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Abstract. This paper presents a novel approach to parts-based object recognition in the presence of occlusion.
We focus on the problem of determining the pose of a 3-D object from a single 2-D image when convex parts
of the object have been matched to corresponding regions in the image. We consider three types of occlusions:
self-occlusion, occlusions whose locus is identified in the image, and completely arbitrary occlusions. We show
that in the first two cases this is a convex optimization problem, derive efficient algorithms, and characterize their
performance. Forthe last case, we prove that the problem of finding valid poses is computationally hard, but provide
an efficient, approximate algorithm. This work generalizes our previous work on region-based object recognition,
which focused on the case of planar models.
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1. Introduction complexity of determining the pose of 3-D objects in
the presence of occlusion.
Recognizing a known 3-D object using a single 2-D A good representation for 3-D recognition should:
image is a central and difficult problem in visual recog- (1) be rich enough to describe the shape of 3-D ob-
nition. One of the key issues is developing adequate jects; (2) have a 2-D analog that can be reliably com-
representations to support flexible recognition of gen- puted from an image; and (3) allow us to understand
eral objects. Existing approaches are often well-suited aspects of the relationship between the 3-D representa-
to only a small class of objects (e.g. polyhedra, ro- tion and its 2-D projection that are needed to perform
tationally symmetric objects, low-order algebraic sur- useful recognition tasks. In this paper, we focus on the
faces). Inthis paper we show how to make use of a very capability of a representation to support pose deter-
simple and general representation of the parts of 3-D mination, one of the most basic problems faced by a
objects to determine their pose. At the same time, we complete recognition system.
also provide results on the fundamental computational

1.1. Past Work
*A preliminary version of this paper has appeared as “3-D to 2-D

Recognition with Regions” by D. Jacobs and R. Bastri, IEEE Conf. on .
Computer Vision and Pattern Recognition, San Juan 1997:547-553. Interesting methods have been developed for 3-D to

A brief overview of these and related results has appeared (Basri and 2-D recognition.- Howevgr, t_h.e reprgsgnt_ations these
Jacobs, 1996). methods use still have significant limitations. Many



124  Jacobs and Basri

previous approaches have relied on finding a corre- A number of other approaches attempt to repre-
spondence between simple geometric features, suchsent 3-D models using a specific vocabulary of shapes,
as points or lines. Lowe (1985) and Clemens (1991), typically based on an algebraic description, such as
for example, determine pose based on a match be-generalized cylinders (Binford, 1971; Brooks, 1981;
tween line segments, while Fischler and Bolles (1981), Gross and Boult, 1990; Marr and Nishihara, 1978;
Huttenlocher and Ullman (1990), Horaud (1987), Ponce et al., 1989; Shafer and Kanade, 1983; Ulipinar
Ullman and Basri (1991), Jacobs (1997), Rothwelletal. and Nevatia, 1995; Zerroug and Nevatia, 1994), su-
(1993), and Alter and Jacobs (1998) use point features perquadrics (Pentland, 1987; Rivlin et al., 1995; Solina
to determine pose, and Thompson and Mundy (1987) and Bajcsy, 1990; Terzopoulos and Metaxas, 1991),
make use of vertices. It is fairly well understood how and geons (Bergevin and Levine, 1993; Biederman,
to use local features for pose determination or indexing, 1985). Often these approaches handle only a limited
but they have significant weaknesses. Local features class of objects. For example, when generalized cylin-
often do not capture the shape of complex, curved 3-D ders are used a major difficulty lies in computing the
objects. And it may be quite difficult to locate 2-Dim-  2-D projection of the 3-D axis and sweeping rule.
age features that correspond to the local features of almage occlusion and noise make this problem espe-
non-polyhedral 3-D object, since the contour generator cially difficult. Considerable effort has led to solu-
of such objects is completely viewpoint dependent.  tions of this problem for only some restricted classes of
There has been some recent work that extracts andshapes.
matches point features from the outlines of smooth ob- Moment-based methods are somewhat related to
jects. Forsyth et al. (1992) use points derived from the ours, in that they compute a description of image re-
bitangents of objects to derive an invariant description gionsto matchto modelvolumes. These methods might
of the contour. This work, however, is limited to rota- align regions based on their center of mass, or on
tionally symmetric objects. Vijayakumar et al. (1995) higher order moments. Examples of this approach can
show how to build an indexing function using bitan- be found in (Dudani et al., 1977; Hu, 1962; Nayar and
gents for more general curved 3-D objects. They show Bolle, 1996; Nagao and Grimson, 1994; Persoon and
the surprising result that a description based on bitan- Fu, 1977; Reeves et al., 1984; Richard and Hemami,
gents can be represented as 1-D curves in a lookup1974; Sadjadi and Hall, 1980). These methods do not
table. These approaches use only a limited amount of extend to the recognition of a 3-D object from a single
the structural information available, however. 2-D image, however. First of all, volumes of 3-D points
Another approach to recognizing smooth 3-D ob- always produce self-occlusion, since different subsets
jects involves describing the 3-D object and 2-D image of the surface of the volume are visible from different
with algebraic surfaces and curves, and then register- viewpoints. Therefore, the center of mass of the pro-
ing these algebraic descriptions. Kriegman and Ponce jection of a model volume will not be the projection
(1990) have taken this approach, using elimination of the center of mass of the 3-D point set. Second, the
methods to solve for object pose. While this approach center of mass of a surface that is curved in 3-D does
has provided significant insight into how the over- not project to the center of mass of its image, even
all problem may be solved, it has the disadvantage when there is no self-occlusion. This is because the ex-
of requiring a somewhat complex, iterative solution tent to which different portions of the 3-D surface are
method. Specifically, their method requires a good es- foreshortened will depend on the viewing direction. A
timate of pose to begin with, and then uses a variation final disadvantage of methods based on moments is that
of Newton'’s method to converge to the locally optimal they are sensitive to occlusion by other objects in the
pose. Forsyth (1996) has shown how to use an alge-scene.
braic description of an image contour to determine the  In summary, previous research has shown the diffi-
projective shape of the algebraic surface that produced culty of finding general representations to support ob-
it. This result is not practical, however, as it is ex- ject recognition. Representations capable of describ-
tremely sensitive to noise. In general, while algebraic ing very large classes of objects have proven difficult to
descriptions may be used to accurately represent a 3-Duse. Representations that facilitate tasks such as pose
model, it is extremely difficult to derive a correspond- determination are often restricted to particular classes
ing description of an image, since such descriptions of objects, such as polyhedral, planar or rotationally
may be very sensitive to noise. symmetric objects.
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1.2. Our Approach stress that this result is not specific to our algorithms. It

shows that for parts-based object recognition, the prob-
We address the problem of 3-D recognition from a 2-D lem of pose determination is provably more difficult
image in a parts-based framework. That is, like most when occlusions are of unknown location in an image
work on the recognition of general, curved 3-D ob- thanwhen their position is known. This tells us, for ex-
jects, we divide a 3-D object into its component parts, ample, that many locally optimal poses can exist. This
and expect that a bottom-up grouping systemwill iden- can present problems for gradient descent algorithms.
tify image regions that are candidate matches for these However, we then provide an approximate algorithm,
parts. We use a simple, direct representation of an which is computationally efficient, and show that in a
object’s parts as general volumes in 3-D, using 2-D number of cases this leads to accurate results. Finally,
areas to represent their image projection. This repre- we show how to handle degenerate solutions, which
sentation can be applied to any 3-D shape (we discusscan especially occur with this approximate solution.
restrictions concerning convexity later), and derived  Our choice of representation is also general in that
from a 2-D image without any need to fit algebraic it caninclude as a subset several commonly used local
constructs (e.g., conics, lines, corners) to parts locatedgeometric features, such as points, corners, line seg-
in an image, or to compute other intermediate prop- ments, or lines. Each of these features can be used
erties of parts such as their axes. Therefore, our first by our methods as a 3-D volume and a corresponding
two goals for a representation are satisfied very gener- 2-D region. Therefore, when local features are present
ally, with no assumptions except those imposed by a in an object, these can be integrated into a common
parts-based approach to recognition. algorithm with extended features.

The bulk of this paper will attack the third goal of a While we focus on the pose determination problem,
representation by showing how we can relate 3-D vo- we expectthese results tofitinto a complete recognition
lumes to 2-D regions for the important problem of pose system as follows. At compile time, we divide an ob-
determination. This extends our previous results, which ject up into component parts, preferably convex. Atrun
focused on planar objects (Basri and Jacobs, 1997). Attime, we use a grouping system to identify candidate
the same time, we use this general representation toimage groups. One might use intensity-based segmen-
show novel results about the fundamental complexity tation or a system that finds salient convex sets of edges
of pose determination for general 3-D objects. To do (Jacobs, 1996). We then consider matches between im-
this, we divide the possible types of occlusions that age groups and model parts, with a search that may be
may make pose determination difficult into three con- directed with the addition of cues such as color, as was
ditions. First, we consider self-occlusions. We provide done by Nayar and Bolle (1996). Pose is determined
a simple algorithm that uses linear programming to using our current work, and then a hypothetical projec-
find pose, given correspondences between 3-D volumestion of the model may be confirmed or rejected using
and 2-D regions. This is the same method that we ap- additional cues. The steps of this process are illustrated
plied to planar objects in (Basri and Jacobs, 1997), in numerous experiments described in Jacobs (1992).
although we provide some new results demonstrating That system robustly matched convex object parts, but
when this algorithm will produce correct results. Sec- used a feature-based indexing system not suitable for
ond, we consider occlusions whose position has beennon-polyhedral 3-D objects. In our current paper, all
identified in the image. That is, we assume that each of these steps are also implemented, except we do not
edge bounding an image region is labeled as either aexperiment with search to match object parts, focus-
region boundary, or an occlusion boundary. We show ing instead on determining the capability of our sys-
that a variation on our original algorithm can handle tem to produce accurate poses once the correct match
this case too. Third, we consider arbitrary occlusions is found.
of unknown location. That is, we assume that a 2-D  In Section 2 we describe algorithms for determining
region is a subset of the projection of the correspond- pose in the case of self-occlusion alone (Section 2.1),
ing 3-D volume, but that any of the boundaries of the occlusion of known locus (Section 2.2), and arbitrary
region may be due to occlusion. We show that the prob- occlusion (Section 2.3). Section 2.3 shows that arbi-
lem of pose determination in this case is fundamentally trary occlusion is difficult, and describes an approxi-
harder, by showing that this is a superset of a problem in mate algorithm. In Section 3 we describe how much in-
computational geometry that is known to be hard. We formation each algorithm needs to uniquely determine
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pose. Section 4 describes how to recover from degener-to optimize. In Section 3 we discuss the conditions un-
ate solutions, and Section 5 presents our experiments. der which these formulations will produce the correct
model pose.

2. Using Volumes and Regions to Determine Pose

2.1. The Forward Constraints: Self-occlusion
We assume that a hypothesized match exists between
a set of model volumes and image regions. Our goal is First, we show that our problem becomes convex if we
to use this match to determine the pose of the model. Mmerely require that every model point projects inside
We will assume these volumes and regions are con- the corresponding image region, by reviewing results
vex throughout most of this section, and discuss issuesthat we have shown in (Basri and Jacobs, 1997). For-

related to non-convexity at the end. mally, theforward constraintgre satisfied by the trans-
We assume that the model consists of a set of 3-D vo- formation, T, ifand only ifVp € Vi, Tp € R, (that s,
lumes denotedVy, ..., Vi C R3, where each volume TV C Ri). These constraints allow a volume to oc-

is an arbitrary subset g23. Similarly, we assume that ~ clude itself (i.e., two model points may project to the
the image consists of 2-D regions, which are each sub- same image point). They do not capture all possible
sets ofR2, and whichwe denote byR, . .., Rc C R2. constraint, however, since they do not require that each
Our solution methods will apply to the case where the image point be explained by a corresponding model
model and image sets are convex; if we wish to make PoInt.

use of non-convex volumes or regions we should first ~ We first consider a projection model consisting of a
take their convex hulls. This means that our meth- 3-D affine transformation followed by an orthographic
ods can naturally apply also when some or all of the Projection, then we consider perspective projection.
correspondences are between point features, or (possiDenote the linear part of by A, whereA is a non-

bly partially occluded) line segments, since these are singular 2x 3 matrix with elements;, and the trans-

CONVEX. lation part byt = (t, t,). Then:

Next, we suppose that the image was generated by
applying some transformatiof,, that maps points in U = t1aX +trpy + 1132 + t (1)
the 3-D model to points in the image. For the most v = to1X + tooy + traz 4ty

part we will assume that this is a 3-D to 2-D affine
transformation. We denote a point in model space by This projection model and its equivalent has been re-
P = (X,Y, 2) and in image space by = (u,v). If cently used by a number of researchers (Lamdan and
g = T(p) then we denote = T,(p) andv = T,(p). Wolfson, 1988; Ullman and Basri, 1991; Koenderink
Our goal is to identify the transformation that will best and van Doorn, 1991; Tomasi and Kanade, 1992;
explain the image regions as the product of their cor- Jacobs, 1997). Itis also equivalent to applying scaled
responding model regions. orthographic projection followed by a 2-D affine trans-
Aswe pointoutin (Basriand Jacobs, 1997), the prob- formation (Jacobs, 1997), that is, taking a picture of a
lem of finding a transformation that perfectly matches picture. Alternately, it is equivalent to a paraperspec-
a set of model volumes to their corresponding image tive projection followed by translation (Basri, 1996),
regions is a non-convex optimization problem. This where paraperspective is a first-order approximation
follows from the fact that the set of feasible trans- to perspective projection (Poelman and Kanade, 1997,
formations need not be convex, or even connected. Sugimoto, 1996).
Consider for example the case of a model square Toexpresstheforward constraints, we note that since
matched to an identical image square. Matching the Ris convex, there exists a set of lineg boundingR
model exactly to the image can be performed in four from all directions such that for every poitite R and

ways (separated from each other by a @6tation). for every linel € Lg we can write
Obviously, no intermediate transformation provides a
solution to this matching problem. While non-convex 1(G) > 0. 2

optimization problems are often attacked using tools

such as gradient descent, we instead take the approacltet the linel be expressed by the equatiohu+ Bv +
of showing that different problem formulations can C > 0, where(A, B) is the unit vector normal to the
make the matching process convex, and therefore easiettine. Then the constrainf V C R can be written as



follows. Every pointp € V should be mapped by
to some poinfj € R, and so

A(tyaX + troy + t13Z + ty)

+ B(t21X + tooy + to3z + ty) + c=>0. 3)

This constraint is linear in the transformation parame-
ters. Denote

W = (t11, tr2, ta3, b, to1, too, to, ty)
the vector of unknown transformation parameters, and
g" = (Ax, Ay, Az A, Bx, By, Bz B).
We can rewrite the forward constraints as
§g'w > —C.

(4)

We can similarly handle affine transformations fol-
lowed by perspective projection. In that case

_ fltuaX +ty + gz + 1)
ta1X + ta2y +tasz + t;

_ FtaX 4ty + gz +- ty)
t31X + 32y + 1332 + 1;

where f is the focal length. The forward constraint
Au+ Bv + C > 0 now contains the termgix + tsoy +
332+t in the denominator. This term must be positive
since we require the objectto appear in front of the cam-
era. So, we can multiply both sides of the inequality by
this term, again obtaining a linear constraint with the
same general form as Eq. (4), with different definitions
of w andg.

The set of forward constraints consists of all such
constraints obtained for each pairing of a bounding
line | € Lr and a model poinfg € V. This gives us
one constraint for every point in the model volumes
and for every line tangent to the image regions. For
curved objects, therefore, the number of constraints is
infinite, but we may sample them as accurately as we
desire. Theissue of sampling is addressed in (Basri and
Jacobs, 1995). For polyhedral volumes and polygonal
regions the number of independent constraints is finite,
and given by the product of the number of vertices of
the model volumes and the sides of the image regions.
The rest of the constraints are redundant.
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We therefore seek a set of transformation parameters
that satisfy a set of linear constraints of the form:

g'w>c, i=1....n (5)
This can be written in matrix notation as:
Gw >C. (6)

We may find a set of parameters that satisfy these lin-
ear constraints using linear programming. To do this,
we must also specify a linear objective function. A
common way of doing this is by introducing an addi-
tional unknown, in the following way.

()

A solution to Eq. (6) exists if and only if a solution to
Eqg. (7) withA > 0 exists. (Note that other objective
functions, e.g., the perceptron function, can be used for
recoveringw, see e.g., (Duda and Hart, 1973) for a dis-
cussion of solutions to the linear discriminant functions
problem.)

When i > 0 its value represents the minimal dis-
tance of a pointto any line bounding the region (Fig. 1).
Maximizing A amounts to attempting to contract the
model volume inside the image region as much as pos-
sible. When\ < 0 this attempt fails. In this case any
model point that violates the constraints is mapped to
a distance of no more than| from a line bounding its
target regions.

Enforcing the forward constraints is therefore very
similar to finding a transformation that minimizes
the directed Hausdorff distance, from the transfor-
med model volume to the image region. This can be

@

Figure 1L The dark circles are positioned by the similarity transfor-
mation that maximizes relative to the larger, shaded circles.

o
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defined as: regions may be caused by an occluding object in front
of the volume, rather than the boundary of the vol-
h(M, 1) = maxmin|m—i| ume itself, but that we have identified those portions of
meM el the region boundaries. This is a situation of consider-
Hausdorff matching has previous|y been effective|y able interest; for eXample, if we |dent|fy several differ-
used in computer vision by, for example, Huttenlocher €nt parts of an object we may be able to determine that
et al. (1993a, 1993b), and Rucklidge (1997). These some of these parts lie in front of and occlude others
papers primarily focus on the use of robust variants of (€-9., by identifying concave sections in the bound-
the undirected Hausdorff distance, which is defined as aries of a region corresponding to a convex volume).
max(h(M , | )’ h(| , M))1 for a"gning Objects undergo_ AISO, it is well-known in the psychology literature that
ing 2-D transformations. Amenta (1994) specifically the knowledge that certain boundaries are due to oc-
discusses the efficient Hausdorff matching of convex clusions can greatly assist human perception (Rock,
shapes undergoing translation and scaling. While re- 1983). Suppose we have identified a region in the im-
lated to these approaches, our work is different in that 2ge, but we know that some of the boundary of this
we demonstrate new, efficient algorithms that compute region is due to another, occluding object and is not
something similar to the directed Hausdorff distance. in fact the boundary of the region itself. By allowing
These a|gorithms Compute the pose of 3-D Objects in for the region to be extended in the direction of such
single 2-D images. occlusions, we can construct a larger convex region
More Speciﬁca”y, so|ving the system Eq (7) may which we know should contain the prOjeCtion of the
result in over-contraction. Consider, for example, the corresponding model volume.

case of matching a single volurveto a single region ~ This can be implemented with very little modifica-
R. The forward constraints restrict the set of possible tion to the above algorithm. Suppose we approximate
transformations to those that map every pgint V the border of a detected region with a set of line seg-

inside the regiorR. AssumeT is a feasible transfor- ~ ments, some of which we know come from the bound-
mation, thatisT V C R, then applying any contracting ~ ary of the region, and some of which come from an
factor 0 < s < 1 to V would also generate a valid occlusion. We apply the forward constraints, as de-
solution; namelyT (sV) € R. (We assume here with- scribed above, using only those line segments that
out the loss of generality that the origin of the model Originate due to the boundary of the object. Implicitly,
is set at the centroid 0f.) Consequently, the case this restricts the model volume to project within the
of matching one volume with one region necessar”y |argest pOSSible convex I’egion that is consistent with
introduces multiple solutions. The solution picked by the known region boundary.

Eq. (7) is the one witls = 0. This will contractV to

a point, which is then translated to the point inside
furthest from any of its bounding tangent lines. This
solution produces the largest valuejof Clearly, the
case of matching one volume to one region cannot be
solved by the forward constraints alone. However, we
will show that we can determine pose accurately when
we match a larger number of volumes and regions.

2.3. The Backward Constraints:
Unknown Occlusions

We can allow for arbitrary, unidentified occlusions in
the image with thébackward constraints The back-
ward constraints are the inverse of the forward. Instead
of requiring that each model volume project completely
inside each corresponding image region, the backward
2.2. The Forward Constraints constraints require that each image region lie com-
with Known Occlusion pletely inside the projection of each corresponding
model volume. That is, the backward constraints are
The forward constraints are suitable when there is only satisfied by the transformatiof,, if and only if for
self-occlusion; the backward constraints, as we will every pointg, in every image regiorg € TV, (thatis,
discuss, hold in the presence of arbitrary occlusion. R € T V).
We now consider one other possibility, that some model It is preferable to enforce the backward constraints,
volumes may be partially occluded in the image, but rather than the forward constraints, when recognizing
that the extent of this occlusion is known. That is, we objects in the presence of occlusion. Typically, when
assume that some portion of boundary of the image a model volume is occluded by a different object or a
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different model volume, a region detector will locate
image regions that are subsets of the true, unoccluded
regions. In this case, the true transformation may map
a model volume so that part of the volume accounts
for the visible portion of the region, and part of the
model volume is mapped outside this region. There-
fore, the backward constraints express precisely our
state of knowledge about the pose when we allow for
arbitrary occlusion of the image regions.

As we show in (Basri and Jacobs, 1997), in the case
of planar objects we may solve the backward con-
straints using linear programming. This is because the Figure 2 On the left, we show three model volumes projecting to
ransformaions thal we use to reate a planar model 155, 2ebRnS et SO 20 e et e
t[O a planar image (Slm”ar!tY' affine or pl’_OJe_Ctlve) are cagse, the problem of’solvir?g the ba(l:okward constra)i/nts is equivalent
invertible. Therefore, requiring that the viewing trans- 4 that of finding a line traversal of the model volumes.
formation maps the model volumes so that they com-
pletely enclose the corresponding image regions is
equivalent to requiring that the inverse transformation whether a line traversal exists for a set of 3-D volumes.
map the image regions completely inside the corre- Note thatthis reasoning applies equally to orthographic
sponding model regions. For planar models, the for- or perspective projection.
ward and backward constraints have an identical form,  Unfortunately, Amenta (personal communication)
with the role of the image and model reversed, and so has shown that finding a line traversalnaarbitrary
we may find poses that satisfy them using the same 3-D volumes is not an LP type problem, because it
method. can containO(n) solutions that are disconnected in

In the case of a 3-D model and a 2-D image, the 3-D the space of all possible lines. This implies that gra-
to 2-D viewing transformation is no longer invertible, dient descent methods of solving the backward con-
however. Itis therefore not obvious how one can apply straints may produce locally optimal solutions that are
the backward constraints in this case. not globally optimal. Moreover, existing algorithms

In fact, we can prove that it is not possible to directly for finding line traversals are not nearly as efficient
extend our planar results on the backward constraints as our linear programs, and do not appear to be ex-
to 3-D models. To do this, we now show that there is tendible to solving the backward constraints without
a close connection between the problem of solving the adding considerably greater complexity. For example,
backward constraints and the computational geometry Pellegrini (1990) gives an algorithm for finding a line
problem of finding dine traversal i.e., finding a line traversal of general polyhedra with edges that have only
thatintersects a set of 3-D solids. We will show that for aconstant number of different possible directions. This
one special case, finding a pose that satisfies the back-algorithm require (n? log(n)) time forn polyhedra.
ward constraints is equivalent to finding a line traversal It is not clear how to improve upon this result if the
of the model volumes. This will show that dealing with  polyhedra are restricted to be convex. Solving the for-
the backward constraints is at least as difficult as the ward constraints for such polyhedra would require only
problem of finding a line traversal of the volumes. O(n) expected time, because each polyhedron would

Suppose first that we have an arbitrary set of model produce a constant number of constraints, yielding a
volumes, but that every image region consists of only total of O(n) constraints, and because fixed dimen-
a single point, and that these points are identical, de- sion linear programs can be solved@n) expected
noted byq (see Fig. 2). The backward constraints are time (Seidel, 1990). And solving the full backward
satisfied by a transformation if and only if the 3-D line constraints will be much harder than solving the line
that projects tdj intersects every model volume. Such traversal problem, because the image regions will not,
a transformation exists if and only if there exists a sin- in general, all consist of a single point, and because a
gle line that intersects each of the model volumes. This full 3-D to 2-D projection must be considered.
shows that the problem of solving the backward con-  Our result is significant because it is not merely a
straints is at least as hard as the problem of determiningcomment on our algorithms; it reflects on the difficulty




130 Jacobs and Basri

of a basic problem in recognition. We have shown denote the corresponding set of lines, so thas nor-
that the general problem of determining 3-D model mal to the image plane and includgs Then{p;}, are
pose in a 2-D image, when one allows for arbitrary the projection of a set of model points; }, if and only
occlusions of unknown locus, is at least as hard as aif there exists a 3-D affine transformation so that each
difficult computational geometry problem. Moreover, line, n;, is transformed to includeg;. The backward
Amenta’s construction (personal communication) uses constraints, then, are satisfied by an affine transforma-
only volumes that are lines in 3-D. This implies that the tion that maps each normal line so that it intersects the
problem is difficult even when we restrict ourselves to corresponding model volume.
very simple shapes. We now show how to express the constraint that an
Our result is also somewhat surprising because theimage pointp; € R must be the projection of some
forward and backward constraints each encode somepoint in an axial rectanguloid/, as a linear constraint
of the constraints that together imply a perfect fit be- on the inverse of the 3-D affine transformation that
tween model and image. The backward constraints maps the model into the scene. WeTet' denote this
allow for partial occlusion of the model, while the for- inverse transformation, with components denoted by
ward constraints, in some sense allow for partial “oc- t~%. Suppos®/; has alower corner @k, yi, z) and an
clusion” of the image (some of the image region may upper corner ofxn, Vn, zn). Then the transformed line
go unexplained). Moreover, for the case of planar ob- intersects this rectanguloid if and only if there exists a
jects, these constraints are symmetric, and give rise topointonthe line whosg, y andz coordinates lie within
equally complex problems. It is therefore somewhat theseranges. Consider aline normaltazke0image
unexpected that they would give rise to problems of plane passing through the pofit, v). If we transform
such different complexity for the case of 3-D objects. this line byT 1, and parameterize it by, then a point
There is, however, a special case for which the line on this transformed line has the coordinates:
traversal problem can be solved efficiently. This is
when the set of 3-D volumes are all axial rectangu- p = (t7u+tp v+t + '
loids, (i.e., their sides are qligned With t_he y-, an_d tz_llu + t2‘21v + t;l + t2‘311, ts—alf)’
z-axes). Amenta (1992) gives an efficient algorithm
for this case, and subsequently (Megiddo, 1996) has for any choice ot. The backward constraim € T\
refined this result, showing that this problem can be is satisfied if and only if it is possible to satisfy the
solved by linear programming. We will now extend following inequalities:
this result to propose a useful approximation algorithm
forfinding object pose, in which we approximate model X
parts using their bounding axial rectanguloids.
Based on Megiddo’s method (1996), we can solve Y
the backward constraints using linear programming, 7 < t3‘31r < 7.
for the case where the model volumes are axial rect-
anguloids and the projection model is affine. (Notice Assume now that;;", ty3' > 0 (in practice we must
that since we are free to change the coordinate framerun four linear programs to account for the different
of the model, in fact we only require the models to possible signs df ;" andt,;"). Then we have:
be rectanguloids with parallel sides.) To do this, it is
helpful to think of affine projection in the following  x —t;'u—t;'v —t;* Xp — tfu —tn — tt

A

tu+ tp v+ttt T < Xy

IA

U+t + 4 gt < yh

way. First, the set of 3-D model points are extended in 1 =t= o1
any one direction to a set of parallel lines; then a 3-D N 13 N _ 13 _

- on i - : : Wi — bru 4ttt Yh — U — ttv — ;1
affine transformation is applied to this set of lines so ¥ ~ "1 22 Y 1< h— ' 22 y
that they are made normal to the image plane. Each tos - tos
3-D point projects to a 2-D point where its correspond- 2 ___
ing line intersects the image plane. Now we may think E =T= @

of the inverse of this transformation as applying a 3-D

affine transformation to the set of lines normal to the  These inequalities are satisfied if and only if every
image plane, that intersect each image point. Speci- quantity constrained to be less thans smaller than
fically, let {p;} denote a set of image points. Lt} every quantity constrained to be bigger thaiNamely,
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we can replace them with nine inequalities (three of  We are required to run four linear programs, which
which are trivial) that do not mentionat all. These in- each correspond to a different visual aspect of the rect-
equalities appear non-linear, but we can linearize them anguloids. It is not the case, however, that we can use

with a change of variables. Let: more complex shapes to approximate the volumes, run-
ning a different linear program for each aspect, since
ot oty 1 ot the reduction to linear programming depends on de-
S = o 12 = o 13 = o Wx = o coupling thex andy coordinates, not on treating each
. ) 1 t-1 aspect separately. This_ is _clear also from Amenta’s
S = 2711 Spp = 2T21 S3=—5. Wy = VT1 proof (personal communication) that the general prob-
b3 tr3 tr3 th3 lem is not an LP-type problem.
S33 = tél
33 2.4. Local Geometric Features

and we get six non-trivial constraints: ] ) )
We now point out that the solution methods described

above may be applied to local geometric features as
well, provided these can be described as convex sets.
S13X = S11l = S1av — Wx = S33Zn There are many existing methods for finding pose using
23y — 21U — Spov — wy < S13Xp — S11U — Spov — wy local geometric features. Our solution methods will be
Sl — Sl — oo — Wy < SaaZn suitable only when one w_ishes to _combine informaFion
from these features with information based on regions
S33Z) = $13Xh — S11U — S12v — Wy and volumes.
$33Z < Sp3Yh — Sp1l — Spov — wy. We consider in particular the use of points, corners,
and line segments. With the exception of corners, each
These inequalities are homogeneous, reflecting the of these can be thought of as a convex subse®df
fact that some components of the transformation are that projects to a convex subset®F. A corner can
redundant. We can get around this by sett’g}bz 1, be thought of as a point with associated vectors, to indi-
creating difficulties only in a degenerate case. We can cate the directions of the lines forming the corner. These
therefore express the backward constraints for rectan-vectors are also convex subsets of the space of vectors.
guloids with parallel sides as a set of linear inequalities,  To apply the forward constraints, one must describe
and solve them using linear programming, as we did the each model feature with one or more points, and each
forward constraints. For the case of hon-rectanguloid image feature as the intersection of a set of half-planes.
model volumes, we can approximate the backward con- Obviously, a model point is trivially described as a
straints by replacing each model volume with the axial point. An image point can be described as the intersec-
rectangloid that bounds it. tion of three half-planes intersecting at the point. A
With this approximation the backward constraints model line segment can be described by its endpoints,
require that the bounding rectanguloid of each model which formits convex hull. Animage line segment can
volume project into the image so that it completely be described by the intersection of four half-planes.
contains the corresponding image region. These pro- Two half-planes can be along the line segment, but in
vide correct constraints on the transformation, since if opposite directions, so that their intersection is the line
a volume projects into the image so that it contains a containing the line segment. Each end point of the line
corresponding region, so must its bounding rectangle. segment can be delimited by another half-plane. Either
The accuracy of the rectangular backward constraints or both of these can be omitted if it is known that one
will depend on the specific shape of the model vol- or both of the line segment’s end points is due to an oc-
umes. However, we note that without loss of generality clusion. The vector giving the orientation of a model
we may apply an arbitrary 3-D affine transformationto corner may also be described using any point along the
the set of model volumes before bounding them, to im- 3-D ray that describes the corner, which is constrained
prove our approximation. In Section 3 we will describe to lie along a ray in the image, given by the position
the consequences of this approximation in more detail, and direction of the corner. Given such descriptions
showing that in some cases of interest we can find the of local geometric features, the forward constraints are
correct model pose in spite of this approximation. then applied as described above.

S13X — S11U — S120 — wx < Sp3¥h — Sl — Sov — wy
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Similarly, we may apply the rectangular back- 3. Unigueness of Solutions

ward constraints after describing image features us-

ing points, and after placing axial rectanguloids about We have described two different types of constraints
model features. Note that a 3-D point feature can al- that we may use to efficiently determine model pose.
ways be exactly described by an axial rectanguloid. The forward constraints are correct when there is only
A 3-D line segment can be exactly described if it is self-occlusion, or occlusion whose location is known.

aligned with one of the axes. Otherwise it may be ap- The backward constraints are correct even in the pre-
proximated. The direction vector of a corner can be sence of unknown occlusion. However, these con-
exactly described in the model if it is aligned with an straints are not complete: the forward constraints do
axis, otherwise an approximation to it will be so large not express the constraints that each model volume
as to be of little value. should explain every point in each matching image re-
gion, while the backward constraints only bound the

true set of backward constraints, through the use of ax-
ial rectanguloids. We will now none-the-less show that,

although incomplete, these constraints are sufficient in

For the most part, the solution methods we describe any realistic situations to correctly determine model
can also be applied to non-convex shapes, if we first pose.

approximate them by taking their convex hull. We can e first consider the performance of the forward
apply the forward constraints by requiring that each cqnsiraints, in the presence of only self-occlusion. We
model volume project inside the convex hull of the  ghow that, in general, when we have matched three
correspondlng image region. To do this, itis sufficient ,, ¢our volumes, we may determine the correct model
to require every ve_rtex of the convex hull of the model pose with linear programming, while, in general, two
volume to project inside the half-plane corresponding matches are not sufficient to determine pose uniguely.
to every edge bounding the convex hull of the cor- Nextwe consider the performance of the backward con-
responding image region. The rectangular backward girajints when the model volumes are each planar (but
constraints can similarly be applied by approximating ot mutually coplanar). In this case, some subset of
each model volume using a rectangular box, and using he exact constraints will be present, and we show that
the vertices of the convex hull of the image region. iy many cases these can determine the correct solution.
However, a complication arises in applying the for- \ye 3150 point out that when we apply the rectangu-
ward constraints, with known occlusion. In that case, |5; pack constraints to curved 3-D volumes they can
we cannot bound the possible extent of a partially only produce an approximate solution, and not an ex-
occluded image region. If the model volume is non- 4ty correct one. Finally, we point out that the forward
convex, we cannot assume that by extending the corre- consiraints with known occlusions can also produce the
sponding image region convexly in the direction of an  ¢orect model pose. Throughout our discussion we will
occlusion that we WI|| cover all of the region that ha_ls mention situations in which degenerate solutions may
been occluded. Itis possible that the occluded portion pe found instead of the correct ones. By restricting the
of the region contains concavities, and extends outside | tion to represent a rigid transformation we can in

of the largest possible convex region containing the de- many cases use a degenerate solution to determine the
tected region. This is illustrated in Fig. 3. We will not  ~5rrect one. This will be shown in Section 4.
consider this problem further.

2.5. Non-convex Shapes

3.1. The Forward Constraints

In this section, we suppose thais a 3-D to 2-D affine
transformation that maps the model volumes to the cor-
responding image regions. This transformation maps
Figure 3 Suppose the cross-hatched, polygonal area is an image curves on the 3-D volumes to the bounding curves of
region known to be occluded by the dark rectangle (left). Whenthe the 2-D regions. These 3-D curves are calleddbwe-
corresponding model volume is convex, we may apply the forward tour generatorsOur proofs assume the contour genera-
constraints, using the largest possible convex region consistent witht | d1-D hichii icallv t f
this occlusion (middle). However, this may be incorrect if the oc- orsare closed 1- C_urves’ whichis Qen_e“ca ytruefor
cluded region is not convex (right), and we wish to use the convex CONVEX volumes. With some compllcat|on,- the proofs
hull of the region for the forward constraints. may be extended to handle the non-generic case.
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We then ask under what circumstancgsis the backward constraints bound each model volume with
unique transformation that satisfies the forward con- an axial rectanguloid, and then require a valid transfor-
straints. WhenT is unigue, this means that using a mation to map this rectanguloid into the image so that
linear program to find a transformation satisfying the it completely contains the corresponding image region.
forward constraints must in fact produ€ethe correct Let C; denote the axial rectanguloid that bounds the
solution. We had previously (Basri and Jacobs, 1997) volumeV,. Note that the contour generator fOr will
reported preliminary results on this problem for the consist of six line segments, or four line segments for
special case of planar model volumes that are not mu- those special viewpoints in which only one face of the
tually coplanar. We now extend those results to the caserectanguloid is visible. This means that the projection
of fully three-dimensional model volumes. of C; will be a six (or four) sided convex polygon.

The rectangular backward constraints require Byat
Theorem 1. Suppose the transformation T mapsthe TC. SinceV, C C;, the correct transformation will

four model volumesVy, V1, V,, V3 to the four im- satisfy these constraints.
age regions Ry, Ry, Ry, R3, and there does not exist In general, TV, may lie completely insidd G;. In
a plane that intersects all four volumes. Théhn is fact, T Vi andT G will touch only in the case whe¢
the only transformation that satisfies the forward con- touches one of the line segments that form the bound-
straints. ary of C; (or for special viewpoints in which a side of
Ci projects to a line segment in the image). For a gen-
This is proven in Appendix A. eral smooth 3-D volume, no bounding rectanguloid (or

polygon of any sort) will touch the volume in one of its

Theorem 2. T is not the only transformation sat- edges, since this would require a discontinuity in the
isfying the forward constraints if and only, ifor the volume. On the other hand, a convex planar volume
contour generators T producethere exists a plane can always be oriented so that a bounding rectangu-
P, such that for all contour generatorseither P con- loid is also planar, and touches it in at least four points.
tains the contour generatpor P intersects it in two Therefore, cases of interest exist in which eith&f is
points such that the orthographic projection onto P always completely insid& C; or in whichTV, N T G

of the tangents to the contour generators at the in- contains at least four points.

tersection points are all parallel. This implies that for Suppose firsttha® = TV, lies entirely insidel G,

three model volumes viewed in general positidwill for all volumesV;. In this case, it is obvious that any
be the unique transformation that satisfies the forward small perturbation to the transformati®rwill not vio-
constraints. late the rectangular backward constraints. Therefore,
in such a situation the backward constraints will not
This is proven in Appendix A. uniquely determine the correct pose, although they may

We now consider the case in which onIy two model still produce a good approximation to this pose.
volumes are matched to two image regions. We do not  This is not surprising; after all the rectangular back-
provide necessary and sufficient conditions for these ward constraints involve an approximation, and so one
to determine a unique transformation. However, we expects them to produce poses with some error. Sur-
do note that any two model volumes may be viewed so prisingly, though, we can also show that for an inter-
that their corresponding image regions intersect. When esting class of volumes the rectangular backward con-
this occurs, the forward constraints will be satisfied by straints will produce exactly the correct answer. Sup-
any transformation that shrinks the model volumes to pose that the volumes are all planar, and that they each
a very small size, and projects them inside this region lie in either of two different planes. This is a common
of intersection. Therefore, any two model volumes will - occurrence if the volumes are either surface markings
lead to a non-unique solution when viewed from a sig- on two different faces of a polyhedron, or on the walls

nificant range of viewpoints. or ceiling of a room. We show that such volumes can
lead to a unique solution to the backward constraints.
3.2. The Rectangular Backward Constraints In particular, we show that when two or more model

volumes are planar, and lie in the same plane, there
We now address the problem of determining when can be a unique transformation of that plane that
the rectangular backward constraints are sufficient to satisfies the rectangular backward constraints. If in ad-
correctly determine the pose of amodel. Recall thatthe dition there is another planar model volume, lying in
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a different plane, there can generically be a unique solution. The most common cause of this occurs when
solution to the rectangular backward constraints. A the model itself is in a sense degenerate, and so a
precise statement and proof of this can be found in 3-D affine transformation that satisfies analogs to the
Appendix B. In brief, when planar volumes lie in two  forward and backward constraints may be found. How-
different planes we can, without loss of generality, as- ever, we will show that in this case we can often recon-
sume that these planes are axial. In this case, axialstruct the correct transformation, undoing the effects
rectangles touch the boundary of the model volumes at of this degeneracy.

points that always project to the boundary of image re-  Suppose there exists a 3-D to 3-D affine transfor-
gions. Therefore, the rectangular backward constraints mation, A # |, such thatA\f C V; for alli. In this
include some tight constraints that can allow only a case, the forward constraints can almost never lead to
unique transformation to be valid. a unique solution. If the correct transformationTis
then the transformation Awill clearly also satisfy the
forward constraints. Moreovel, A # T except for
special cases when projection completely removes the
effects of A.

If the model contains three distinct volumes, any
such transformation must contain three fixed points. If
the volumes are not traversed by a single liAenust
consist of a fixed plane, with a contraction in some

3.3. The Forward Constraints,
with Known Occlusion

We now point out that our discussion of the back-
ward constraints also provides an example of a situ-
ation in which the forward constraints, with known
occlusion, can lead to a unique transformation. When =~~~
we use the forward constraints with known occlu- d|re_ct|9n toward that plane. .

sions we are making use of a subset of the constraints. Similarly, a degeneracy will aImo_st always occur
that would be available in the absence of occlusion. M the rectangular backward constraints when there is

As we have described, the rectangular backward con- an .affme transformatior such th.atV‘ s AC‘ This
straints can include a small subset of the complete back- typically oceurs when.a plane exists thgt Intersects the
ward constraints. For planar volumes, those points that G reltlzt?ngijlomlls (t)f:] mde;athat c?)n kiﬁ d|v]|c?ed |tnt0 two
are extremal in the axial directions lead to tight con- paraflel Sets. In this casa can be the affine trans-
straints on the model pose. Suppose now that the sal,neformatlon that leaves this plane fixed, and expands the

extremal points that we make use of in Section 3.2 are model in the direction shared by the rectanguloid sides

visible in the image. In this case, exactly the same rea- mtersecteq by the plapg. For example, suppose all the
soning applies to show that a unique transformation rectanguloids have minimum coordinates less than
will satisfy the forward constraints. Consequently, if Zero, and maximunx coordmz_ate_s greater than ZET0.
any but these extremal points are occluded, we may In th'$ case, thex = 0 plane will mtersec.t each; n
still apply the forward constraints to find the correct two sides parallel to thg = 0 plane and in two sides
transformation. This provides an example that shows parallelto thez = 0 pla'ne.' Inth|§ case, wemay gxpand
that even with a large amount of occlusion, the forward f[he mode_:l rectanguloids in thedirection (which is the
constraints can produce the correcttransformation, pro- intersection of they = 0 plan_e and th_e = O plane) S0
vided that this occlusion is identified. as to leave the = 0 plane fixed. This transformation

In general the forward constraints with known oc- has the form:
clusions will be much more effective in determining a 14¢ 0 O
unique solution than will the rectangular backward con- AR — 0 1 0ls
straints, since every unoccluded point on the boundary P= P
of the image regions will provide a tight constraint on 0 01
the transformation. Itis, however, beyond the scope of
this paper to fully characterize when these constraints
lead to a correct solution.

for anye > 0. In this exampleV, € C; € AC. In
such a situation, whenevar satisfies the rectangular
backward constraints, so will A.

However, since the model is accessible to us in
4. Recovering from Degeneracies advance, we may detect when such degeneracies

occur, and undo their effect. To determine the possibi-

We now consider how we may handle certain situa- lity of such a degeneracy, we may apply the forward
tions in which the model volumes lead to a non-unique or backward constraints for the case of 3-D affine



transformations. For the forward constraints we com-
pare the model to itself. For the backward constraints
we compare the model volumes to their bounding rect-
anguloids. Since 3-D affine transformations are linear,
these constraints can be solved for using linear pro-
gramming, and will reveal the presence of atransforma-
tion such asA. However, in the experiments described
below, we have simply detected this possibility by
hand.

If a model can be contracted or expanded perpen-
dicularly in a single direction, we first preprocess the
model so that this direction is aligned with one of the
axes. Without loss of generality, assume this is the
x-axis. Let the contraction/expansion transformation
applied to the model be given by

Notice that we must allow for an unknown transla-
tion of a, in the x direction, as a part of the con-

tracting/expanding transformation. This is because, 5

although we assume that contraction or expansion is in
the x direction, and that there is a fixed plane perpen-
dicular to the direction, we do not assume that this is the
x = 0 plane. In some cases there will not be a unique
plane that might be the fixed plane, there might be a
family of parallel planes any one of which might have

been fixed in the contraction/expansion of the model.
Now, suppose the image is obtained by applying a
rigid transformation to the model followed by a scaled

orthographic projection. The imaging process can be

written as
>|5/ + ( )

where the entries; are the first two rows of a scaled
rotation matrix. Our solution methods, then, will pro-
duce a transformatiof that is a composition of the

two transformations, as follows:
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Given the transformatior,, we wish to recover the
matrix Sthatindicates the true scaled orthographic pro-
jection of the model. This is easily done, since

S =1
S3 = lo3.

S1p =112
S13 = 113

We may then readily determine the valuesspf, ;1
which will satisfy the rigidity constraints of the matrix,
so that:

S11521 + S12522 + S1353 = 0
2 2 2 2 2 2
St St S3=%+S+S3
Thus we can recover the scaled rotation matrix and also
they translation that produced the image regions. We
cannot directly recover the translatien. However,
once we have determined the rest of the transforma-
tion, it is easy to determine the appropriate translation.

For example, we could run linear programming again,
allowing for only anx translation.

Experiments

We now present some experiments that demonstrate
the feasibility of our approach to recognition. These
experiments will provide useful information about the
accuracy of the poses that we can recover using both
the forward and the rectangular backward constraints.

In these experiments a model was first constructed
by hand, using images of the object and knowledge of
its structure. Then, the Canny edge detector (Canny,
1986) was run on a new image of the object. We auto-
matically extracted sets of edges that formed salient
convex groups, using the grouping system described
in (Jacobs, 1996). The localization of groups in the
image will therefore contain errors due to running areal
edge detector and grouping system on real images. A
subset of these groups were then extracted and matched
by hand to groups in the model. See Nayar and Bolle
(1996) for one suggestion about how to use intensity
information to match such regions automatically. Our
system then used these matches to determine the model
poses shown here.

In the first set of experiments we use a black box
with different shaped regions painted on the side. Al-
though this object is somewhat artificial, it allows us
to experiment with a variety of different conditions. In
Figs. 4-10 we show the poses derived by the forward
and backward constraints using different combinations
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Figure 4 This shows poses derived using the forward and backward constraints. The image is shown, with the regions used to derive the
pose marked with a white hatching. Superimposed over the image are the white outlines of all model groups, to indicate the pose that has been
derived using the forward constraints (left) and backward constraints (right). This figure shows the poses derived using five regions.

Figure 5 Another example using five regions. The pose derived using the forward constraints is on the left, and the pose from the backward
constraints is on the right.

Figure 6 An example using four regions. Note that one of the regions is partially occluded, leading to a poor solution with the forward
constraints (left).

Figure 7. An example using three regions. The backward constraints (right), which are approximate, lead to a much noisier solution than the
forward (left).
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Figure 8 An example using three regions, one of them occluded. This leads to a poor solution for the forward constraints (left), which do not
allow for occlusion. The backward constraints (right), produce a much more accurate pose. Note that in spite of the occlusion, the backward
constraints produce a more accurate solution than they did in Fig. 7 because a more stable triple of image regions are matched.

% @

Figure 9 An example using three regions, with two of them occluded. This leads to a very poor solution for the forward constraints (left),

while the solution for the backward constraints also degrades. Occlusion may cause the correct solution to become non-unique, and indeed we
can see that the pose found satisfies the backward constraints very well.

Figure 10 This example shows poses derived from two regions. We can see that these are not sufficient to determine the correct pose.

of regions. This shows that both sets of constraints orthographic projection from a degenerate transforma-
are able to produce accurate model poses when at leastion. The model regions used in these examples are
three region correspondences are used. It also illus-coplanar, and thus lead to a degeneracy. Note, how-
trates how the poses degrade as we use fewer regionsever, that degeneracies can occur even when 3-D model
and as the amount of occlusionincreases. Of course thevolumes are used.
forward constraints are especially vulnerable touniden- ~ Figure 14 shows the forward and backward con-
tified occlusions. straints being used to recognize two other objects.
In Figs. 11-13 we demonstrate the method dis- These experiments show that even with noise due to
cussed in Section 4 for determining the correct scaled the edge detection and grouping process, we can use
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— N
Figure 11 Here we show a set of regions that produce a degenerate solution. The forward constraints are applied. However, since the model
regions matched are really coplanar, a solution is found that contracts the 3-D model into a single plane (left). Since this potential degeneracy can

be detected ahead of time, we may postprocess the pose to “uncontract” it, producing a scaled orthographic transformation (right) that matches
the model and image better.

Figure 13  Similar results for a different object. The pose of the soda can found by the forward constraints (left) is significantly contracted.
After “uncontracting” the pose (right) into a scaled orthographic projection, we obtain a better fit.

region matches to accurately determine pose without perfectly in the images. Being synthetic, this object
explicit correspondences between local features suchis simple to model accurately. But moreover, since
as points or line segments. the only source of error is digitization in the projec-
Finally, Figs. 15-18 show the results of our algori- tion, any inaccuracies that we find are due to limita-
thms for a synthetic model composed of 3-D volumes. tions of the methods proposed. Figure 16 shows that the
The object is composed of seven volumes: the four backward constraints can produce very accurate poses,
legs, the body, the neck and the head. That is, eachin spite of the approximations made by taking bound-
volume is a part; the faces of volumes are not used ing rectanguloids. Note that none of the model parts
as separate parts. We segment and match these partare at all rectangular; the legs and neck, for example are
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Figure 14 These figures show the performance of the system on more realistic objects. On the left, the system uses the forward constraints to
accurately determine the pose of the soda can. Four regions are used in this case. The regions are surface markings on the cylinder of the can,
and a circular region from the top of the can. On the right, the backward constraints are used to locate the pen box. Note that the soda can is

occluding some of the regions used.

Figure 15 A simple synthetic animal, seen from along thexis (left) y-axis (center) and-axis (right). Bounding boxes for the rectangular
backward constraints were built with the model in this reference frame.

Figure 16 These figures show the rectangular backward constraints applied to a synthetic, 3-D object. We show the image used with some of
the boundary of the volumes of the projected model superimposed in white. On the left, the pose found using all seven model volumes. In the
center, we use four volumes: the head, the two left legs, and the front right leg. In both cases, we find accurate poses. On the right, we use only

the head and the two left legs, and a poorer pose is found.

Figure 17. The results using the forward constraints using the same image and volume/region matches as in the previous figure. Since there is
little occlusion of objects parts by other parts, the forward constraints produce accurate poses. When only three volumes (right) are used, they
continue to produce an accurate pose. Note that the backward constaints lead to a much less accurate pose in this case, as shown in the previous

figure.
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Figure 18 Here we show a view of the object in which the leg volumes are significantly occluded by the body. We match all seven volumes
to regions. The rectangular backward constraints (left) produce a fairly accurate pose. The forward constraints (right), which do not allow for
such occlusion, produce a much noisier pose.

nine and seven sided polygons, respectively. Figure 17 but to any parts-based recognition system which de-
shows that the forward constraints do indeed produce termines pose while allowing for arbitrary image oc-
accurate results when only three volumes are matched.clusions of unknown locus. However, we have also
Finally, Fig. 18 shows the performance of the methods devised a novel algorithm, based on work in compu-
when some model volumes are partially occluded, in tational geometry, that finds solutions that satisfy an
this case by other parts of the object. approximation to the backward constraints, using lin-
ear programming. And we show that in some cases of
interest, this approximate solution leads to our finding
6. Conclusion exactly the correct model pose. These results demon-
strate that we can recognize 3-D objects using a very
Recognition of 3-D objects in 2-D images has been simple, and novel representation of their structure.
hampered by the difficulty of finding representations
that can faithfully model complex 3-D objects and still
be used to determine pose based on their 2-D imagesAppendix A: Uniqueness of Forward Constraints
In this work we make use of a simple representation,
which divides objects into parts and then represents In this section, we prove Theorems 1 and 2. We first
each partas a volume of points. This representation canProve the following useful lemma
clearly be applied to a large class of objects. Our con-
tribution is to show that it can also be used to accurately Lemma 1. Suppose that Tis a transformation that
determine the pose of these objects. We show that evenalso satisfies the forward constraints. Then for each
without specific correspondences between local geo- model volume Mand image region R there exists a
metric features, we may use region matches to de- point f € Vi suchthat T, = T'[j;.
termine the correct model pose. At the same time
our method allows us to incorporate correspondencesProof: Throughout this section, we will assume that
between points, lines or line segments, should they be the contour generatoof V; is a 1-D curve orV; that
available. projects to the 1-D boundary & . This will be true
Specifically, we present new results that show that for smooth, generic, convex volumes in general posi-
the forward constraints, which allow for self-occlusion, tion. Our reasoning can be readily extended to other
may correctly determine the pose of a 3-D object, typi- cases, however we will not consider those in this paper
cally when a correspondence has been found betweento simplify our arguments. Clearly we can construct
three 3-D parts of the object and three matching 2-D a 2-D surface, call ifS, such thatS is bounded by
image regions. We have also shown that it is a more the contour generator, such tt&tC V; and such that
difficult problem to find poses that satisfy the back- TS = R,. Therefore,T will define a continuous one-
ward constraints, which allow for unidentified occlu- to-one mapping betweeéh andR;. So even though
sions. This problem can have multiple disconnected is not in general invertible, we may invéftwhen we
solutions. These results apply not just to our algorithm restrict its domain t&. Let T denote the restriction of



T to this domain, and If ~* denote its inverse, a map-
ping from R to §. Becausel’ satisfies the forward
constraints,T’S < R;. ThereforeT’T ! defines a
continuous mapping from® into R,. Brouwer’s fixed
point theorem, a basic result in functional analy-
sis (see, for example, Conway (1990)), tells us that
since R is convex, and hence topologically equiv-
alent to a disc, such a mapping must have a fixed
point. That is, there exists some paijie R such that

G = T'T~1G. Therefore,T(T~1G) = T/ (T1G),
proving the lemma.

Using this lemma, we may now show the following:

Theorem 1. Suppose the transformation T maps the
four modelvolumes/y, V1, V2, Vatothe fourimagere-
gions, R, R, Ry, R, and there does not exist a plane
that intersects all four volumes. Thef is the only
transformation that satisfies the forward constraints.

Proof: Let T’ map the four model volumes
Vo, ..., V3 to inside the corresponding image regions
Ro,..., Rs. By Lemma 1 for every volumeéy,

0, ..., 3 there exists a poinf; € V; such that
T(B) = T(P). Since there exists no plane that
intersects all four volumes the poinfs, ..., pz are
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also satisfies the forward constraints. Then there ex-
ist three non-collinear model point§y, Py, P such
thatTf)o = T/f)o, Tﬁl = T/rjl, ande)z = T/r._jz.
Lemma 2 tells us that we may assume, without loss
of generality, that these three points are in the 0
plane and fixed under the transformatibnand there-
fore also undef’. This means that the entie= 0
plane is fixed under these two transformations. Fur-
ther, without loss of generality, we may assume that
T(0,0,1) = (0, 0). Therefore, we may write:

1 0 O
T =
(0 1 0)
and
1 0 k
T = 1),
<0 1 k2>

where eitheky, k, or both are non-zero.

By choosing this affine reference frame, we have
constructed things so that each contour generator,
projects orthographically to form the boundary of the
corresponding region. Lep be an arbitrary point
on Vp's contour generator, with coordinates, vy, z).
ThenT p = (X, y),andT’p = (X, ) + z(ky, k). This
tells us thafT’ maps the contour generator so that it is

not coplanar. Consequently, since correspondences ofdisplaced from the region boundary in either the direc-

four non-coplanar points determine a 3-D to 2-D affine
transformation uniquely theh = T'. O

We now show that typically, only three matches are
required to uniquely determine the pose. In (Basri and
Jacobs, 1995) we have proven the following lemma:

Lemma 2. T is uniquely determined for the set of
volumes Vif and only if it is uniquely determined for
the set of volumes QVwhere Q is any3-D affine
transformation.

This tells us that we may, without loss of generality,
place the model volumes in any affine reference frame.
This can significantly simplify our reasoning, since it
allows us to assume without loss of generality that
is the identity transformation, plus orthographic pro-

tion (ky, ko) or —(kq, ko), depending on whether the
point is above or below the image plane.

We may use this fact to place constraints on the di-
rection of the contour generator’s tangent. If one of
the contour generators is either entirely above, or en-
tirely below the image plane, then cleafly will map
some of these points outside the corresponding region,
violating our assumptions.

Next, suppose that the image plane intersects the
contour generator in at least two discrete points, but
not in an entire subcurve of the contour generator. Let
R N's be the pointsp!, p2. Let the tangent tdR,
at p! bew = (wy, wy,0). Let the tangent tcs
at the pointp’ have the directiorv. Then the direc-
tions of w, Tv and T's must all be the same. That
is true because if a point in the model projects to the
boundary of the image region, and the tangents of the

jection. We now suppose that we have matched three region point and the projected model point differ, then
model volumes to three image regions, and that the the projected model volume will not be contained in

image regions are not all intersected by a single line.

Further, we suppose that the image regions were pro-

duced by applying the transformation, to the model
volumes, and that a different transformatidn,# T,

the image region. So, sinag = Tv, we must have
U = (wy, wy, vz) for somev,. The pointstiJ are also
fixed underT’, since they lie in the = 0 plane which
is fixed underT’. Therefore, the tangent ©'V; at ﬁiJ
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is (wx + kyvz, wy +kovy). Again, the condition that
T'V; € R implies thatT’v must have the same direc-
tion asw. Since eithek; # 0 ork; # 0 it follows that
the directions ofwy, wy) and(ky, ko) must be parallel.
Therefore, the tangents to each regiyrat a pointf)iJ
must all be parallel tagk, k), and so they must all be
parallel to each other.

If the image plane intersects the contour generator
in an entire curve, we may apply the same reason-
ing to the two end points of the curve. In the special

to achieve this before approximating them with rect-
angles. The volumes will then be approximated by
2-D rectangles in this plane, which we c&} and

C,. Each side of each rectangle will touch the cor-
responding volume in at least one point. These will
be the points with the highest and lowest values in
their x andy coordinates. We will call these points
Xo1, Xons Yo, Yo, Xv1, X1n, Y11, Yon, Where, for ex-
ample Xo  is the point inVy with the highesk coordi-
nate (see Fig. 19). Note that if there is a line segment

case that the entire contour generator lies in the image on the boundary of one of the volumes with constant

plane, then that volume will not constralin andks,
for T’ close toT.
This has shown:

Theorem 2. T is not the only transformation satisfy-
ing the forward constraints if and only, ifor the con-
tour generators T produceshere exists a planeP,
such thatfor all contour generatorseither P contains
the contour generatoror P intersects it in two points
such that the orthographic projection onto P of the
tangents to the contour generators at the intersection
points are all parallel.

Simple variable counting now tells us that for gen-
eral shapes, in general position, this will not be pos-
sible. Given a set of model volumes and a particular
viewpoint, the contour generators will be fixed. First,
for general objects the contour generator will not be
planar. Next, we have three degrees of freedom in
choosing a plane to intersect the contour generators.
Each plane will determine the direction of six tangent
vectors projected into that plane. For all these tangents
to be parallel provides five degrees of constraint; how-
ever we have only three degrees of freedom available to
satisfy these constraints. Therefore, in general, given
a set of model volumes and a view of them, there will
be a unique transformation that satisfies the forward
constraints, provided that the image regions cannot be
intersected by a single line.

Appendix B: Uniqueness of Backward Constraints

x or y values we can pick any of these points, or we
can easily extend the reasoning given below to include
this case. Also, one point may be extremal in both
the x andy direction; this does not effect the argu-

ment given below. At these eight points, the backward
constraints will require that the corresponding region
point found in the image will lie on the appropriate

side of the projection of a horizontal or vertical line

passing through that point in the model. Therefore, we
will have eight constraints that are not approximate, but
that are subsets of the constraints we would have if we

Figure 19 Two coplanar volumesVy and Vi bounded with

We begin our analysis by supposing that at least two flat rectanguloidsRy and Ry. The pointsXo,. Xo.n. Yo Yo.n. Xv1.

of the model volumesyy, V; are planar and lie in the
same plane. Without loss of generality, we assume that
this is thez = 0 plane. Note that we are free to prepro-
cess the model volumes with an affine transformation

X1.h, Y11, Ya.n are the contact points of the volumes and the rectan-
guloids. In the case on the top, the two pairs of points 1, and
Yo.n, Y1.n are linearly separable, as is indicated by the dashed line.
On the bottom, the volumes lead to a unique solution inzthe O
plane.



could apply the backward constraints exactly. A trans-
formation infinitesimally different from the correct one
will not violate any of the other rectangular backward
constraints, but it may violate these ones.

Now we consider when these eight constraints will
suffice to uniquely determine that portion of the pro-
jection that effects the = 0 plane. From Lemma 2 we
may assume, without loss of generality, tiateaves
the z = 0 plane fixedt we must then determine the

circumstance under which there exists a different trans-

formation,T’, which has a different effect on thze= 0

plane while respecting the rectangular backward con-

straints. It will be convenient to focus on the inverse
of T’ when we restrict its effect to the = O plane.
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satisfy the backward constraints is if we can draw a
line that separates the pointg,, X, from the points
Xo.n» X1.h- In that case any such separating line can be
the fixed line, and’~* can map all points towards that
line, in the x direction. It may or may not be pos-
sible to find such a separating line, depending on the
configuration of the model.

Exactly the same reasoning holds for the points
Yo, Yo, VoI, Yih- Therefore, there exist models for
which the rectangular backward constraints uniquely
determine the transformation of tkze= 0 plane, as
illustrated in Fig. 19. While it is somewhat difficult to
find such a configuration in two model volumes, simi-
lar reasoning holds when more than two volumes are

We ask when there is an inverse transformation that coplanar, except that now a larger set of points must
can map each image point to the appropriate side of be linearly separable for a transformation that satisfies
the bounding model rectangle. We denote this inverse the backward constraints to be non-unique.

transformationT’~1, with components’~! given the
appropriate subscript.

Note that thex coordinates of points in the = 0
plane are effected only y;*, t;>* andt, %, while the
y coordinates are changed §y", t;;* andt;*. Since
the Xo.n, Xo, X1.n, X1 points are constrained only in
the x direction, and the corresponding points are
constrained only in the direction, we may consider

these two sets of points separately. A non-unique so-

lution exists if and only if either there exist values of
t;7%, t>  andt,~* that map the point& n, Xo,, X1.h, X1
within the minimum and maximum values of their
bounding rectanguloids, or if there similarly exist val-
ues ofty;*, t7,* andt; that map they points in the
appropriatey directions.

The transformatio '~ will change thex coordi-
nate of the pointx, y) by the amount:

TNy, 0) = x = (7" = )x + iy + 7

Therefore, the line
=1
(tll

will have itsx coordinates fixed (note that in the case of
pure translation we may think of the equatign' = 0

as describing a vertical line at= co). On one side of
this line, the value oft;;* — 1)x +t;5'y 4+t is pos-
itive, on the opposite side this value is negative. This
means that either all points will shift theircoordinate
towards this fixed line, or all points will shift away from
it. Therefore, the only way such a transformation can

—)x+tply+t =0

Suppose now that the model contains a set of vol-
umes for which the backward constraints uniquely de-
termine the transformation of tte= 0 plane. This
tells us that any transformatiof; £ T satisfying the
backward constraints must have the form:

1 0
T/F—j=< }3)5’
0 1 t)

with eithert;; # 0 ortjy; # 0. We now ask when
an additional planar model volume, not in the= 0
plane, will suffice to completely determine the model-
to-image transformation. Without loss of generality we
may assume that this volume lies in the plane, so
that it is bounded by a rectangle in this plane, and has
four extremal points in thg andz directions. Further-
more, we may assume that the transformafiohas

the form:
T*—(l 0 1>q
P=1o0 1 o/”

That is,T is the identity transformation when applied
to thex-y plane, while it maps thg-z plane to thex-y
image plane by mappin@, y, z) to (z, y). Therefore,
T acts also like an identity transformation on the
plane, while converting itinto the-y plane. Now con-

sider the effect thal’ has as it maps thg-z plane into
thex-y plane. It leaves the = 0 line fixed, soT’ can

consist only of a contraction of thgz plane towards

this line, along with an interchange of coordinates. If

both extremal points of the model volume in thdi-
rection are on the same side of the line= 0, then
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any contraction or expansion towards or away from
that line will violate one of the constraints imposed
by the bounding rectanguloid. That is, once the back-
ward constraints imply a unique solution within one
plane, they fail to produce a unique solution only when
this plane intersects the remaining volumes. This will

Basri, R. and Jacobs, D.W. 1995. Recognition using region corres-
pondences. Technical Report CS95-33, The Weizmann Institute
of Science.

Basri, R. and Jacobs, D. 1996. Matching convex polygons and poly-
hedra, allowing for occlusiorfzirst ACM Workshop on Applied
Computational Geometrypp. 57-66.

Basri, R. and Jacobs, D. 1997. Recognition using region correspon-

never happen if the volumes are surface markings on denceslnternational Journal of Computer Visio@5(2):145-166.

a convex polyhedra, as for example, when they lie on
the walls or ceiling of a room.

We have now shown that, though approximate, the
rectangular backward constraints may still uniquely de-
termine the correct model to image transformation in
situations of real interest. Atthe same time, unlike our
previous 2-D formulation of the backward constraints,
we can now integrate information from planar volumes
that are not coplanar, or from non-planar volumes.
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