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Abstract

Face recognition is a challenging problem, complicated
by variations in pose, expression, lighting, and the pas-
sage of time. Significant work has been done to solve each
of these problems separately. We consider the problems
of lighting and expression variation together, proposing a
method that accounts for both variabilities within a single
model. We present a novel deformation and lighting insen-
sitive metric to compare images, and we present a novel
framework to optimize over this metric to calculate dense
correspondences between images. Typical correspondence
cost patterns are learned between face image pairs and a
Naı̈ve Bayes classifier is applied to improve recognition ac-
curacy. Very promising results are presented on the AR Face
Database, and we note that our method can be extended to
a broad set of applications.

1. Introduction
We aim to solve the problems of expression and light-

ing variation in face recognition within a single framework.
We construct a deformation and lighting insensitive metric
that assigns a cost to a pair of images based on their simi-
larity. In order to model variations in expression, establish-
ing point correspondences between faces is essential. Our
method determines a dense correspondence flow field be-
tween pairs of faces, assigning a cost to each pixel pairing
based on a novel image metric.

There are two main contributions in this work: 1) we
present a new lighting-insensitive metric based on the effect
of lighting in 3D scenes, and 2) we present a new framework
for optimizing flow fields making use of the Sobolev gradi-
ent and a global kernel, leading to increased stability against

This research was funded by the Office of the Director of National
Intelligence( ODNI), Intelligence Advanced Research Projects Activity
(IARPA), through the Army Research Laboratory (ARL). All statements
of fact, opinion or conclusions contained herein are those of the authors
and should not be construed as representing the official views or policies
of IARPA, the ODNI, or the U.S. Government.

deformation. The algorithm presented here is able to find
reliable correspondences between images that are taken un-
der very different conditions, and the cost function based on
these correspondences results in very good recognition ac-
curacy across classes of structured images with variations
in deformation and lighting.

Our new deformation and lighting insensitive metric is
a function of image gradients and the difference of image
gradients, inspired by the known result that image gradi-
ents are insensitive to variations in lighting. To find the best
pixel correspondences between image pairs, we minimize
the sum of the proposed photometric matching costs at each
pixel, added to a regularization term that enforces smooth-
ness across adjacent pixel correspondences using a global
kernel. Our optimization scheme minimizes over the cor-
respondence flow field making use of a Sobolev gradient,
which is smoother and results in superior rates of conver-
gence. The optimization returns correspondence costs for
each image pair, which can be compared to make decisions
on identity. Based on the photometric and regularization
costs calculated at each pixel, we learn a Naı̈ve Bayes Max-
imum Likelihood model of how same-person and different-
person image pairs typically correspond, and we apply this
knowledge to improve our results. Experiments are pre-
sented on the AR Face Database, and our method is seen
to be competitive with the current state-of-the-art.

The standard method for finding dense correspondences
is to determine the optical flow between images. Methods
of optical flow have traditionally been developed to measure
rigid object motion between images in a video sequence.
We emphasize that while we construct a method that in-
volves determining a flow field between pairs of images,
our goal is to compute a distance between image pairs, and
we are not proposing a new method for solving problems in
the general optical flow framework. We will sometimes ac-
cept incorrect pixel correspondences if this allows the over-
all image matching cost to be meaningful.

Considerable research has been dedicated to the problem
of lighting variation in faces [5]. Solving the expression and
lighting problems together has been attempted in several re-
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cent works. Zhao and Gao [15] use only pixels from an edge
map to determine the best point pair correspondences be-
tween images based on location and Gabor jet information.
Xie and Lam [13] also find correspondences between edge
pixels, developing a cost function based on Euclidean dis-
tances, Gabor maps and gradient directions at each pixel. In
a separate work [14] Xie and Lam model a face as a grid
of tiles each of which is allowed to translate, rotate and
vary intensity linearly to match a second image. Song et
al. [12] combine binary edge features with grayscale infor-
mation using mutual information. In [6], James presents a
method in which a simple local descriptor is calculated at
each pixel, descriptors at the same coordinates in two im-
ages are compared, and the number of sufficiently similar
descriptor pairs are tallied, resulting in a surprisingly robust
cost function.

We review the use of optical flow for face recognition
in Section 2, present our new metric in Section 3, our op-
timization scheme is described in Section 4, a probabilistic
model is introduced in Section 5 to improve our results, and
experiments are presented in Section 6.

2. Optical Flow for Face Recognition
Optical flow determines the displacement of every pixel

in an image to the most similar pixel in a second image,
returning a vector field over the image. Traditional optical
flow is based on the intensity constraint equation, which as-
sumes that corresponding object points in two images will
have near equal grayscale values,

I(x+ δx, y + δy, t+ δt) = I(x, y, t). (1)

Using a first order Taylor expansion

I(x+δx, y+δy, t+δt) = I(x, y, t)+
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂t
δt

(2)
gives rise to the photometric term to be minimized

Eb = ∇I · w + It, (3)

for w = [δx δy]T and δt = 1, to which a second term is
added to enforce smoothness

Er(w) = |∇δx|2 + |∇δy|2. (4)

Black and Anandan [3] incorporate a robust error function ρ
to limit the effect of outliers, allowing them to handle mul-
tiple distinct motions in a single image pair by minimizing

EB&A =
∫

ω

(
ρb(E2

b ) + λρr(E2
r )
)
dxdy. (5)

Although optical flow was developed for the rigid object
motion tracking problem, it has been successfully applied in

(a) (b) (c)

Figure 1. The images of a single individual from the AR Face
Database [9]: (a) neutral (b) expression variations (smile, frown,
scream) (c) lighting variations (from the right, left, both).

(a) I1 (b) I2 (c) w (d) Iw
2

(e) I1 (f) I2 (g) w (h) Iw
2

Figure 2. Poor results are achieved when the Black and Anandan
flow w is calculated from I1 to I2, then the pixels from I2 are
warped backwards along w to generate image Iw

2 which corre-
sponds to I1. The flow here is calculated with a very small regu-
larization weighting. (a)-(d) Change in expression. (e)-(h) Change
in lighting.

face recognition. For example in [2], the flow is calculated
between a face and a small variation in pose of that same
face. The flow between a new face and the original face is
calculated to find correspondences, and then the flow field
from the original face is applied to a new face to generate a
new pose of the new face. In [8] the length of the flow vec-
tors are used to weight the importance of each pixel before
performing image differencing on expression variant image
pairs.

However, there are limits to using traditional optical
flow. The flow between faces is highly nonrigid, often with
very large object deformations, and does not involve any
intermediate frames between two images separated in time.
For example see the expression extremes when comparing
Figure 1(a) with the third image in Figure 1(b), or the light-
ing variations between Figs. 1(a) and 1(c). The challenge
of this flow problem is demonstrated using the robust Black
and Anandan flow [3], and similar results were observed
when using the long range Brox flow [4], which also in-
corporates a gradient constancy constraint for illumination
change robustness. To inspect pixel correspondences, pix-



els from one image can be traced along the flow and pasted
into their corresponding positions to create a warped image.
When the weight on the regularization term in (5) is very
small, it is possible to achieve artificially good-looking re-
sults with the Black and Anandan flow, such as in Figure
2(d) generated for λ = 10−5. Pixels from the tongue in
I1 are matched to lip, skin and beard pixels in I2, creating
false correspondences and a very nonsmooth flow. If the
regularization weight is turned up then the resulting flow is
almost zero everywhere, and no deformations are captured.
If lighting changes are introduced, the method completely
breaks down, see Figure 2(h). We want to construct a new
metric that can handle large deformations and is insensitive
to lighting changes, to be able to find more accurate costs
based on dense correspondences between images.

3. A Deformation and Lighting Insensitive
Metric

We present a new deformation and lighting insensitive
metric, which we will then use in an optical flow-like frame-
work.

3.1. The New Metric

Traditional optical flow relies on the intensity constraint
equation (1) to find correspondences between images. In-
stead of enforcing consistent intensity, we would like to
construct a metric where intensities that change as a result
of a lighting change in the scene can still be matched. If
w(~x) is the flow from image I1(~x) to image I2(~x), where
~xij = (i, j) is the pixel in the (i, j)th position, then I2(~x)
can be warped backwards along this flow to match I1(~x) by
defining

Iw
2 (~x) = I2 (~x+ w(~x)) . (6)

Any image warped backwards via w will be denoted with
a superscript w. Traditional template matching attempts to
minimize the warped image difference

EL2

b (w) =
1
2

∑
i,j

‖Iw
2 − I1‖2L2 . (7)

In the image manifold where each point on the manifold
is an M × N image, the usual Euclidean metric defines a
structure in a local neighborhood around point I . Letting
δI denote an infinitesimal image variation, this infinitesimal
metric is ‖δI‖L2 . In the discrete case we take

δI = Iw
2 − I1, (8)

so ‖δI‖L2 is just (7). Our new metric instead defines a dif-
ferent Riemannian structure on images using the new in-
finitesimal metric

‖δI‖2I =
1
2

∫
‖∇δI‖2(x, y)
‖∇I‖2(x, y) + ε2

dxdy, (9)

where ε is a small positive constant of the order of the image
noise. As a simple approximation, we then take our new
photometric energy term to be

Eb(w) =
1
2

∑
i,j

‖∇(Iw
2 − I1)‖2

‖∇I1‖2 + ε2
, (10)

where for the moment the norms and gradients are all taken
to follow their standard Euclidean definitions in L2.

The idea that lighting change on a surface can be repre-
sented as multiplication by a scalar and addition by a con-
stant [10] is integrated into the robust optical flow calcu-
lation in [7] to develop a lighting-insensitive optical flow
algorithm. Our metric goes further, and is designed to be in-
sensitive to intensity changes caused by the effects of light-
ing variation in 3D scenes. We normalize by the gradient
of the image because a high image gradient often signals a
rapid change in scene properties, such as a change in albedo
or a point with high curvature. At these locations, a change
in lighting conditions can have a significant effect on the
image gradient. For example, a brighter light can scale the
image gradient. Changing the location of a light can mag-
nify or weaken the gradient at the edge of a polyhedron, as
the two sides forming the edge are exposed differently to the
light. Therefore, at locations with large image gradients, a
significant change in the gradient is often due to lighting ef-
fects. At the same time, regions with small image gradients
often signal scene regions with uniform albedo and surface
normals. For Lambertian objects with uniform albedo and
surface normals, variations in lighting cannot induce large
gradients. Therefore, while it is not impossible for a light-
ing change to turn a small gradient into a large one, it is less
likely, and so is more heavily penalized by our metric.

The derivation of our new metric removes the restric-
tion that movement between images be less than one pixel,
a limitation [1] that comes from applying first order finite
differencing to a first order Taylor Expansion (2). Many
long-range optical flow methods have been developed to
get around this restriction, often using hierarchical coarse-
to-fine strategies [4]. Our method is able to capture larger
movements by optimizing over a dual space related through
a global kernel, see Section 3.3, and the new method is seen
to handle typical face deformations better than traditional
optical flow.

In addition to minimizing Eb, a metric based on similar-
ities between the gradients of the intensities, we also want
to take into account the total deformation required to arrive
at this similarity, so we include a regularization term Er

that depends on the smoothness of the flow w. Traditional
optical flow minimizes the sum of theL2-norm squared gra-
dients of the flow (4). Instead, we introduce a more general
Sobolev-type quadratic cost penalizing irregular w,

Er(w) =
1
2
〈K−1w, w〉

G
, (11)



where K is a symmetric positive definite matrix as will be
discussed below, and the definition of the G-inner product
is defined in (13).

Equations (10) and (11) are combined into the proposed
Deformation and Lighting Insensitive (DLI) energy func-
tion:

EDLI(w) = (1− λ)Eb(w) + λEr(w). (12)

In our experiments we take the weighting constant λ = .01.

3.2. The Sobolev Gradient

Since Eb in (10) involves derivatives, the usual Eu-
clidean gradient ∇EDLI(w) will not be smooth enough to
be used in an efficient gradient descent method. Instead
we use a Sobolev gradient ∇

K
EDLI(w), which is smoother

and results in superior rates of convergence [11], so the op-
timization scheme gets caught in fewer local minima, and
our algorithm is able to arrive efficiently at more accurate
solutions. We first define a general inner product

〈u, v〉
G

=
M∑
i=1

N∑
j=1

〈uij , vij〉R2 . (13)

where G := RM×N×2, the dimension of the flow w. Then
taking the Sobolev inner product

〈u, v〉
K

= 〈K−1u, v〉
G

(14)

used in the regularization term (11), the relation between
the regular gradient and the Sobolev gradient is given by

∇
K
f = K∇f, (15)

whereK is a smoothing operator regularizing the Euclidean
gradient. To derive (15), it is sufficient to consider the vari-
ation δf of any smooth function f and follow the frame-
work of differential forms. The definition of the gradient
of a function f for any inner product defined by some K
is the unique vector written ∇

K
f satisfying the following

equality for any vector w:

δf = 〈∇
K
f, δw〉

K
. (16)

From this, δf = 〈∇f(w), δw〉
G

= 〈∇
K
f(w), δw〉

K
=

〈K−1∇
K
f(w), δw〉

G
, and equating the first terms of the

〈., .〉
G

expressions we get ∇f(w) = K−1∇
K
f(w), which

is equivalent to (15). Since ∇Er(w) = K−1w directly
from (11), we get that ∇

K
Er(w) = w, where K−1 no

longer appears, and onlyK is needed for the computation of
∇

K
Eb = K∇Eb. Here w can be considered as an element

of a Reproducing Kernel Hilbert Space (RKHS).
We choose K to be the matrix form of a 2D convolution

with a symmetric positive definite kernel k,

Ku ≡ k ∗ u, (17)

where we abuse notation slightly to consider u as anMN×
1 column vector on the left and as an M ×N image on the
right. Here k is anM×N kernel, andK is theMN×MN
matrix representation of this kernel. Multiplying K by the
vector representation of u, (17) holds for corresponding el-
ements. With this choice of K, any matrix-vector prod-
uct involving K can be computed very efficiently with the
Fast Fourier Transform (FFT). We therefore accept periodic
boundary conditions, as will be discussed further at the end
of Section 4.2.

3.3. Choice of Kernel

The convolution kernel k associated with the matrix K
used in (11) must be positive definite in order to define
an inner product. We select a Gaussian-like kernel for its
smoothing properties. The most obvious choice of such a
kernel is defined for all (x, y) as

k(x, y) = exp
(
−1
s2
(
x2 + y2

))
. (18)

We will use derivatives of this kernel to define the derivative
filters discussed in Section (4.2). The scale parameter used
is s = 0.0075p where p is the perimeter of the image, this
value having been empirically determined to be robust.

When defining (11) we instead use a Cauchy kernel
which was observed to provide better results experimen-
tally,

k(x, y) =
1

1 + 1
s2 (x2 + y2)

, (19)

where the scale parameter s = 1
32p.

A second kernel is defined for each s with s2 = s
4 , and

the final kernel is the weighted average of these two ker-
nels ( 1

4 the kernel with smaller scale, 3
4 the larger). All pa-

rameters and kernel choices were tuned on simple synthetic
datasets consisting of polygons on a white background, to
be as general as possible. At the start of the iterations, the
kernel of larger scale dominates, aligning large regions in
the image. As the iterations progress, smaller features be-
come more significant and the effect of the smaller kernel
predominates.

The kernel has the same dimensions as the image. Con-
volving with such a global kernel allows our algorithm
to capture large-scale image deformations, including long-
range translations and large rescalings, that other flow algo-
rithms require multiscale methods to achieve.

4. The Optimization Scheme
The optimization is performed using a modified gradient

descent algorithm. To find a point where the energy func-
tion E(w) is minimized, we start with w = 0, and at every
iteration calculate ∇

K
E, then update w using a standard



gradient descent update

wn+1 = wn −∆t · ∇
K
E(wn). (20)

In fact, the actual implementation uses a dual variable αn

such that wn = Kαn initialized at α0 = 0. Using the fact
that∇

K
E = K∇E, the update becomes

wn = Kαn (21)
αn+1 = αn −∆t · ∇E(wn), (22)

which involves only the usual Euclidean gradient. The step
size ∆t is is initially defined to be 0.01. If an iteration re-
sults in a cost smaller than the previous cost, we accept the
new αn+1 and update ∆t = 1.1·∆t. If an iteration results in
a larger cost, then we do not accept the new α, and instead
update ∆t = 0.5·∆t and try again. For the next calculation,
we use the αn+1 which had resulted in too high a cost, as it
was found that this helps move away from local minima as
in a rudimentary deterministic annealing algorithm, but no
αn+1 is accepted as a solution if the cost it produces is not
smaller than that at the previous accepted step.

The optimization scheme is terminated when either the
gradient at the current α is within a small threshold of zero,
or when the size of ∆t has been decreased to within a small
threshold of zero and no nearby α has resulted in a smaller
overall cost. Like all implementations of the Gradient De-
scent algorithm, our algorithm will usually stop at a local
minimum, but it was observed that optimizing over α using
Sobolev gradients allows the optimization scheme to pro-
ceed much further before terminating.

4.1. The Gradient of the DLI Metric

In order to use a gradient descent method, we must cal-
culate the gradient of the DLI energy function (12),

∇EDLI(w) = (1− λ)∇Eb(w) + λ∇Er(w). (23)

Since∇Er(w) = K−1w = α we get

∇Er(w) = α, (24)

and all that remains is to solve for∇Eb(w).

4.2. The Gradient of the Photometric Norm

For any given definition of the photometric norm Eb,
the regular Euclidean gradient can be calculated directly
through applications of the chain rule and finite differenc-
ing. However, since this cost involves the computation of
derivatives of warped images, we will consider a slightly
more general situation using low-pass filtered directional
derivatives.

Before describing this more general framework, we con-
sider the simple example of the template matching defini-
tion of Eb defined in (7). For this, the gradient would be

calculated as

∇Eb(w) = (Iw
2 − I1)(∇I2)w, (25)

with the warped image gradient term (∇I2)w resulting from
an application of the chain rule. Using the more complex
metric for Eb from (10), the gradient could be derived sim-
ilarly.

Instead, to increase robustness, we make use of more
general gradient-like filters with larger regions of support
than those used by traditional finite difference methods. In-
stead of calculating a true gradient ∇I we will instead cal-
culate HI for H = [Hx Hy]T , where Hx and Hy represent
convolutions with more general x- and y-directional deriva-
tive filters hx and hy of the low-pass kernel k from (18).

We introduce a diagonal weighting matrix C on
RMN×MN with dimensions as in (17) to serve as the de-
nominator, with diagonal coefficient

Cij,ij =
(
|(HxI1)ij |2 + |(HyI1)ij |2 + ε2

)−1
. (26)

The metric (10) can now be expressed as

Eb(w) =
1
2
〈CHx(Iw

2 − I1), Hx(Iw
2 − I1)〉

RM×N
(27)

+
1
2
〈CHy(Iw

2 − I1), Hy(Iw
2 − I1)〉

RM×N
(28)

=
1
2
〈∆C(Iw

2 − I1), (Iw
2 − I1)〉

RM×N
(29)

where ∆C = HT
x CHx + HT

y CHy is a discrete Lapla-
cian operator combining the directional derivatives and the
weighting factors. Note that the multiplication by C has a
linear cost with respect to the number of pixels, and the mul-
tiplication by HT

x (respectively HT
y ) is a convolution with

the adjoint filter of hx (respectively hy).
To calculate the gradient of Eb we will make use of the

symmetry of the matrix ∆C to get

∂Eb

∂wij
(w) = [∆C(Iw

2 − I1)]ij∇I2(~xij + wij) (30)

or equivalently

∇Eb(w) = [∆C(Iw
2 − I1)](∇I2)w. (31)

To perform the computations efficiently, FFTs are used to
compute the convolutions. This means that we accept peri-
odic boundary conditions, despite not having periodic im-
ages. In order to avoid driving the optimization by pixels
near the boundaries, which are the least important points for
our purposes, we multiply the cost function by a weighting
function that diminishes the weights of the pixels closest to
each boundary smoothly down to zero, thereby approximat-
ing periodic boundary conditions. This is implemented by
premultiplying (26) with this weighting at each point.



4.3. The Algorithm

The optimal pixel correspondences between images I1
and I2 are determined by the flow w from I1 to I2 that min-
imizes the cost EDLI(w) from (12). The optimization algo-
rithm is summarized in Algorithm 1.

Algorithm 1 Find Optimal Correspondences
Input images I1 and I2, initialize α0 = 0
repeat

wn = k ∗ αn

Calculate∇E(wn) from (23) using (24) and (31)
αn+1 = αn −∆t · ∇E(wn), update ∆t

until ‖αn+1 − αn‖ < threshold
return final matching cost from (12)

The optimization takes approximately 1 second to con-
verge for a pair of images of dimension 83 × 59, running
Matlab on a 3.16 GHz processor.

Inspecting representative image pairs reveals that our al-
gorithm is robust to changes in expression and lighting. In
Figure 3, the flow w is calculated from I1 to I2, then the
pixels from I2 are warped backwards along w to generate
Iw
2 which corresponds to I1. We see that in 3(d), the top lip

and nose from I2 has been matched very accurately to the
location of the top lip in I1, and the top of the face has been
deformed slightly to align with I1. Below the top lip, the
regularization became more important than pixel intensity
matching so the rest of the mouth remained smooth, rather
than having the discontinuous flow that would be required
to match both closed sets of lips in I2 to the open lips in I1.
We note that generating flows and warped images is not the
goal of our algorithm. We are searching for distance values
between image pairs, and we accept some imperfect corre-
spondences when this preserve smoothness. It will be seen
in Section 6 that the smooth correspondences we achieve
from our calculations are sufficient to serve as the basis for
an accurate identification algorithm. In Figure 3(h), the al-
gorithm has accurately detected that although there has been
a change in lighting in the scene, there is no deformation of
the face, and the calculated flow is small, mostly accounting
for imperfect alignment between images.

5. Learning Typical Correspondence Patterns
Because all images are known to be of faces, typical cor-

respondences between faces can be learned via Naı̈ve Bayes
classification to improve the recognition results. Based on
the cost values obtained from the DLI metric, we learn a
Gaussian model at each pixel between faces of the same
person across variations in expression and lighting, and we
learn a separate model for correspondences between faces
of different people, also allowing for variations in expres-
sion and lighting. The found correspondence costs between
an unknown probe face and a known gallery face can then
be compared to each model.

(a) I1 (b) I2 (c) w (d) Iw
2

(e) I1 (f) I2 (g) w (h) Iw
2

Figure 3. Results from our proposed flow calculation. (a)-(d) The
algorithm is robust to large deformations, where the top lip has
been correctly matched between images while keeping the overall
flow smooth. (e)-(h) The algorithm correctly identifies that in spite
of significant change in lighting there has been no deformation,
and the flow is small.

After the correspondences between images have been
calculated, at each pixel we have a photometric cost in the
x- and y-directions, and a regularization cost in the x- and y-
directions (recall that the gradient and the flow w both have
x- and y- components),

Eb(w) =
1
2

∑
i,j

‖∇(Iw
2 − I1)‖2

R2

‖∇I1‖2R2
+ ε2

=
1
2

∑
i,j

(
Ex

bij

)2

+
(
Ey

bij

)2

(32)

Er(w) =
1
2
〈K−1w, w〉

G
=

1
2

(K−1w)Tw =
1
2

(
K− 1

2w
)2

=
1
2

∑
i,j

(
Ex

rij

)2

+
(
Ey

rij

)2

(33)

The cost vector for an image pair correspondence at each
pixel (i, j) is ~Eij = [Ex

bij
Ey

bij
Ex

rij
Ey

rij
], and the total cost

(12) at each pixel can be rewritten as

EDLI(w)ij = (Ex
bij

)2 + (Ey
bij

)2 + (Ex
rij

)2 + (Ey
rij

)2. (34)

We can use Maximum Likelihood estimation to learn
the typical Gaussian distribution for the flow costs between
same person image pairs at each pixel. Given training data
of many same person image pairs, we calculate the optimal
pixel correspondences between each pair using Algorithm
1. For each pixel, a Gaussian is fit through the 4D cost vec-
tors found for that location. The probability that two new
images both come from the same person can then be calcu-
lated at each pixel.



Assuming pixel independence, we multiply the proba-
bilities over all pixels in an image for the final probability
value. We compute the probability Psame that two images
are from the same person, and probability Pdiff that two im-
ages are not from the same person, repeating the above pro-
cess using training data from different person image pairs.
The ratio Psame/Pdiff is used as the final similarity metric
between pairs of face images, as this is a more discrimina-
tory metric than Psame alone. In practice we calculate the
log likelihood ratio. For a new image pair I1 and I2, a new
set of cost values ~Enew is calculated where each pixel loca-
tion is as in (34). The final similarity value for this image
pairing is then

S(I1, I2) =
Psame( ~Enew(w))

Pdiff( ~Enew(w))
. (35)

We write this similarity function in terms of the image pair,
while in the original DLI energy function (12) the cost was
written in terms of the flow between the two images.

6. Experiments
Experiments are performed on the subset of the AR Face

Database [9] dealing with expression and lighting, see Fig-
ure 1. There are seven images of each individual: a neutral
face, three variations in expression (smile, frown, scream),
and three variations in lighting (from the left, from the right,
from both sides). The standard 100 person aligned and
cropped faces are used. We resize each image to be 83× 59
pixels, as images of this size return the most accurate results
with our algorithm. Similarly resized images have been
used successfully in many other algorithms [6, 13, 14]. Our
algorithm is fully automatic, so no other input is required.

The neutral faces of all individual are taken to be the
gallery, and the other six images of each person are com-
pared to each gallery image separately. We found that warp-
ing the neutral images to the non-neutral images is more sta-
ble, and so the gallery images take the place of I2 in our al-
gorithm, and the neutral faces are warped backwards along
the calculated flows to generate the Iw

2 . Nearest neighbor
matching is applied, so that the neutral image that results in
the lowest correspondence cost for an unknown non-neutral
image defines the identity of the unknown image. Re-
sults are presented from the direct output of the optimiza-
tion scheme minimizing (12) in the first row of Table 1.
To use the probabilistic model from Section 5 to maximize
(35), half the dataset is used as training data, where the same
number of different person image pairs are used as available
same person image pairs (6×50 = 300), with different per-
son image pairs chosen randomly, given that each type of
variation is equally represented. The other half of the data is
used for testing. The dataset is divided in half randomly five
times, and the average accuracy of the five trials is presented

Cost Function Expression Lighting Overall
Direct 82.0% 96.0% 89.0%
After Learning 89.6% 98.9% 94.3%
Smile gallery
After Learning 86.8% 91.2% 89.0%
Borders removed
After Learning 85.1% 96.4% 90.7%

Table 1. Identification Accuracy found when directly minimiz-
ing equation (12), and after applying the probabilistic model from
equation (35). Rows 1-2: for a gallery of neutral faces. Row 3: for
a gallery of smile faces. Row 4: when 10% of the border pixels
have been removed from each edge for a gallery of neutral faces.

Variation Accuracy Variation Accuracy
Smile 97.6% Left light 98.8%
Frown 91.6% Right light 99.6%
Scream 79.6% Both lights 98.4%

Table 2. Identification Accuracy broken down by variation for a
gallery of neutral faces.

in the second row of Table 1. The same testing galleries are
used for both the direct and learned methods. The results
of our algorithm are broken down for each expression and
lighting variation in Table 2. The lowest observed accuracy
is on the challenging “scream” case, where our results are
30% higher than recently reported results [12, 15].

To test the gains in robustness coming from our new
lighting-insensitive photometric energy norm (10), we ran
our optimization scheme replacing Eb in (12) with the L2

warped image difference metric from (7). Results are pre-
sented in the first row of Table 3. It is seen that this direct
image differencing breaks down when lighting variation is
considered, and the new metric presented in this paper is
more accurate in all cases.

To test that our algorithm is robust when both lighting
and expression are varied at once, we use the smile faces
as our gallery, and repeat the above experiment, so that all
the lighting variation images are being warped from a neu-
tral face with harsh lighting to a smiling face with ambient
lighting. See Table 1. The recognition accuracy of many
algorithms is directly related to the alignment of the out-
line of the head and neck. To test that we are capturing
true face information and not simply capturing the head and
neck outlines, we remove 10% of the pixels on each edge of
the image after the flow has been calculated, and determine
the matching cost only from the remaining pixels. From
Table 1 we see that very little accuracy is lost. As a com-
parison, we consider the simple Gradient Direction method,
which has been found to be one of the most robust methods
against changes in lighting [5]. This method determines the
direction of the image gradient at each pixel, and measures
the distance between images as the sum of the angles be-
tween their gradient directions at each pixel coordinate. The
Gradient Direction accuracy decreases by 7% in this case.

When compared to other methods in the literature, the



Method Expression Lighting Overall
Proposed Framework
with image differencing 84.0% 8.7% 46.3%
Significant Jet
Point [15] 80.8% 91.7% 86.3%
Binary Edge Feature
and MI [12] 78.5% 97.0% 87.8%
Gradient Direction [5] 86.0% 96.0% 91.0%
Elastic Shape-Texture
Matching [13] 98.3%* 97.2% 97.8%*
Elastic Local
Reconstruction [14] 99.2%* 98.6% 98.9%*
Proposed Method 89.6% 98.9% 94.3%
Pixel Level
Decisions [6] 99.0% 97.0% 98.0%

Table 3. Comparison with other methods that address both lighting
and expression variation on the AR Face Database using a gallery
of neutral expression and lighting. *The challenging “scream”
case is not included in these expression tests, so these results are
not directly comparable.

method proposed here is found to be very competitive, see
Table 3. The AR Face Database is a tightly controlled and
therefore relatively simple dataset. With a robust error func-
tion incorporated into our algorithm to limit the effect of
outliers, we expect that our algorithm will be able to handle
much less controlled datasets. Unlike other algorithms [6],
our method does not rely heavily on input image alignment,
as we calculate dense correspondences based on global con-
siderations. We foresee many ways to extend the unified
framework presented in this paper to incorporate more ro-
bustness, to be able to handle greater variations that cause
other algorithms to fail. Nothing in our algorithm is specific
to faces, the method can be applied to any class of images
with deformations and lighting variation that exhibit a stan-
dard structure.

7. Conclusion
Finding reliable image metrics is a fundamental prob-

lem in Computer Vision. We have presented an algorithm
to perform recognition tasks in the presence of deformation
and lighting variations in well-structured images. Our pri-
mary contributions are the introduction of a metric that han-
dles lighting variation in a new way, and a method to opti-
mize over this metric. The new lighting-insensitive metric is
based on the effect of lighting in 3D scenes. The optimiza-
tion scheme makes use of smooth Sobolev gradients to effi-
ciently optimize over a flow field that determines dense cor-
respondences between potentially deformed images taken
under very different conditions. The mathematics inspiring
this work is rigorously motivated. We have validated the
efficacy of our metric and optimization scheme by applying
them to the problem of expression and lighting variant face
recognition. Typical correspondence cost patterns from our
metric were learned between face image pairs and a Naı̈ve
Bayes classifier was applied to improve recognition accu-

racy. Our very general algorithm is seen to be competitive
with the current state-of-the-art on the AR Face Database,
and it lays the groundwork for many possible extensions to
handle significantly more challenging datasets.
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