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Abstract. We describe a working computer vision system that aids in the identification of
plant species. A user photographs an isolated leaf on a blank background, and the system
extracts the leaf shape and matches it to the shape of leaves of known species. In a few seconds,
the system displays the top matching species, along with textual descriptions and additional
images. This system is currently in use by botanists at the Smithsonian Institution National
Museum of Natural History. The primary contributions of this paper are: a description of
a working computer vision system and its user interface for an important new application
area; the introduction of three new datasets containing thousands of single leaf images, each
labeled by species and verified by botanists at the US National Herbarium; recognition results
for two of the three leaf datasets; and descriptions throughout of practical lessons learned in
constructing this system.

Fig. 1. Left: A computer vision system for identifying temperate plants on the botanically well-studied
Plummers Island, Maryland, USA. Right: Congressman John Tanner tries an augmented reality version of
the system.

1 Introduction

We have built a hand-held botanical identification system for use by botanists at the Smithsonian
Institution. Employing customized computer vision algorithms, our system significantly speeds up
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the process of plant species identification. The system requires only that the user photograph a
leaf specimen, returning within seconds images of the top matching species, along with supporting
data such as textual descriptions and high resolution type specimen images. By using our system, a
botanist in the field can quickly search entire collections of plant species—a process that previously
took hours can now be done in seconds.

To date, we have created three datasets for the system: one that provides complete coverage of
the flora of Plummers Island (an island in the Potomac River owned by the National Park Service);
a second that covers all woody plants in published flora of the Baltimore-Washington, DC area; and
a nearly complete third dataset that covers all the trees of Central Park in NYC. The system is
currently being used by botanists at the Smithsonian to help catalogue and monitor plant species.
Figure 1 shows the system and various versions of the user interface (UI). Although a great deal
of work remains to be done in this ongoing collaboration between computer vision researchers and
scientists at the US National Herbarium, we hope that our system will serve as a model and possible
stepping stone for future mobile systems that use computer vision-based recognition modules as one
of their key components.

1.1 Motivation

Botanists in the field are racing to capture the complexity of the Earth’s flora before climate change
and development erase their living record. To greatly speed up the process of plant species identi-
fication, collection, and monitoring, botanists need to have the world’s herbaria at their fingertips.
Tools are needed to make the botanical information from the world’s herbaria accessible to anyone
with a laptop or cell phone, whether in a remote jungle or in NYC’s Central Park.

Only recently has the data required to produce these tools been made available. Volumes of
biological information are just now going on-line: natural history museums have recently provided
on-line access to hundreds of thousands of images of specimens, including our own work in helping
to digitize the complete Type Specimen Collection of the US National Herbarium. These massive
digitization efforts could make species data accessible to all sorts of people including non-specialists,
anywhere in the world.

Photograph Leaf Segment Compute IDSC Show Top Matches

Fig. 2. A flow diagram of our plant identification system. A leaf from an unknown species of plant is
photographed by the user. The system then segments the leaf image from its background, computes the
IDSC shape representation used for matching, and then displays the top matches, as they are computed.

Yet there is a critical shortfall in all these types of natural databases: finding a species quickly
requires that the searcher know in advance the name of the species. Computer vision algorithms can
remove this obstacle, allowing a user to search through this data using algorithms that match images
of newly collected specimens with images of those previously discovered and described. Without such
tools, a dichotomous key must be painfully navigated to search the many branches and seemingly
endless nodes of the taxonomic tree. The process of identifying a single species using keys may take
hours or days, even for specialists, and is exceedingly difficult to impossible for non-scientists.
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1.2 System Design and Contributions

Using our system, a botanist in the field can choose a leaf and photograph it against a plain back-
ground. The leaf image is then compared to all possible matches, and in a matter of seconds the
botanist is shown information about the best matching species. Figure 2 illustrates the process, with
photographs of our system in action. Figure 4 shows the performance of our system. On the woody
plants of the Baltimore-Washington, DC area (245 species) the system returns the correct species
in the top ten matches more than 97% of the time.

This paper makes several contributions. First and foremost, we describe a complete working
system for an important application that has received little attention from the computer vision
community. We hope the reader will take from this paper an appreciation for the possible impact
that computer vision can have on the study of biodiversity. Also, while many individual components
of our system build on existing work, we have gained valuable experience getting these pieces to
work effectively together, and we want to pass these lessons on to others in the field. Second, we
describe several new datasets. Each dataset contains thousands of images of isolated leaves, along
with segmentation information that extracts their shape. These each include leaves of about 150–
250 different species of plants, with about 30 different leaves per species. These are by far the
largest publicly available sets of leaf images and provide a unique challenge set for researchers on
shape understanding. Third, we demonstrate recognition results for shape matching on two of these
datasets (Figure 4). This can be viewed as a high-performance baseline system for shape matching.
In this context, we pose a challenge problem to the computer vision community. We describe a set
of performance criteria and offer to include in our deployed system code for any algorithm that can
meet these criteria.

After describing prior work in Section 2, we describe in Section 3 extensive datasets that we have
collected for this project, which we are now making publicly available. In Section 4, we address a
number of practical considerations needed to get a color-based EM algorithm to effectively segment
images of isolated leaves. In Section 5, we summarize the shape comparison algorithm we use. In
addition, we describe a nearest-neighbor method for metric spaces that significantly speeds up the
comparisons needed for this approach. In Section 6, we describe the hardware and UIs that we have
constructed to allow the user to navigate the search results. We also describe our ongoing work on
experimental augmented reality (AR) UIs for the system. We present a challenge problem for the
computer vision community in Section 7 and describe our plans for a future system in Section 8.

2 Related Work

2.1 Massive Digitization Efforts

The amount of digital information available on-line has recently increased dramatically. For exam-
ple, our group has digitally photographed (at high resolution) each of the 90,000 type specimens
of vascular plants in the US National Herbarium at the Smithsonian, where the images are now
available at http://botany.si.edu/types/. Complementary efforts include those of the New York
Botanical Garden (120,000 high resolution images), the Royal Botanical Gardens, Kew (50,000 im-
ages, including 35,000 images of type specimens), and the Missouri Botanical Garden (35,000 images
of plants). Recently, a consortium of museums and research institutions announced the creation of
the Encyclopedia of Life (http://www.eol.org) to someday house a webpage for each species of
organism on Earth.

2.2 New Means to Access Data

Traditionally, biologists use field guides and dichotomous keys to assist in species identification. Field
guides contain pictures and textual descriptions of known species. Dichotomous keys provide a deci-
sion tree based on features of the organism, with species at the leaves of the tree. Although valuable,
neither solves the problem of identification, as field guides are difficult to search, and dichotomous
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keys contain questions that are daunting to the non-expert and difficult even for experts to answer
with certainty. Electronic versions of these tools have been available for a long time (Pankhurst
[16]; Edwards and Morse [6]; Stevenson et al. [21]). Electronic keys have been created through char-
acter databases (e.g., Delta: http://delta-intkey.com, Lucid: http://www.lucidcentral.org).
Some of these guides are available on-line or for downloading onto PDAs (e.g., Heidorn [11] ), while
active websites are being developed that can continually be revised and updated (e.g., http://
botany.si.edu/pacificislandbiodiversity/hawaiianflora/index.htm). While valuable, these
electronic systems do not solve the fundamental problems faced by traditional tools.

2.3 Visual Search

Automatic recognition systems promise to greatly enhance access by using images as search keys—
this, we believe, is the real key to making any such electronic field guide truly groundbreaking.
There has been a good deal of work on identifying plants, primarily using leaf shape (see Nilsback
and Zisserman [15], though, for recent work using flowers). Abbasi et al. [1] and Mokhtarian and
Abbasi [14] present a method for classifying images of chrysanthemum leaves. Saitoh and Kaneko
[18] use a neural network to classify wild flowers based on shape and color. Wang et al. [23] use
what they call the centroid-contour distance, combined with more standard, global descriptions of
shape. Ling and Jacobs [13] introduce shape descriptions based on the Inner Distance, which they
combine with shape contexts (Belongie et al. [5]), and show that the resulting IDSC outperforms
many other approaches on two large leaf datasets. More recently, Felzenszwalb and Schwartz [8] have
presented a hierarchical shape matching algorithm that performs even better on a publicly available
leaf dataset (Söderkvist [20]). However, since this method is significantly slower, a fast version of
the IDSC seems to be the best approach currently available for a large-scale, real-time identification
system. We present experiments with this algorithm using data sets that are ten times the size of
those used in Ling and Jacobs [13].

This paper is the first complete description of our system. A preliminary version of our system
was described in the botanical journal Taxon [2] to introduce these ideas to biologists. Work on UIs
for automated species identification has been described in [24], [25]. Many components of the current
system have not appeared in any previous publication, including our segmentation algorithm and
our use of nearest neighbor algorithms. Finally, our datasets and experiments are described here for
the first time.

3 Datasets

An important objective of our project is the development of standard, comprehensive datasets of
images of individual leaves. Currently, the only large leaf image dataset available to vision researchers
is a collection of 15 species with 75 leaf images per species (Söderkvist [20]). This dataset is useful,
but insufficient for testing large-scale recognition algorithms needed for species identification. The
datasets that we have collected have an order of magnitude more species and are well suited for
testing the scalability of recognition algorithms. They also provide complete coverage of species
in a geographical area. We have made them available for research use at http://herbarium.cs.
columbia.edu/data.php.

Leaves were collected by field botanists covering all plant species native to a particular region,
and entered in the collections of the US National Herbarium. The number of leaves per species varied
with availability, but averaged about 30. After collection, each leaf was flattened by pressing and
photographed with a ruler and a color chart for calibration. Each side of each leaf was photographed
with top and bottom lighting. The leaf images were then automatically resized to a maximum side
dimension of 512 pixels. Because manual processing of multiple, large datasets is impractical, we
developed systems to automatically crop images to remove the ruler, color chart and empty space,
and then to segment the images to separate the leaf from the background, as described in the next
section. The results were inspected by hand, and a small number of erroneously processed images
were removed from the dataset. The datasets consist of the cropped isolated leaf images, as well as
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the corresponding segmented binary images. To date, we have collected the following three single
leaf datasets, each representing different regional flora with about 30 leaves per species:

Flora of Plummers Island: 5,013 leaves of 157 species. Provides complete coverage of all vascular
plant species of Plummers Island, MD, an island in the Potomac River near Washington, DC,
which has long been studied by botanists.

Woody Plants of Baltimore-Washington, DC: 7,481 leaves of 245 species. Provides complete
coverage of all native woody plants (trees and shrubs) of the Baltimore-Washington, DC area.

Trees of Central Park: 4,320 leaves of 144 species. Provides complete coverage of the trees of
Central Park in New York City.

Finally, it is often critical for botanists to access more complete type specimens when identifying
species. When a new species is discovered, a cutting of branches, leaves, and possibly flowers and
fruit is collected. This specimen becomes the type specimen that is then used as the definitive
representative of the species. Type specimens are stored in herbaria around the world. As part of
this work, we have helped to complete the digitization of the complete Type Specimen collection of
vascular plants at the US National Herbarium:

US National Herbarium Type Specimen Collection: 90,000 images, covering more than one
quarter of all known plant species. Each specimen has been digitally photographed under con-
trolled lighting to produce an 18 megapixel image. These are online in lower resolution formats
at http://botany.si.edu/types/.

4 Segmentation

Fig. 3. The first and third images show input to the system, to the right of each are segmentation results.
We first show a typical, clean image, and then show that segmentation also works with more complex
backgrounds.

In our automatic identification system, a user photographs a leaf so that its shape may be
matched to known species. To extract leaf shape, we must begin by segmenting the leaf from its
background. While segmentation is a well-studied and difficult problem, we can simplify it in our
system by requiring the user to photograph an isolated leaf on a plain white background. However,
while we can require users to avoid complex backgrounds and extreme lighting conditions, a useful
segmentation algorithm must still be robust to some lighting variations across the image and to
some shadows cast by leaves.

Unfortunately, there is no single segmentation algorithm that is universally robust and effective
for off-the-shelf use. We have experimented with a number of approaches and achieved good perfor-
mance using a color-based EM algorithm (see, e.g., Forsyth and Ponce [9]). To begin, we map each
pixel to HSV color space. Interestingly, we find that it is best to discard the hue, and represent each
pixel with saturation and value only. This is because in field tests in the forest, we find that the
light has a greenish hue that dominates the hue of an otherwise white background. We experimented
with other representations, and colored paper backgrounds of different hues, but found that they
presented some problems in separating leaves from small shadows they cast.
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Once we map each pixel to a 2D saturation-value space, we use EM to separate pixels into two
groups. First, during clustering we discard all pixels near the boundary of the image, which can be
noisy. We initialize EM using K-means clustering with k = 2. We initialize K-means by setting the
background cluster to the median of pixels near the boundary, and setting the foreground cluster
to the mean of the central pixels. Then, in order to make the segmentation real-time, we perform
EM using 5% of the image pixels. Finally, we classify all pixels using the two resulting Gaussian
distributions. The leaf was identified as the largest connected component of the foreground pixels,
excluding components that significantly overlap all sides of the image (sometimes, due to lighting
effects, the foreground pixels consist of the leaf and a separate connected component that forms a
band around the image). In sum, to get effective results with an EM-based approach has required
careful feature selection, initialization, sampling, and segment classification. Figure 3 shows sample
results.

Although we did not rigorously evaluate competing segmentation algorithms, we would like to
informally mention that we did encounter problems when attempting to apply graph-based segmen-
tation algorithms to these images (e.g., Shi and Malik [19], Galun et al. [10]). One reason for this is
that these algorithms have a strong bias to produce compact image segments. While this is benefi-
cial in many situations, it can create problems with leaves, in which the stems and small leaflets or
branches are often highly non-compact. The segmentation algorithm that we use goes to the other
extreme, and classifies every pixel independently, with no shape prior, followed by the extraction of a
single connected component. It is an interesting question for future research to devise segmentation
algorithms that have shape models appropriate for objects such as leaves that combine compact and
thin, wiry structures with a great diversity of shape.

5 Shape Matching

Our system produces an ordered list of species that are most likely to match the shape of a query
leaf. It must be able to produce comparisons quickly for a dataset containing about 8,000 leaves
from approximately 250 species. It is useful if we can show the user some initial results within a few
seconds, and the top ten matches within a few seconds more. It is also important that we produce
the correct species within the top ten matches as often as possible, since we are limited by screen
size in displaying matches.

To perform matching, we make use of the Inner Distance Shape Context (IDSC, Ling and Jacobs
[13]), which has produced close to the best published results for leaf recognition, and the best results
among those methods quick enough to support real-time performance. IDSC samples points along the
boundary of a shape, and builds a 2D histogram descriptor at each point. This histogram represents
the distance and angle from each point to all other points, along a path restricted to lie entirely
inside the leaf shape. Given n sample points, this produces n 2D descriptors, which can be computed
in O(n3) time, using an all pairs shortest path algorithm. Note that this can be done off-line for all
leaves in the dataset, and must be done on-line only for the query. Consequently, this run-time is
not significant.

To compare two leaves, each sample point in each shape is compared to all points in the other
shape, and matched to the most similar sample point. A shape distance is obtained by summing the
χ2 distance of this match over all sample points in both shapes, which requires O(n2) time.

Since IDSC comparison is quadratic in the number of sample points, we would like to use as
few sample points as possible. However, IDSC performance decreases due to aliasing if the shape
is under-sampled. We can reduce aliasing effects and boost performance by smoothing the IDSC
histograms. To do this, we compute m histograms by beginning sampling at m different, uniformly
spaced locations, and average the results. This increases the computation of IDSC for a single shape
by a factor of m. However, it does not increase the size of the final IDSC, and so does not affect the
time required to compare two shapes, which is our dominant cost.

We use a nearest neighbor classifier in which the species containing the most similar leaf is ranked
first. Because the shape comparison algorithm does not imbed each shape into a vector space, we
use a nearest neighbor algorithm designed for non-Euclidean metric spaces. Our distance does not
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actually obey the triangle inequality because it allows many-to-one matching, and so it is not really
a metric (eg., all of shape A might match part of C, while B matches a different part of C, so A and
B are both similar to C, but completely different from each other). However, in a set of 1161 leaves,
we find that the triangle inequality is violated in only .025% of leaf triples, and these violations cause
no errors in the nearest neighbor algorithm we use, the AESA algorithm (Ruiz [17]; Vidal [22]). In
this method, we pre-compute and store the distance between all pairs of leaves in the dataset. This
requires O(N2) space and time, for a dataset of N leaves, which is manageable for our datasets. At
run time, a query is compared to one leaf, called a pivot. Based on the distance to the pivot, we
can use the triangle inequality to place upper and lower bounds on the distance to all leaves and
all species in the dataset. We select each pivot by choosing the leaf with the lowest current upper
bound. When one species has an upper bound distance that is less than the lower bound to any
other species, we can select this as the best match and show it to the user. Continuing this process
provides an ordered list of matching species. In comparison to a brute force search, which takes nine

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Top k matches

C
or

re
ct

 r
es

ul
t r

at
e

Washington−Baltimore woody dataset

 

 

256 sample points
64x16 sample points
64 sample points

2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1

Top k matches

C
o

rr
ec

t 
re

su
lt

 r
at

e
Plummers Island dataset

 

 

256 sample points
64x16 sample points
64 sample points

Fig. 4. Experimental results for two datasets.

seconds with a dataset of 2004 leaves from 139 species, this nearest-neighbor algorithm reduces the
time required to find the ten best matching species by a factor of 3, and reduces the time required
to find the top three species by a factor of 4.4.

We have tested our algorithm using both the Plummers Island and Baltimore-Washington Woody
Plants datasets. We perform a leave-one-out test, in which each leaf is removed from the dataset
and used as a query. Figure 4 shows performance curves that indicate how often the correct species
for a query is placed among the top k matches, as k varies. In this experiment, we achieve best
performance using n = 256 sample points for IDSC. We reach nearly the same performance by
computing the histograms using n = 64 sample points averaged over m = 16 starting points. The
figure also shows that using n = 64 points without smoothing significantly degrades performance.
Using 64 sample points is approximately 16 times faster than using 256 sample points. The correct
answer appears in the top ten about 95%–97% of the time for woody plants of Baltimore-Washington
and somewhat less (about 90% of the time) for the flora of Plummers Island. This is in part because
shape matching is not very effective at discriminating between different species of grass (which are
not woody plants). Overall, these results demonstrate effective performance. It seems that most
errors occur for species in which the overall leaf shape is not sufficiently distinctive. We plan to
address these issues by using additional cues, such as small scale features of the leaf margin (e.g.,
toothed or smooth) and the shape of the venation (vascular structure).
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6 User Interfaces and Hardware

We have developed several prototype UIs to integrate the individual pieces of the matching system
and investigate the performance of our interaction techniques and vision algorithms in real world
situations. These prototypes are the result of collaboration with our botanist colleagues in an iterative
process that has included ethnographic study of botanical species identification and collection in
the field, user centered design, interaction technique development, and qualitative and quantitative
feedback and user studies. We have pursued two primary research directions. The first focuses on
existing mobile computing platforms for ongoing botanical field studies. The second develops mobile
AR systems that are not appropriate for field use in their current form, but could provide significant
advantages as hardware and software mature.

The conceptual model we use in our mobile computing platform is an extension of existing paper
field guides. The system provides access to a library of knowledge about the physical world, and
the physical leaf is the key to that information. In the AR prototype, virtual images representing
matched species appear adjacent to the leaf in the physical world and can be manipulated directly
through tangible interaction. In this case, the conceptual model is enhanced perception: the leaf
anchors information embedded in the environment and accessed through augmented reality.

6.1 Mobile Computing

Fig. 5. AR user interface viewed through a video see-through display.

Our initial prototype, LeafView (Figure 1), provides four tabbed panes for interaction: browse,
sample, search results, and history. The browse pane provides a zoomable UI (ZUI) (Bederson et al.
[3]) with which the user can explore an entire flora dataset. When the user photographs a leaf with the
system, the image is immediately displayed in the sample pane with contextual information including
time, date, GPS location, and collector. The segmented image is displayed next to the captured leaf
image to show the user what LeafView “sees” and provide feedback about image quality. As results
are found, they are displayed with the original image in the search results pane. Each species result
provides access to the matched leaf, type specimens, voucher images and information about the
species in a ZUI to support detailed visual inspection and comparison, which is necessary when
matching is imperfect. Selecting a match button associates a given species with the newly collected
specimen in the collection database. The history pane displays a visual history of each collected leaf,
along with access to previous search results, also in a ZUI. This represents the collection trip, which
can be exported for botanical research, and provides a reference for previously collected specimens.
Making this data available improves the long term use of the system by aiding botanists in their
research.
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LeafView was built with C#, MatLab, and Piccolo (Bederson, et al. [4]). Our first versions of
the hardware used a Tablet PC with a separate Wi-Fi or Bluetooth camera and a Bluetooth WAAS
GPS. However, feedback from botanists during field trials made it clear that it would be necessary
to trade off the greater display area/processing power of the Tablet PC for the smaller size/weight
of an Ultra-Mobile PC (UMPC) to make possible regular use in the field. We currently use a Sony
VAIO VGN-UX390N, a UMPC with an integrated camera and small touch-sensitive screen, and an
external GPS.

6.2 Augmented Reality

AR can provide affordances for interaction and display that are not available in conventional graph-
ical UIs. This is especially true of Tangible AR (Kato et al. [12]), in which the user manipulates
physical objects that are overlaid with additional information. Tangible AR is well matched to the
hands-on environmental interaction typical of botanical field research. While current head-worn dis-
plays and tracking cannot meet the demands of daily fieldwork, we are developing experimental
Tangible AR UIs to explore what might be practical in the future.

In one of our Tangible AR prototypes (Figure 5), a leaf is placed on a clipboard with optical
tracking markers and a hand-held marker is placed next to the leaf to initiate a search. The results
of matching are displayed alongside the physical leaf as a set of individual leaf images representing
virtual vouchers, multifaceted representations of a leaf species that can be changed through tangible
gestures. As the user passes the hand-held marker over a leaf image, the card visually transforms
into that leaf’s virtual voucher. The visual representation can be changed, through gestures such as
a circular ”reeling” motion, into images of the type specimen, entire tree, bark, or magnified view
of the plant. Inspection and comparison is thus achieved through direct spatial manipulation of the
virtual voucher—the virtual leaf in one hand and the physical leaf on the clipboard in the other
hand. To accept a match, the virtual voucher is placed below the leaf and the system records the
contextual data.

Different versions of our Tangible AR prototypes use a monoscopic Liteye-500 display, fixed to a
baseball cap, and a stereoscopic Sony LDI-D100B display, mounted on a head-band, both of which
support 800×600 resolution color imagery. The system runs on a UMPC, which fits with the display
electronics into a fannypack. The markers are tracked in 6DOF using ARToolkit (Kato et al. [12])
and ARTag (Fiala [7]), with a Creative Labs Notebook USB 2.0 camera attached to the head-worn
display.

6.3 System Evaluation

Our prototypes have been evaluated in several ways during the course of the project. These include
user studies of the AR system, field tests on Plummers Island, and expert feedback, building on
previous work (White et al. [24]). In May 2007, both LeafView and a Tangible AR prototype were
demonstrated and used to identify plants during the National Geographic BioBlitz in Rock Creek
Park, Washington, DC, a 24-hour species inventory. Hundreds of people, from professional botanists
to amateur naturalists, school children to congressmen, have tried both systems. While we have
focused on supporting professional botanists, people from a diversity of backgrounds and interests
have provided valuable feedback for the design of future versions.

7 Challenge Problem for Computer Vision

One goal of our project is to provide datasets that can serve as a challenge problem for computer
vision. While the immediate application of such datasets is the identification of plant species, the
datasets also provide a rich source of data for a number of general 2D and silhouette recognition
algorithms.

In particular, our website includes three image datasets covering more than 500 plant species,
with more than 30 leaves per species on average. Algorithms for recognition can be tested in a
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controlled fashion via leave-one-out tests, where the algorithms can train on all but one of the leaf
images for each species and test on the one that has been removed. The web site also contains
separate training and test datasets in order to make fair comparisons. Our IDSC code can also be
obtained there, and other researchers can submit code and performance curves, which we will post.
We hope this will pose a challenge for the community, to find the best algorithms for recognition in
this domain.

Note that our system architecture for the electronic field guide is modular, so that we can (and
will, if given permission) directly use the best performing methods for identification, broadening the
impact of that work.

8 Future Plans

To date, we have focused on three regional floras. Yet, our goal is to expand the coverage of our
system in temperate climates to include all vascular plants of the continental U.S. Other than the
efforts involved in collecting the single leaf datasets, there is nothing that would prevent us from
building a system for the U.S. flora. The visual search component of the system scales well: search
can always be limited to consider only those species likely to be found in the current location, as
directed by GPS.

In addition, we have begun to expand into the neotropics. The Smithsonian Center for Tropical
Forest Science has set up twenty 50-hectare plots in tropical ecosystems around the world to monitor
the changing demography of tropical forests. We aim to develop versions of the system for three
neotropical floras: Barro Colorado Island, Panama; Yasuni National Park, Ecuador; and the Amazon
River Basin in Brazil. This domain demands algorithms that not only consider leaf shape, but also
venation (i.e., the leaf’s vascular structure). Initial results are quite promising, but we have not yet
developed a working system.

Finally, we have developed a prototype web-based, mobile phone version of our system, allowing
anyone with a mobile phone equipped with a camera and browser to photograph leaves and submit
them to a server version of our system for identification. We hope to develop a touch-based version
on an iPhone or Android-based device in the near future. We feel that it should soon be possible to
create a mobile phone-based system that covers the entire U.S., usable by the general population.
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