that bounds it.

With this approximation the backward constraints
require that the bounding rectanguloid of each model
volume project into the image so that it completely
contains the corresponding image region. These pro-
vide correct constraints on the transformation, since if
a volume projects into the image so that it contains a
corresponding region, so must its bounding rectangle.
The accuracy of the rectangular backward constraints
will depend on the specific shape of the model vol-
umes. However, we note that without loss of generality
we may apply an arbitrary 3-D affine transformation to
the set of model volumes before bounding them, to im-
prove our approximation. In Section 3 we will describe
the consequences of this approximation in more detail,
showing that in some cases of interest we can find the
correct model pose in spite of this approximation.

We are required to run four linear programs, which
each correspond to a different visual aspect of the rect-
anguloids. It is not the case, however, that we can use
more complex shapes to approximate the volumes, run-
ning a different linear program for each aspect, since
the reduction to linear programming depends on de-
coupling thex andy coordinates, not on treating each
aspect separately. This is clear also from Amenta’s
proof (personal communication) that the general prob-
lem is not an LP-type problem.

2.4. Local Geometric Features

We now point out that the solution methods described
above may be applied to local geometric features as
well, provided these can be described as convex sets.
There are many existing methods for finding pose using
local geometric features. Our solution methods will be
suitable only when one wishes to combine information
from these features with information based on regions
and volumes.

We consider in particular the use of points, corners,
and line segments. With the exception of corners, each
of these can be thought of as a convex subset ofR3

that projects to a convex subset ofR2. A corner can
be thought of as a point with associated vectors, to indi-
cate the directions of the lines forming the corner. These
vectors are also convex subsets of the space of vectors.

To apply the forward constraints, one must describe
each model feature with one or more points, and each
image feature as the intersection of a set of half-planes.
Obviously, a model point is trivially described as a
point. An image point can be described as the intersec-
tion of three half-planes intersecting at the point. A
model line segment can be described by its endpoints,
which form its convex hull. An image line segment can
be described by the intersection of four half-planes.
Two half-planes can be along the line segment, but in
opposite directions, so that their intersection is the line
containing the line segment. Each end point of the line
segment can be delimited by another half-plane. Either
or both of these can be omitted if it is known that one
or both of the line segment’s end points is due to an oc-
clusion. The vector giving the orientation of a model
corner may also be described using any point along the
3-D ray that describes the corner, which is constrained
to lie along a ray in the image, given by the position
and direction of the corner. Given such descriptions
of local geometric features, the forward constraints are
then applied as described above.
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Similarly, we may apply the rectangular back-
ward constraints after describing image features us-
ing points, and after placing axial rectanguloids about
model features. Note that a 3-D point feature can al-
ways be exactly described by an axial rectanguloid.
A 3-D line segment can be exactly described if it is
aligned with one of the axes. Otherwise it may be ap-
proximated. The direction vector of a corner can be
exactly described in the model if it is aligned with an
axis, otherwise an approximation to it will be so large
as to be of little value.

2.5. Non-convex Shapes

For the most part, the solution methods we describe
can also be applied to non-convex shapes, if we first
approximate them by taking their convex hull. We can
apply the forward constraints by requiring that each
model volume project inside the convex hull of the
corresponding image region. To do this, it is sufficient
to require every vertex of the convex hull of the model
volume to project inside the half-plane corresponding
to every edge bounding the convex hull of the cor-
responding image region. The rectangular backward
constraints can similarly be applied by approximating
each model volume using a rectangular box, and using
the vertices of the convex hull of the image region.

However, a complication arises in applying the for-
ward constraints, with known occlusion. In that case,
we cannot bound the possible extent of a partially
occluded image region. If the model volume is non-
convex, we cannot assume that by extending the corre-
sponding image region convexly in the direction of an
occlusion that we will cover all of the region that has
been occluded. It is possible that the occluded portion
of the region contains concavities, and extends outside
of the largest possible convex region containing the de-
tected region. This is illustrated in Fig. 3. We will not
consider this problem further.

Figure 3. Suppose the cross-hatched, polygonal area is an image
region known to be occluded by the dark rectangle (left). When the
corresponding model volume is convex, we may apply the forward
constraints, using the largest possible convex region consistent with
this occlusion (middle). However, this may be incorrect if the oc-
cluded region is not convex (right), and we wish to use the convex
hull of the region for the forward constraints.

3. Uniqueness of Solutions

We have described two different types of constraints
that we may use to efficiently determine model pose.
The forward constraints are correct when there is only
self-occlusion, or occlusion whose location is known.
The backward constraints are correct even in the pre-
sence of unknown occlusion. However, these con-
straints are not complete: the forward constraints do
not express the constraints that each model volume
should explain every point in each matching image re-
gion, while the backward constraints only bound the
true set of backward constraints, through the use of ax-
ial rectanguloids. We will now none-the-less show that,
although incomplete, these constraints are sufficient in
many realistic situations to correctly determine model
pose.

We first consider the performance of the forward
constraints, in the presence of only self-occlusion. We
show that, in general, when we have matched three
or four volumes, we may determine the correct model
pose with linear programming, while, in general, two
matches are not sufficient to determine pose uniquely.
Next we consider the performance of the backward con-
straints when the model volumes are each planar (but
not mutually coplanar). In this case, some subset of
the exact constraints will be present, and we show that
in many cases these can determine the correct solution.
We also point out that when we apply the rectangu-
lar back constraints to curved 3-D volumes they can
only produce an approximate solution, and not an ex-
actly correct one. Finally, we point out that the forward
constraints with known occlusions can also produce the
correct model pose. Throughout our discussion we will
mention situations in which degenerate solutions may
be found instead of the correct ones. By restricting the
solution to represent a rigid transformation we can in
many cases use a degenerate solution to determine the
correct one. This will be shown in Section 4.

3.1. The Forward Constraints

In this section, we suppose thatT is a 3-D to 2-D affine
transformation that maps the model volumes to the cor-
responding image regions. This transformation maps
curves on the 3-D volumes to the bounding curves of
the 2-D regions. These 3-D curves are called thecon-
tour generators. Our proofs assume the contour genera-
tors are closed 1-D curves, which is generically true for
convex volumes. With some complication, the proofs
may be extended to handle the non-generic case.
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We then ask under what circumstancesT is the
unique transformation that satisfies the forward con-
straints. WhenT is unique, this means that using a
linear program to find a transformation satisfying the
forward constraints must in fact produceT , the correct
solution. We had previously (Basri and Jacobs, 1997)
reported preliminary results on this problem for the
special case of planar model volumes that are not mu-
tually coplanar. We now extend those results to the case
of fully three-dimensional model volumes.

Theorem 1. Suppose the transformation T maps the
four model volumes, V0,V1,V2,V3 to the four im-
age regions, R0, R1, R2, R3, and there does not exist
a plane that intersects all four volumes. Then, T is
the only transformation that satisfies the forward con-
straints.

This is proven in Appendix A.

Theorem 2. T is not the only transformation sat-
isfying the forward constraints if and only if, for the
contour generators T produces, there exists a plane,
P, such that, for all contour generators, either P con-
tains the contour generator, or P intersects it in two
points, such that the orthographic projection onto P
of the tangents to the contour generators at the in-
tersection points are all parallel. This implies that for
three model volumes viewed in general position, T will
be the unique transformation that satisfies the forward
constraints.

This is proven in Appendix A.
We now consider the case in which only two model

volumes are matched to two image regions. We do not
provide necessary and sufficient conditions for these
to determine a unique transformation. However, we
do note that any two model volumes may be viewed so
that their corresponding image regions intersect. When
this occurs, the forward constraints will be satisfied by
any transformation that shrinks the model volumes to
a very small size, and projects them inside this region
of intersection. Therefore, any two model volumes will
lead to a non-unique solution when viewed from a sig-
nificant range of viewpoints.

3.2. The Rectangular Backward Constraints

We now address the problem of determining when
the rectangular backward constraints are sufficient to
correctly determine the pose of a model. Recall that the

backward constraints bound each model volume with
an axial rectanguloid, and then require a valid transfor-
mation to map this rectanguloid into the image so that
it completely contains the corresponding image region.

Let Ci denote the axial rectanguloid that bounds the
volumeVi . Note that the contour generator forCi will
consist of six line segments, or four line segments for
those special viewpoints in which only one face of the
rectanguloid is visible. This means that the projection
of Ci will be a six (or four) sided convex polygon.
The rectangular backward constraints require thatRi ⊆
T Ci . SinceVi ⊆ Ci , the correct transformation will
satisfy these constraints.

In general,T Vi may lie completely insideT Ci . In
fact,T Vi andT Ci will touch only in the case whereVi

touches one of the line segments that form the bound-
ary of Ci (or for special viewpoints in which a side of
Ci projects to a line segment in the image). For a gen-
eral smooth 3-D volume, no bounding rectanguloid (or
polygon of any sort) will touch the volume in one of its
edges, since this would require a discontinuity in the
volume. On the other hand, a convex planar volume
can always be oriented so that a bounding rectangu-
loid is also planar, and touches it in at least four points.
Therefore, cases of interest exist in which eitherT Vi is
always completely insideT Ci or in whichT Vi ∩ T Ci

contains at least four points.
Suppose first thatRi = T Vi lies entirely insideT Ci ,

for all volumesVi . In this case, it is obvious that any
small perturbation to the transformationT will not vio-
late the rectangular backward constraints. Therefore,
in such a situation the backward constraints will not
uniquely determine the correct pose, although they may
still produce a good approximation to this pose.

This is not surprising; after all the rectangular back-
ward constraints involve an approximation, and so one
expects them to produce poses with some error. Sur-
prisingly, though, we can also show that for an inter-
esting class of volumes the rectangular backward con-
straints will produce exactly the correct answer. Sup-
pose that the volumes are all planar, and that they each
lie in either of two different planes. This is a common
occurrence if the volumes are either surface markings
on two different faces of a polyhedron, or on the walls
or ceiling of a room. We show that such volumes can
lead to a unique solution to the backward constraints.

In particular, we show that when two or more model
volumes are planar, and lie in the same plane, there
can be a unique transformation of that plane that
satisfies the rectangular backward constraints. If in ad-
dition there is another planar model volume, lying in
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a different plane, there can generically be a unique
solution to the rectangular backward constraints. A
precise statement and proof of this can be found in
Appendix B. In brief, when planar volumes lie in two
different planes we can, without loss of generality, as-
sume that these planes are axial. In this case, axial
rectangles touch the boundary of the model volumes at
points that always project to the boundary of image re-
gions. Therefore, the rectangular backward constraints
include some tight constraints that can allow only a
unique transformation to be valid.

3.3. The Forward Constraints,
with Known Occlusion

We now point out that our discussion of the back-
ward constraints also provides an example of a situ-
ation in which the forward constraints, with known
occlusion, can lead to a unique transformation. When
we use the forward constraints with known occlu-
sions we are making use of a subset of the constraints
that would be available in the absence of occlusion.
As we have described, the rectangular backward con-
straints can include a small subset of the complete back-
ward constraints. For planar volumes, those points that
are extremal in the axial directions lead to tight con-
straints on the model pose. Suppose now that the same
extremal points that we make use of in Section 3.2 are
visible in the image. In this case, exactly the same rea-
soning applies to show that a unique transformation
will satisfy the forward constraints. Consequently, if
any but these extremal points are occluded, we may
still apply the forward constraints to find the correct
transformation. This provides an example that shows
that even with a large amount of occlusion, the forward
constraints can produce the correct transformation, pro-
vided that this occlusion is identified.

In general the forward constraints with known oc-
clusions will be much more effective in determining a
unique solution than will the rectangular backward con-
straints, since every unoccluded point on the boundary
of the image regions will provide a tight constraint on
the transformation. It is, however, beyond the scope of
this paper to fully characterize when these constraints
lead to a correct solution.

4. Recovering from Degeneracies

We now consider how we may handle certain situa-
tions in which the model volumes lead to a non-unique

solution. The most common cause of this occurs when
the model itself is in a sense degenerate, and so a
3-D affine transformation that satisfies analogs to the
forward and backward constraints may be found. How-
ever, we will show that in this case we can often recon-
struct the correct transformation, undoing the effects
of this degeneracy.

Suppose there exists a 3-D to 3-D affine transfor-
mation, A 6= I , such thatAVi ⊆ Vi for all i . In this
case, the forward constraints can almost never lead to
a unique solution. If the correct transformation isT ,
then the transformationT Awill clearly also satisfy the
forward constraints. Moreover,T A 6= T except for
special cases when projection completely removes the
effects ofA.

If the model contains three distinct volumes, any
such transformation must contain three fixed points. If
the volumes are not traversed by a single line,A must
consist of a fixed plane, with a contraction in some
direction toward that plane.

Similarly, a degeneracy will almost always occur
in the rectangular backward constraints when there is
an affine transformationA such thatVi ⊆ ACi . This
typically occurs when a plane exists that intersects the
Ci rectanguloids on sides that can be divided into two
parallel sets. In this caseA can be the affine trans-
formation that leaves this plane fixed, and expands the
model in the direction shared by the rectanguloid sides
intersected by the plane. For example, suppose all the
rectanguloids have minimumx coordinates less than
zero, and maximumx coordinates greater than zero.
In this case, thex = 0 plane will intersect eachCi in
two sides parallel to they = 0 plane and in two sides
parallel to thez= 0 plane. In this case, we may expand
the model rectanguloids in thex direction (which is the
intersection of they = 0 plane and thez= 0 plane) so
as to leave thex = 0 plane fixed. This transformation
has the form:

A Ep =

1+ ε 0 0

0 1 0

0 0 1

 Ep
for any ε > 0. In this example,Vi ⊆ Ci ⊆ ACi . In
such a situation, wheneverT satisfies the rectangular
backward constraints, so willT A.

However, since the model is accessible to us in
advance, we may detect when such degeneracies
occur, and undo their effect. To determine the possibi-
lity of such a degeneracy, we may apply the forward
or backward constraints for the case of 3-D affine
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transformations. For the forward constraints we com-
pare the model to itself. For the backward constraints
we compare the model volumes to their bounding rect-
anguloids. Since 3-D affine transformations are linear,
these constraints can be solved for using linear pro-
gramming, and will reveal the presence of a transforma-
tion such asA. However, in the experiments described
below, we have simply detected this possibility by
hand.

If a model can be contracted or expanded perpen-
dicularly in a single direction, we first preprocess the
model so that this direction is aligned with one of the
axes. Without loss of generality, assume this is the
x-axis. Let the contraction/expansion transformation
applied to the model be given by

A Ep+ Eb =

1+ ε 0 0

0 1 0

0 0 1

 Ep+ (ax

0

)
.

Notice that we must allow for an unknown transla-
tion of ax in the x direction, as a part of the con-
tracting/expanding transformation. This is because,
although we assume that contraction or expansion is in
thex direction, and that there is a fixed plane perpen-
dicular to the direction, we do not assume that this is the
x = 0 plane. In some cases there will not be a unique
plane that might be the fixed plane, there might be a
family of parallel planes any one of which might have
been fixed in the contraction/expansion of the model.
Now, suppose the image is obtained by applying a
rigid transformation to the model followed by a scaled
orthographic projection. The imaging process can be
written as

SEp ′ + Et =
(

s11 s12 s13

s21 s22 s23

)
Ep ′ +

(
tx
ty

)
,

where the entriessi j are the first two rows of a scaled
rotation matrix. Our solution methods, then, will pro-
duce a transformationT that is a composition of the
two transformations, as follows:

T Ep= S(A Ep+ Eb)+ Et

=
(

s11 s12 s13

s21 s22 s23

)
1+ ε 0 0

0 1 0

0 0 1

 Ep+ (ax

0

)
+
(

tx
ty

)
.

Given the transformation,T , we wish to recover the
matrixSthat indicates the true scaled orthographic pro-
jection of the model. This is easily done, since

s12 = t12 s22 = t22

s13 = t13 s23 = t23.

We may then readily determine the values ofs11, s21

which will satisfy the rigidity constraints of the matrix,
so that:

s11s21+ s12s22+ s13s23 = 0

s2
11+ s2

12+ s2
13 = s2

21+ s2
22+ s2

23

Thus we can recover the scaled rotation matrix and also
the y translation that produced the image regions. We
cannot directly recover the translationax. However,
once we have determined the rest of the transforma-
tion, it is easy to determine the appropriate translation.
For example, we could run linear programming again,
allowing for only anx translation.

5. Experiments

We now present some experiments that demonstrate
the feasibility of our approach to recognition. These
experiments will provide useful information about the
accuracy of the poses that we can recover using both
the forward and the rectangular backward constraints.

In these experiments a model was first constructed
by hand, using images of the object and knowledge of
its structure. Then, the Canny edge detector (Canny,
1986) was run on a new image of the object. We auto-
matically extracted sets of edges that formed salient
convex groups, using the grouping system described
in (Jacobs, 1996). The localization of groups in the
image will therefore contain errors due to running a real
edge detector and grouping system on real images. A
subset of these groups were then extracted and matched
by hand to groups in the model. See Nayar and Bolle
(1996) for one suggestion about how to use intensity
information to match such regions automatically. Our
system then used these matches to determine the model
poses shown here.

In the first set of experiments we use a black box
with different shaped regions painted on the side. Al-
though this object is somewhat artificial, it allows us
to experiment with a variety of different conditions. In
Figs. 4–10 we show the poses derived by the forward
and backward constraints using different combinations
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Figure 4. This shows poses derived using the forward and backward constraints. The image is shown, with the regions used to derive the
pose marked with a white hatching. Superimposed over the image are the white outlines of all model groups, to indicate the pose that has been
derived using the forward constraints (left) and backward constraints (right). This figure shows the poses derived using five regions.

Figure 5. Another example using five regions. The pose derived using the forward constraints is on the left, and the pose from the backward
constraints is on the right.

Figure 6. An example using four regions. Note that one of the regions is partially occluded, leading to a poor solution with the forward
constraints (left).

Figure 7. An example using three regions. The backward constraints (right), which are approximate, lead to a much noisier solution than the
forward (left).
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Figure 8. An example using three regions, one of them occluded. This leads to a poor solution for the forward constraints (left), which do not
allow for occlusion. The backward constraints (right), produce a much more accurate pose. Note that in spite of the occlusion, the backward
constraints produce a more accurate solution than they did in Fig. 7 because a more stable triple of image regions are matched.

Figure 9. An example using three regions, with two of them occluded. This leads to a very poor solution for the forward constraints (left),
while the solution for the backward constraints also degrades. Occlusion may cause the correct solution to become non-unique, and indeed we
can see that the pose found satisfies the backward constraints very well.

Figure 10. This example shows poses derived from two regions. We can see that these are not sufficient to determine the correct pose.

of regions. This shows that both sets of constraints
are able to produce accurate model poses when at least
three region correspondences are used. It also illus-
trates how the poses degrade as we use fewer regions,
and as the amount of occlusion increases. Of course the
forward constraints are especially vulnerable to uniden-
tified occlusions.

In Figs. 11–13 we demonstrate the method dis-
cussed in Section 4 for determining the correct scaled

orthographic projection from a degenerate transforma-
tion. The model regions used in these examples are
coplanar, and thus lead to a degeneracy. Note, how-
ever, that degeneracies can occur even when 3-D model
volumes are used.

Figure 14 shows the forward and backward con-
straints being used to recognize two other objects.
These experiments show that even with noise due to
the edge detection and grouping process, we can use
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Figure 11. Here we show a set of regions that produce a degenerate solution. The forward constraints are applied. However, since the model
regions matched are really coplanar, a solution is found that contracts the 3-D model into a single plane (left). Since this potential degeneracy can
be detected ahead of time, we may postprocess the pose to “uncontract” it, producing a scaled orthographic transformation (right) that matches
the model and image better.

Figure 12. Similarly, we show the backward constraints applied to produce a degenerate solution (left), along with the “uncontracted” pose.

Figure 13. Similar results for a different object. The pose of the soda can found by the forward constraints (left) is significantly contracted.
After “uncontracting” the pose (right) into a scaled orthographic projection, we obtain a better fit.

region matches to accurately determine pose without
explicit correspondences between local features such
as points or line segments.

Finally, Figs. 15–18 show the results of our algori-
thms for a synthetic model composed of 3-D volumes.
The object is composed of seven volumes: the four
legs, the body, the neck and the head. That is, each
volume is a part; the faces of volumes are not used
as separate parts. We segment and match these parts

perfectly in the images. Being synthetic, this object
is simple to model accurately. But moreover, since
the only source of error is digitization in the projec-
tion, any inaccuracies that we find are due to limita-
tions of the methods proposed. Figure 16 shows that the
backward constraints can produce very accurate poses,
in spite of the approximations made by taking bound-
ing rectanguloids. Note that none of the model parts
are at all rectangular; the legs and neck, for example are
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Figure 14. These figures show the performance of the system on more realistic objects. On the left, the system uses the forward constraints to
accurately determine the pose of the soda can. Four regions are used in this case. The regions are surface markings on the cylinder of the can,
and a circular region from the top of the can. On the right, the backward constraints are used to locate the pen box. Note that the soda can is
occluding some of the regions used.

Figure 15. A simple synthetic animal, seen from along thex-axis (left) y-axis (center) andz-axis (right). Bounding boxes for the rectangular
backward constraints were built with the model in this reference frame.

Figure 16. These figures show the rectangular backward constraints applied to a synthetic, 3-D object. We show the image used with some of
the boundary of the volumes of the projected model superimposed in white. On the left, the pose found using all seven model volumes. In the
center, we use four volumes: the head, the two left legs, and the front right leg. In both cases, we find accurate poses. On the right, we use only
the head and the two left legs, and a poorer pose is found.

Figure 17. The results using the forward constraints using the same image and volume/region matches as in the previous figure. Since there is
little occlusion of objects parts by other parts, the forward constraints produce accurate poses. When only three volumes (right) are used, they
continue to produce an accurate pose. Note that the backward constaints lead to a much less accurate pose in this case, as shown in the previous
figure.
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Figure 18. Here we show a view of the object in which the leg volumes are significantly occluded by the body. We match all seven volumes
to regions. The rectangular backward constraints (left) produce a fairly accurate pose. The forward constraints (right), which do not allow for
such occlusion, produce a much noisier pose.

nine and seven sided polygons, respectively. Figure 17
shows that the forward constraints do indeed produce
accurate results when only three volumes are matched.
Finally, Fig. 18 shows the performance of the methods
when some model volumes are partially occluded, in
this case by other parts of the object.

6. Conclusion

Recognition of 3-D objects in 2-D images has been
hampered by the difficulty of finding representations
that can faithfully model complex 3-D objects and still
be used to determine pose based on their 2-D images.
In this work we make use of a simple representation,
which divides objects into parts and then represents
each part as a volume of points. This representation can
clearly be applied to a large class of objects. Our con-
tribution is to show that it can also be used to accurately
determine the pose of these objects. We show that even
without specific correspondences between local geo-
metric features, we may use region matches to de-
termine the correct model pose. At the same time
our method allows us to incorporate correspondences
between points, lines or line segments, should they be
available.

Specifically, we present new results that show that
the forward constraints, which allow for self-occlusion,
may correctly determine the pose of a 3-D object, typi-
cally when a correspondence has been found between
three 3-D parts of the object and three matching 2-D
image regions. We have also shown that it is a more
difficult problem to find poses that satisfy the back-
ward constraints, which allow for unidentified occlu-
sions. This problem can have multiple disconnected
solutions. These results apply not just to our algorithm

but to any parts-based recognition system which de-
termines pose while allowing for arbitrary image oc-
clusions of unknown locus. However, we have also
devised a novel algorithm, based on work in compu-
tational geometry, that finds solutions that satisfy an
approximation to the backward constraints, using lin-
ear programming. And we show that in some cases of
interest, this approximate solution leads to our finding
exactly the correct model pose. These results demon-
strate that we can recognize 3-D objects using a very
simple, and novel representation of their structure.

Appendix A: Uniqueness of Forward Constraints

In this section, we prove Theorems 1 and 2. We first
prove the following useful lemma:

Lemma 1. Suppose that T′ is a transformation that
also satisfies the forward constraints. Then for each
model volume Vi and image region Ri , there exists a
point, Epi ∈ Vi such that TEpi = T ′ Epi .

Proof: Throughout this section, we will assume that
thecontour generatorof Vi is a 1-D curve onVi that
projects to the 1-D boundary ofRi . This will be true
for smooth, generic, convex volumes in general posi-
tion. Our reasoning can be readily extended to other
cases, however we will not consider those in this paper
to simplify our arguments. Clearly we can construct
a 2-D surface, call itSi , such thatSi is bounded by
the contour generator, such thatSi ⊆ Vi and such that
T Si = Ri . Therefore,T will define a continuous one-
to-one mapping betweenSi andRi . So even thoughT
is not in general invertible, we may invertT when we
restrict its domain toSi . Let T̄ denote the restriction of
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T to this domain, and let̄T−1 denote its inverse, a map-
ping from Ri to Si . BecauseT ′ satisfies the forward
constraints,T ′Si ⊆ Ri . ThereforeT ′T̄−1 defines a
continuous mapping fromRi into Ri . Brouwer’s fixed
point theorem, a basic result in functional analy-
sis (see, for example, Conway (1990)), tells us that
since Ri is convex, and hence topologically equiv-
alent to a disc, such a mapping must have a fixed
point. That is, there exists some pointEqi ∈ Ri such that
Eqi = T ′T̄−1Eqi . Therefore,T(T̄−1Eqi ) = T ′(T̄−1Eqi ),
proving the lemma. 2

Using this lemma, we may now show the following:

Theorem 1. Suppose the transformation T maps the
four model volumes,V0,V1,V2,V3 to the four image re-
gions, R0, R1, R2, R3, and there does not exist a plane
that intersects all four volumes. Then, T is the only
transformation that satisfies the forward constraints.

Proof: Let T ′ map the four model volumes
V0, . . . ,V3 to inside the corresponding image regions
R0, . . . , R3. By Lemma 1 for every volumeVi ,
i = 0, . . . ,3 there exists a pointEpi ∈ Vi such that
T ′( Epi ) = T( Epi ). Since there exists no plane that
intersects all four volumes the pointsEp0, . . . , Ep3 are
not coplanar. Consequently, since correspondences of
four non-coplanar points determine a 3-D to 2-D affine
transformation uniquely thenT = T ′. 2

We now show that typically, only three matches are
required to uniquely determine the pose. In (Basri and
Jacobs, 1995) we have proven the following lemma:

Lemma 2. T is uniquely determined for the set of
volumes Vi if and only if it is uniquely determined for
the set of volumes QVi , where Q is any3-D affine
transformation.

This tells us that we may, without loss of generality,
place the model volumes in any affine reference frame.
This can significantly simplify our reasoning, since it
allows us to assume without loss of generality thatT
is the identity transformation, plus orthographic pro-
jection. We now suppose that we have matched three
model volumes to three image regions, and that the
image regions are not all intersected by a single line.
Further, we suppose that the image regions were pro-
duced by applying the transformation,T , to the model
volumes, and that a different transformation,T ′ 6= T ,

also satisfies the forward constraints. Then there ex-
ist three non-collinear model points,Ep0, Ep1, Ep2 such
that T Ep0 = T ′ Ep0, T Ep1 = T ′ Ep1, andT Ep2 = T ′ Ep2.
Lemma 2 tells us that we may assume, without loss
of generality, that these three points are in thez = 0
plane and fixed under the transformationT , and there-
fore also underT ′. This means that the entirez = 0
plane is fixed under these two transformations. Fur-
ther, without loss of generality, we may assume that
T(0, 0, 1) = (0, 0). Therefore, we may write:

T =
(

1 0 0

0 1 0

)
and

T ′ =
(

1 0 k1

0 1 k2

)
,

where eitherk1, k2 or both are non-zero.
By choosing this affine reference frame, we have

constructed things so that each contour generator,si ,
projects orthographically to form the boundary of the
corresponding region. LetEp be an arbitrary point
on V0’s contour generator, with coordinates(x, y, z).
ThenT Ep = (x, y), andT ′ Ep = (x, y)+ z(k1, k2). This
tells us thatT ′ maps the contour generator so that it is
displaced from the region boundary in either the direc-
tion (k1, k2) or −(k1, k2), depending on whether the
point is above or below the image plane.

We may use this fact to place constraints on the di-
rection of the contour generator’s tangent. If one of
the contour generators is either entirely above, or en-
tirely below the image plane, then clearlyT ′ will map
some of these points outside the corresponding region,
violating our assumptions.

Next, suppose that the image plane intersects the
contour generator in at least two discrete points, but
not in an entire subcurve of the contour generator. Let
Ri ∩ si be the pointsEp1

i , Ep2
i . Let the tangent toRi

at Ep j
i be Ew = (wx, wy, 0). Let the tangent tosi

at the point Ep j
i have the directionEv. Then the direc-

tions of Ew, T Ev and T ′ Ev must all be the same. That
is true because if a point in the model projects to the
boundary of the image region, and the tangents of the
region point and the projected model point differ, then
the projected model volume will not be contained in
the image region. So, sinceEw = T Ev, we must have
Ev = (wx, wy, vz) for somevz. The pointsEp j

i are also
fixed underT ′, since they lie in thez= 0 plane which
is fixed underT ′. Therefore, the tangent toT ′Vi at Ep j

i
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is (wx + k1vz, wy+ k2vz). Again, the condition that
T ′Vi ⊆ Ri implies thatT ′ Ev must have the same direc-
tion as Ew. Since eitherk1 6= 0 ork2 6= 0 it follows that
the directions of(wx, wy) and(k1, k2)must be parallel.
Therefore, the tangents to each regionRi at a pointEp j

i
must all be parallel to(k1, k2), and so they must all be
parallel to each other.

If the image plane intersects the contour generator
in an entire curve, we may apply the same reason-
ing to the two end points of the curve. In the special
case that the entire contour generator lies in the image
plane, then that volume will not constraink1 andk2,
for T ′ close toT .

This has shown:

Theorem 2. T is not the only transformation satisfy-
ing the forward constraints if and only if, for the con-
tour generators T produces, there exists a plane, P,
such that, for all contour generators, either P contains
the contour generator, or P intersects it in two points,
such that the orthographic projection onto P of the
tangents to the contour generators at the intersection
points are all parallel.

Simple variable counting now tells us that for gen-
eral shapes, in general position, this will not be pos-
sible. Given a set of model volumes and a particular
viewpoint, the contour generators will be fixed. First,
for general objects the contour generator will not be
planar. Next, we have three degrees of freedom in
choosing a plane to intersect the contour generators.
Each plane will determine the direction of six tangent
vectors projected into that plane. For all these tangents
to be parallel provides five degrees of constraint; how-
ever we have only three degrees of freedom available to
satisfy these constraints. Therefore, in general, given
a set of model volumes and a view of them, there will
be a unique transformation that satisfies the forward
constraints, provided that the image regions cannot be
intersected by a single line.

Appendix B: Uniqueness of Backward Constraints

We begin our analysis by supposing that at least two
of the model volumes,V0,V1 are planar and lie in the
same plane. Without loss of generality, we assume that
this is thez= 0 plane. Note that we are free to prepro-
cess the model volumes with an affine transformation

to achieve this before approximating them with rect-
angles. The volumes will then be approximated by
2-D rectangles in this plane, which we callC0 and
C1. Each side of each rectangle will touch the cor-
responding volume in at least one point. These will
be the points with the highest and lowest values in
their x and y coordinates. We will call these points
Ex0,l , Ex0,h, Ey0,l , Ey0,h, Ex1,l , Ex1,h, Ey1,l , Ey1,h, where, for ex-
ample,Ex0,h is the point inV0 with the highestx coordi-
nate (see Fig. 19). Note that if there is a line segment
on the boundary of one of the volumes with constant
x or y values we can pick any of these points, or we
can easily extend the reasoning given below to include
this case. Also, one point may be extremal in both
the x and y direction; this does not effect the argu-
ment given below. At these eight points, the backward
constraints will require that the corresponding region
point found in the image will lie on the appropriate
side of the projection of a horizontal or vertical line
passing through that point in the model. Therefore, we
will have eight constraints that are not approximate, but
that are subsets of the constraints we would have if we

Figure 19. Two coplanar volumesV0 and V1 bounded with
flat rectanguloidsR0 and R1. The pointsEx0,l , Ex0,h, Ey0,l , Ey0,h, Ex1,l ,

Ex1,h, Ey1,l , Ey1,h are the contact points of the volumes and the rectan-
guloids. In the case on the top, the two pairs of pointsEy0,l , Ey1,l and
Ey0,h, Ey1,h are linearly separable, as is indicated by the dashed line.
On the bottom, the volumes lead to a unique solution in thez = 0
plane.
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could apply the backward constraints exactly. A trans-
formation infinitesimally different from the correct one
will not violate any of the other rectangular backward
constraints, but it may violate these ones.

Now we consider when these eight constraints will
suffice to uniquely determine that portion of the pro-
jection that effects thez= 0 plane. From Lemma 2 we
may assume, without loss of generality, thatT leaves
the z = 0 plane fixed;1 we must then determine the
circumstance under which there exists a different trans-
formation,T ′, which has a different effect on thez= 0
plane while respecting the rectangular backward con-
straints. It will be convenient to focus on the inverse
of T ′ when we restrict its effect to thez = 0 plane.
We ask when there is an inverse transformation that
can map each image point to the appropriate side of
the bounding model rectangle. We denote this inverse
transformationT ′−1, with componentst ′−1 given the
appropriate subscript.

Note that thex coordinates of points in thez = 0
plane are effected only byt ′−1

11 , t
′−1
12 andt ′−1

x , while the
y coordinates are changed byt ′−1

21 , t
′−1
22 andt ′−1

y . Since
the Ex0,h, Ex0,l , Ex1,h, Ex1,l points are constrained only in
the x direction, and the correspondingy points are
constrained only in they direction, we may consider
these two sets of points separately. A non-unique so-
lution exists if and only if either there exist values of
t ′−1
11 , t

′−1
12 andt ′−1

x that map the pointsEx0,h, Ex0,l , Ex1,h, Ex1,l

within the minimum and maximumx values of their
bounding rectanguloids, or if there similarly exist val-
ues oft ′−1

21 , t
′−1
22 and t ′−1

y that map they points in the
appropriatey directions.

The transformationT ′−1 will change thex coordi-
nate of the point(x, y) by the amount:

T ′−1
x (x, y, 0)− x = (t ′−1

11 − 1
)
x + t ′−1

12 y+ t ′−1
x .

Therefore, the line(
t ′−1
11 − 1

)
x + t ′−1

12 y+ t ′−1
x = 0

will have itsx coordinates fixed (note that in the case of
pure translation we may think of the equationt ′−1

x = 0
as describing a vertical line atx = ∞). On one side of
this line, the value of(t ′−1

11 − 1)x+ t ′−1
12 y+ t ′−1

x is pos-
itive, on the opposite side this value is negative. This
means that either all points will shift theirx coordinate
towards this fixed line, or all points will shift away from
it. Therefore, the only way such a transformation can

satisfy the backward constraints is if we can draw a
line that separates the pointsEx0,l , Ex1,l from the points
Ex0,h, Ex1,h. In that case any such separating line can be
the fixed line, andT ′−1 can map all points towards that
line, in the x direction. It may or may not be pos-
sible to find such a separating line, depending on the
configuration of the model.

Exactly the same reasoning holds for the points
Ey0,l , Ey0,h, Ey1,l , Ey1,h. Therefore, there exist models for
which the rectangular backward constraints uniquely
determine the transformation of thez = 0 plane, as
illustrated in Fig. 19. While it is somewhat difficult to
find such a configuration in two model volumes, simi-
lar reasoning holds when more than two volumes are
coplanar, except that now a larger set of points must
be linearly separable for a transformation that satisfies
the backward constraints to be non-unique.

Suppose now that the model contains a set of vol-
umes for which the backward constraints uniquely de-
termine the transformation of thez = 0 plane. This
tells us that any transformation,T ′ 6= T satisfying the
backward constraints must have the form:

T ′ Ep =
(

1 0 t ′13

0 1 t ′23

)
Ep,

with either t ′13 6= 0 or t ′23 6= 0. We now ask when
an additional planar model volume, not in thez = 0
plane, will suffice to completely determine the model-
to-image transformation. Without loss of generality we
may assume that this volume lies in they-z plane, so
that it is bounded by a rectangle in this plane, and has
four extremal points in they andz directions. Further-
more, we may assume that the transformationT has
the form:

T Ep =
(

1 0 1

0 1 0

)
Ep.

That is,T is the identity transformation when applied
to thex-y plane, while it maps they-z plane to thex-y
image plane by mapping(0, y, z) to (z, y). Therefore,
T acts also like an identity transformation on they-z
plane, while converting it into thex-y plane. Now con-
sider the effect thatT ′ has as it maps they-z plane into
thex-y plane. It leaves thez= 0 line fixed, soT ′ can
consist only of a contraction of they-z plane towards
this line, along with an interchange of coordinates. If
both extremal points of the model volume in thez di-
rection are on the same side of the linez = 0, then
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any contraction or expansion towards or away from
that line will violate one of the constraints imposed
by the bounding rectanguloid. That is, once the back-
ward constraints imply a unique solution within one
plane, they fail to produce a unique solution only when
this plane intersects the remaining volumes. This will
never happen if the volumes are surface markings on
a convex polyhedra, as for example, when they lie on
the walls or ceiling of a room.

We have now shown that, though approximate, the
rectangular backward constraints may still uniquely de-
termine the correct model to image transformation in
situations of real interest. At the same time, unlike our
previous 2-D formulation of the backward constraints,
we can now integrate information from planar volumes
that are not coplanar, or from non-planar volumes.
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Note

1. This point is somewhat subtle. We may assume this because the
bounding rectanguloids can be axial to any affine reference frame,
which need not be the natural Euclidean reference frame in which
we store the model.
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