Grouping for Recognition!

David W. Jacobs

(dwj@research.nj.nec.com)

NEC Research Institute
4 Independence Way
Princeton, NJ 08540

Abstract

This paper presents a new method of grouping edges in order to recognize objects. This
grouping method succeeds on images of both two- and three-dimensional objects. We order
groups of edges based on the likelihood that a single object produced them. This allows the
recognition system to consider first the collections of edges most likely to lead to the correct
recognition of objects. The grouping module estimates this likelihood using the distance that
separates edges and their relative orientation. This ordering greatly reduces the amount of
computation required to locate objects. Surprisingly, in some circumstances grouping can also
improve the accuracy of a recognition system. We test the grouping system in two ways. First,
we use it in a recognition system that handles libraries of two-dimensional, polygonal objects.
Second, we show comparable performance of the grouping system on images of two- and three-
dimensional objects. This demonstrates that the grouping system could produce significant
improvements in the performance of a three-dimensional recognition system.

1 Introduction

This paper discusses the use of grouping to improve the performance of existing approaches to
model-based visual object recognition. We present a data-driven method for forming groups of
image edges especially likely to all come from a single object. This allows us to order our search
for objects in an image. Our experiments indicate that this ordering is sufficient to reduce the
search for objects by several orders of magnitude.

Recent results in the field of object recognition demonstrate the necessity of some type of
grouping, or selection, to make the combinatorics of object recognition manageable. Grimson[13]
and Grimson and Huttenlocher[14] have recently shown that in the domain of two-dimensional
objects, constrained search methods, and Hough transform methods break down in cluttered
scenes without some type of grouping. In the domain of three-dimensional objects matched
to two-dimensional images, the fastest known methods without grouping are O(n*m?*), where
there are n image features and m model features. This expense is excessive in realistic do-
mains. In fact to overcome these problems, virtually all recognition systems make use of some

!Essentially the same paper, with a few fewer references, appeared as MIT AI Memo 1177, 1989.

implicit grouping, using cues such as distance (Bolles and Cain[3]), convexity (Brooks[4]), or
continuity (Huttenlocher and Ullman[16]). Grouping overcomes the unfavorable combinatorics
of recognition by removing the need to search the space of all matches between image and
model features. Only those image features considered likely to come from a single object must
be included together in hypothetical matches. And these groups need only be matched with
compatible groups of model features.

Grouping may be either model-driven or data-driven. Acronyml[4], for example, used a
model-driven approach to group edges that might be the projection of a simplified class of
generalized cylinders. Mohan and Nevatia[28] group together rectangular edges in a system
that performs stereo matching of images of rectangular buildings. And Grimson and Lozano-
Pérez[11] used a Hough transform to perform grouping based on a specific model. Model-driven
approaches, however, are often limited to handling only objects composed of a specific set of
primitives. And approaches such as the Hough transform used in Grimson and Lozano-Pérez
do not apply when libraries of objects are used. Data-driven approaches have the advantage
that they may apply to more general classes of objects, and scale well when used with libraries
of objects.

Lowe[25] has previously explored data-driven grouping in a recognition system. His system,
Scerpo, combines parallel, symmetric, or co-terminating edges. Our current work owes much to
Lowe’s general approach to recognition. However, his approach to grouping has some serious
limitations. First of all, these simple cues may not be present in many images. Second, forming
only small groups of edges limits the amount that we may reduce search. Qur current research
demonstrates that forming large groups of image edges can result in dramatic reductions in
search.

Since we do not attempt a perfect, bottom-up segmentation of an image into its component
parts we may rely on the interaction between a system that forms likely groups and a model-
based recognition system to speed up the recognition process even when we form many incorrect
groups.

The heart of our grouping system consists of a method of estimating the probability that
two convex contours came from the same object. This method uses the distance separating
the two contours and their relative orientation. It compares the likelihood that this distance
and orientation would occur between two randomly oriented contours from different objects to
the likelihood of this distance and orientation occurring between two contours from the same
object. This produces an ordering on all pairs of contours.

It is important to emphasize that these probabilities need not be exact to be useful. They
allow us to perform an ordered search instead of an unordered search, and so the probability
estimates are useful to the extent that they are superior to the uniform estimates implicit in
an unordered search.

However, ordering the space of sets of matches between image and model features is only
useful if we commit ourselves to an acceptable match as soon as we find it. Otherwise, the
entire space of matches must still be searched, and ordering the search does no good. This
search termination heuristic is in fact commonly used to reduce the cost of recognition.

Figures 1 through 4 show the performance of our grouping system on images of two- and

three-dimensional objects. In Figures 1 and 2 the grouping system combines with a recognition
system to find five two-dimensional objects after considering only fifteen different groups of
image edges. This contrasts markedly with most recognition systems, which might search
through thousands of combinations of edges before locating an object.

Figures 3 and 4 show the performance of the grouping system alone on an image of three-
dimensional objects. We have not implemented a 3d recognition system. However, we can see
that the grouping system generates similar, useful groups when applied to this image. This
suggests that our grouping system can produce comparable speed-ups in the recognition of 3d
objects.

The next section discusses some previous research on grouping and object recognition. Sec-
tion 3 will describe the grouping system used in GROPER, and provide some theoretical justifi-
cation for it. Section 4 will briefly discuss GROPER’s recognition component. Finally, Section
5 will provide the results of tests of the system.

Jacobs[18] presents GROPER in more detail, but with fewer experimental results. It also
discusses the psychophysical implications of this work.

2 Previous Work

Psychologists did much influential research on grouping before its recent use in machine vision.
Lowe[25] provides a useful summary of this work, and Kohler[22] discusses the origins of this
work by the Gestalt psychologists.

Witkin and Tenenbaum[42],[43], suggested the use of grouping in a computational frame-
work. They argue that when sections of an image share properties unlikely to occur by chance,
this indicates a probable causal connection. For example, two irregular but parallel curves in
an image might be tracks from a rake, but are unlikely to be unrelated.

Lowe has successfully incorporated grouping into an object recognition system. His system,
SCERPO, capitalizes on two advantages of grouping. First, he groups together edges thought
particularly likely to come from the same object. For example, Lowe argues that nearby parallel
edges will more often come from the same object than from randomly oriented edges. Second,
SCERPO looks for groups of edges that have some property invariant with the camera view-
point. For example, three edges that terminate at a vertex will do so regardless of an object’s
orientation. So, SCERPO needs to try matching three co-terminating image edges only to
triples of model edges that co-terminate. Such matches generate relatively few hypothesized
object positions.

This paper discusses a generalization of this approach to grouping. Like Lowe, we attempt to
analyze the image formation process to determine which groups of edges will have the greatest
likelihood of coming from a single object. We extend Lowe’s work by providing a general
grouping system that can form arbitrarily large groups of edges that do not necessarily have
some special property such as parallelism or co-termination.

Many other recognition systems have used more ad-hoc methods of grouping than Lowe’s.
We will discuss two types of recognition systems, constrained search and alignment. Constrained
search recognizes objects with a backtracking search through the space of all mappings between

Figure 1: Recognition using grouping. In the upper left corner is a picture of objects cut out of
paper. The upper right shows line approximations to the edges found in the image. The lower
left shows the groups of convex edges found that contain four or more lines longer than ten
pixels. The lower right shows the three objects found by indexing into a data base of sixteen
objects (shown in Figure 13) using individual groups. Some big groups contain edges that all
come from a single object, but do not lead directly to the recognition of that object. That may
be because those edges do not provide enough information or contain edges detected with too
much error. (continued in Figure 2.)

Figure 2: Next, the grouping system selects pairs of convex groups of edges for indexing. The
top pictures show the first two pairs chosen. The next two pairs each match a single object. So,
after indexing with eleven large groups of edges, and four pairs of convex groups, the system
has found five of the eight objects in the image.

5

Figure 3: These pictures show comparable performance on a complex image of three-dimensional
objects. Our system cannot recognize these objects, so we simply show the groups of edges
selected by grouping. In the upper right are line approximations to the edges found in the
image on the left. The lower left shows the convex groups that contain four or more edges,
including groups from the telephone, apple, umbrella, mug and tupperware. On the lower right
hand, and in Figure 4, we show the first five pairs of convex groups of edges chosen by the
grouping module.

Figure 4: The second through fifth pairs of convex groups chosen by the grouping system, from
the image in Figure 3. The groups on the left each come from a single object, the hammer and
the phone cord. The group on the upper right has edges from the sandwich and phone cord.
The edges in the lower right come from the folds and stripes of the sweater.

image and model features, looking for consistent ones. Some systems may explicitly calculate
a transformation of the model that best aligns it with the image features at each node of the
search tree. Or, they may save time by only looking at the pairwise consistency of matched
features. Goad[10], Bolles and Cain[3], Brooks[4], Grimson and Lozano-Pérez[11], Van Hove[38]
and others perform constrained search.

Grouping may tell us which parts of the search tree to explore first, or allow us to prune
sections of the tree in advance. For example, Grimson and Lozano-Pérez cluster matches
between image and model features into groups using the Hough transform. This allows them
to start with the most promising clusters, and to avoid some collections of matches that could
not lead to a correct answer. Bolles and Cain develop hypotheses by only considering sets
of matches in which all the image features are nearby. Brooks groups together edges that all
appear to come from the same generalized cylinder, partly to reduce the amount of search
needed.

Grimson[13] has shown the importance of grouping to constrained search. He shows that the
expected complexity of his system, using edges that all come from one object, is quadratic. But
the complexity of recognizing objects in an unsegmented, cluttered environment is exponential
in the size of the correct interpretation. Grimson and Huttenlocher[14] similarly show that the
Hough transform becomes inaccurate in cluttered domains without grouping.

Alignment approaches work by matching a few image features to model features. Each
match suggests an hypothesis about the location of the object model in the image. Some
systems then perform a verification step on each hypothesis. Ayache and Faugeras[1], Lowe[25],
and Huttenlocher and Ullman[16] do this. Other systems cluster the hypotheses and pick the
location of the object that the most hypotheses support. Thompson and Mundy’s[34], and
Tucker et. al.’s[35] systems takes this approach.

As previously mentioned, Lowe uses grouping to focus on only some collections of image
edges, not considering others. Huttenlocher and Ullman[16] also use some grouping to focus
first on collections of image features that seem likeliest to come from the same object.

Past systems have used these approaches to grouping because of the speed-ups that grouping
brings. Grouping becomes even more important as we address more complex domains. The
recognition of non-rigid objects requires greater search than the recognition of rigid objects, as
Grimson[12] and Ullman[37] discuss, and using a library of objects requires more search than
looking for a single object. However, grouping need not grow any more difficult under these
conditions, because a bottom-up approach, like GROPER’s, does not depend on the properties
of the objects sought.

More recently, based on this work, Huttenlocher and Wayner[17] have implemented another
grouping system based on convexity. They suggest an improved method of finding the simple
convex strings which we describe in Section 3.1. They employ a Delauney triangulation to find
these simple convex groups more efficiently. Their approach also allows different criteria than
proximity to be used in determining which simple groups to find.

Shashua and Ullman[33] present a system that finds curves that globally minimize a weighted
sum of the total curvature of the curve and the total length of gaps in the curve. Along these
lines, a number of other systems attempt to extract meaningful curve segments from an image.

Mahoney[26] describes an algorithm for extracting smooth curves. The focus of this work is
on developing an efficient parallel algorithm, and on deciding between competing possibilities
when two curves overlap. Cox, Rehg, and Hingorani[7] describe a system that will partition
the edges of an image into collections of curves. These curves will tend to be smooth, and may
contain gaps. A Bayesian approach is used to find the curves that are likeliest to be the noisy
images of smooth, connected curves in the scene. Zucker[44] and Dolan and Riseman([8]) also
group together smooth image curves with small gaps. Other systems have found curves in the
image that may be grouped together based on collinearity, (Boldt, Weiss and Riseman[2]), or
cocircularity (Saund[31]).

GROPER’s recognition system uses groups to index into libraries of objects. Several pre-
vious systems have also addressed this problem, including Knoll and Jain[21], Kalvin et. al.
[20], Turney, Mudge and Volz[36] and Wallace[39]. Wallace’s indexing system closely resembles
GROPER’s, but does not take error or occlusion into account. Kalvin et. al.[20] have used an
indexing system developed by Schwartz and Sharir[32] that handles distinctively curved, contin-
uous sections of object contours, but does not combine information from unconnected sections
of an object’s perimeter. There has also been a good deal of work recently on using indexing to
recognize planar or 3-D objects in 3-D scenes, including: Lamdan, Schwartz and Wolfson[23],
Lamdan and Wolfson[24], Weiss[41], Forsyth et al.[]9], Clemens and Jacobs[6], Jacobs[19] and
Wayner[40].

3 How GROPER performs Grouping

This section describes how GROPER decides on the likelihood of a particular group of edges
coming from a single object. But we first outline GROPER’s recognition system to explain
what tasks the grouping module must perform.

GROPER begins by locating edges in an image using the Canny[5] or Marr-Hildreth[27]
edge detectors, and approximating these edges with lines. Next, it finds connected, or nearly
connected lines that form convex curves. Convex groups are likely to come from a single object,
and provide useful primitives for further grouping. Some convex groups may allow direct
recognition of an object, but most are not distinctive. So GROPER calculates a measure of
the likelihood that a single object produced the edges in each pair of simple groups. From this
GROPER determines the order in which it considers these pairs. Sometimes a pair of simple
groups may match a large number of known objects. In this case, GROPER needs to know
about more groups that go well with these two.

When GROPER finds an object it removes from future consideration all image edges match-
ing that object. This simplifies the grouping needed to find additional objects.

This approach to recognition means that grouping must perform three tasks. It must find
simple, convex contours. It must determine how likely any pair of convex contours is to come
from the same object. And it must extend these pairs of contours when necessary, by adding
additional convex contours.

The fact that GROPER, uses grouping as part of a search has an important implication.
Grouping need not work perfectly. If GROPER tries a pair of convex contours that do not

Figure 5: Left: some straight lines. Right: the convex groups they form, circled, and offset
slightly from their original position.

come from the same object, this group will not lead to a verified hypothesis, and GROPER will
try another. We aim to reduce, not eliminate search.

3.1 Simple Groups

GROPER forms all convex groups of line segments that meet two criteria: The lines in a group
must have been producible by a convex curve, allowing for a small amount of error. And a line
segment is attached to a group only when one of its end points is closer to an end point in the
group than to the end point of any line segment outside the group. This bridges small gaps
produced by the edge detector. Some edges will appear in two simple groups, and groups may
have a single edge. Furthermore, assuming that groups comes from convex sections of a objects
tells us on which side of a group the object lies.

GROPER will form simple groups in which figure and background are reversed, and not
all the edges come from the same object, when one object occludes another. This does not
present a problem as long as each edge also appears in a group with edges from the right
object. Occasionally GROPER fails to put an edge in any correct groups, which means that
GROPER can not use that edge to help it recognize an object. Figure 5 shows an example of
some line segments and the simple convex groups that result from them.

3.2 Combining Simple Groups

GROPER estimates the likelihood that two convex groups came from the same object, using
the distance between two groups, and their relative orientation. By distance, we mean the

10

minimum length of object perimeter that could connect them. We describe relative orientation
later by dividing orientations into three classes. To do this we only use the first and last edges
in each group. We reason that different distances and orientations will occur most frequently
depending on whether groups come from the same or different objects.

We do not suggest that these are the most important clues to the likelihood that two groups
of edges came from the same object. For example, the pattern of intensities in the image between
the two groups tells us much, as do parallelism or symmetry. Our goal here is to understand
as well as possible just two pieces of the grouping puzzle before attempting to combine them
with other information.

3.2.1 The Probabilities that GROPER Computes

GROPER calculates the likelihood that two groups come from the same object by estimating
four probabilities that influence this likelihood: P(d|0O1 = O3), P(d|O1 # O3), P(t|d,01 = O,),
and P(t|d,01 # O3). d stands for the distance separating the groups, ¢ stands for their relative
orientation. 07 = O3 indicates that the objects that produced groups one and two are the
same. 01 # O indicates that the two groups came from different objects. Bayes’ rule tells us
that:

P(O, = 03]d,t) =

P(d|01 = 02) * P(t|d,01 = 02) * P(Ol = 02)
P(d|01 = 02) * P(t|d,01 = 02) * P(Ol = 02) + P(d|01 7£ 02) * P(t|d,01 ;é 02) * P(Ol 7£ 02)

In practice we can ignore the terms P(O; = O3) and P(O; # O3), because we only use
P(O, = 03]d,t) for comparing different combinations of groups to decide which pair to try
first. To see this, note that:

P(Ol = 02|d7t) < P(Oi = Oéldlvt/)
iff
P(d|01 = 02) * P(t|d, 01 = 02)
P(d|01 = 02) * P(t|d,01 = 02) + P(d|01 7£ 02) * P(t|d.,01 7£ 02)
- P(d01 = 03) x P('|d', 01 = O3)

P(d'10y = 03) » P(U'|d', 01 = O3) + P(d'|0y # O3) + P('|d", 01 # 03)
because P(O1 = O3) = P(O} = 0%) and P(O1 # O2) = P(O] # 0%). We call this fraction
L(O1 = O3), and it measures the relative likelihood that groups one and two come from the same
object. To find it, we only need to calculate P(d|O1 = O3), P(t|d,01 = O3), P(d|O1 # O3),
and P(t|d,01 # O3).

The next two subsections will discuss the problem of determining these four probabilities.

We have examined a simple domain of random two-dimensional objects to gain intuitions about
what factors are important in determining these probabilities. These intuitions allow us to
generate some reasonable hypotheses, whose true test is their empirical performance on real
images. Even an analysis of a simple domain reveals that L(O; = O3) depends on characteristics

11

A

Circles

Figure 6: The four graphs on the left show the lengths of occlusions that occur from ran-
domly intersecting random objects. On the right is the distribution resulting from randomly
intersecting circles.

of the scenes we view such as the number of objects that appear in scenes, and their sizes. If
these factors were crucial, we would need to tune parameters of the system for different types of
scenes. In Section 5 we use two methods to show that this is not the case. First, we successfully
test the system on images that have a wide variety of characteristics. Second, we test the system
with a variety of parameters, and show that the system’s performance is not sensitive to these
variations.

3.2.2 Distance

To determine P(d|O; = O3) we must understand what causes some distance to separate two
groups of edges that come from the perimeter of the same object. Examining the lengths of
occlusions of objects tells us about one common cause of this separation.

Different collections of objects produce occlusions of different lengths. We have tried running
GROPER using different assumptions about this distribution, but to get an idea of which
distributions to test, we have done two things. First, we have generated occlusions by randomly
positioning random polygons. Second, we have found analytically the lengths of occlusions
produced by randomly positioned circles.

As explained in Appendix A, we generated random polygons with different numbers of
convex parts. We then randomly oriented these objects within a rectangle, producing occlusions,
and measured the distance between the beginning and the end of each occlusion. Figure 6 shows
that short occlusions occur much more often than long occlusions, and that the number of points
of concavity in an object does not seem to influence the lengths of occlusions much.

To find a different distribution worth considering, we found the lengths of occlusions that
occur when we randomly locate in the plane circles of random radii. Integral geometry tells

12

us that of all convex shapes, circles produce occlusions that maximize the expected amount
of object perimeter covered up (see Santalo[30], for example). This suggests that circles will
produce an extreme case: the longest occlusions. Appendix B shows that for circles:

P(lengthofocclusion = D) =

oL/ D D? ey 11 (D) D h-12 +1 1
- = - —— — ——Cos — | - —CO0S —=+ -
2 4 8 Df\4 [{_Dp2\ 2 D 4 /%_1

Figure 6 graphs this distribution.

We can see that circles produce a distribution different from random polygons, but with a
similar shape. This provides us with a reasonable range of possibilities. For most experiments,
we use P(d|07 = 03) = (MazD—d)?, with Maz D, the maximum object diameter, equal to 300
pixels. This function has a shape between that of occlusions caused by circles and occlusions
caused by random objects. We also tested GROPER using the distribution of occlusions caused
by circles.

GROPER estimates P(d|0O; # O3) by combining two possibilities. The groups may be
randomly located within the image, assuming that different objects have independent random
locations. Or, the location of the end points of the two groups may stem from a single cause.

If the two groups have independent locations, we can think of this problem as one of ran-
domly placing two line segments, each with end points a and b, in the plane. We then take
the minimum of the distance between the two points marked a, and the two points marked b.
For short line segments, this distribution increases linearly with the distance. So, GROPER
estimates this distribution as:

2rd 2d

TMazDiameter? MazDiameter?
for d < MazDiameter.

Alternately, two groups of edges from different objects may not have independent locations.
Consider a simple case. The end point of one group may result from the other group occluding
it. Suppose the two objects have the same reflectance. Then the edges produced by the two
objects will terminate at the same place, with a point of concavity separating the edges into
two simple groups. Two factors will influence the impact of such an occlusion: the probability
of such an occlusion, and the distances between the groups when such occlusions occur.

We linearly combine our previous analysis with an analysis of two groups formed by a single
occlusion, using the probability of such an occlusion occurring. In the case of an occlusion, one
of the groups ends where the other begins. So the distance between them equals zero, unless
something else occludes them both. If that happens, the distribution of the distance between
the two groups will depend on the length of the second occlusion, a distribution we have already
analyzed. So we use the following estimate:

2d

Maz Diameter?

P(d|01#Og)zk*P((ﬂOlIOQ)-F(l—k‘)*

where k is the probability that two groups of edges from different objects intersect. We used a
value of k = .2 as a default, also trying values of £ = 0 and k& = .5.

13

. A
intl nt2
~12—

\/

Figure 7: Two groups with a {ypes orientation, and the variables that describe them.

3.3 Orientation

To analyze the effect of orientation on the likelihood of groups coming from a single object,
we divide orientations into three categories. We say that two groups have a type; relationship
if they could come from a single convex section of an object. They have a {ype; relationship
if they do not have a type; relationship, but could come from adjacent convex sections of an
object. They have a types relationship otherwise. This description proves useful because it
makes it easy to reason about objects in terms of their convex parts. Many natural objects
have a few convex parts, and much of our perception of objects seems to occur in terms of their
convex parts (see Hoffman and Richards[15]).

Another way to think about types is to consider what we will call the projection of a group.
Intuitively, projection refers to the area pointed to by a group of edges. More precisely, consider
the following three half-planes. First, the line defined by the beginning and end points of a
group forms a half-plane that does not include the group. Second and third, the first and last
lines in the group define half-planes that include the edges of the group. We call the intersection
of these three half-planes the group’s projection. Two groups have a type; relationship if each
group falls in the projection of the other. They have a {ype; relationship if their projections
intersect.

To estimate the likelihood of different {ypes occurring we look only at four variables that
describe the beginning and the end of each group. [; stands for the distance between the
beginning and end of group one, and a; for the angle between the first and last lines in group
one. We define Iy and ay similarly for group two. Figure 7 shows an example of these four
variables, and two others, tnty and inty, that we will use later.

We now obtain estimates for the two likelihoods:

L(t|d,01 = O3) = P(typelly,ls,a1,a2,d,01 = O3),

L(t|d, 01 # O2) = P(typell1,ls, a1,a2,d,01 # O3)
and use these likelihoods in place of P(t|d, 01 = O3) and P(t|d, 01 # O3).
These two likelihoods do not exhaust all sources of information about the influence of relative
orientation on the probability that two groups came from the same object. For example, the

fact that two groups have a {ype; orientation does not fully describe their relative orientation.
And we would need P(ly,l3,a1,a2|d,01 = O3) and P(ly,l3,a1,a2|d,01 # Oz) to compute

14

P(tld,01 = O3) and P(t|d,01 # O3), information that could be used in grouping. We have
considered the probabilities of different types occurring because these seem the most easily
understood, and the most useful.

We determine these probabilities for each of three possible types. We start with the prob-
ability of types occurring when 07 = O3. For each type, we divide the probability into three
parts. What if the two groups actually come from the same convex section of an object (ab-
breviated “same”)? What if they come from adjacent sections (adj)? What if they do not
(notadj)? This creates nine subproblems.

Many of these nine problems have simple answers. For example, P(types|adj,d, !y, l2, a1,
az, 01 = O3) equals 0, since if two groups come from adjacent convex sections of an object, they
can not look as if they could not come from adjacent convex sections. Two other probabilities
also equal zero, while P(type;|same,d, 1,13, a1,a2,01 = O3) equals one.

P(typ€1|d7 117127(1170’2701 = 02)

= P(typer, samel|d,ly,l3,a1,a2,01 = O3) + P(typer,adj|d,li, 3, a1,a2,01 = O3)
—I_P(typel?nOtadj|d7117127a17a2701 = 02)
= P(typer|same,d,ly,lz,a1,a3,01 = O3) * P(same|d,ly,l3,a1,a3,01 = O)etc....

However, probabilities like P(same|d,ly,l3,a1,a2,01 = O3) will depend on the nature of the
objects we expect. As before, we handle this by trying different sets of values for these prob-
abilities to show that performance will not depend too delicately on the values we choose.
As a default, we set P(samel|d,l1,l3,a1,a2,01 = O3) = P(adjld,l1,l3,a1,a2,01 = O3) =
P(notadj|d,ly,13,a1,a2,01 = O3) = %, but we also tried setting each probability to .5, while
setting the remaining two to .25.

We still must find the distributions of the probabilities that do not have obvious values,
such as P(type1|adj, d,ly,lz,a1,az2,01 = O3z). To do this with a simple analysis, we assume that
the convex groups from an object have independent, uniform random orientations. Since we
also assume that groups from different objects have independent, uniform random orientations,
this tells us that: P(type;|notadj, d, 1,13, a1,a2,01 = Oz) = P(type;|notady, d,ly,13,a1,a3,01 #
0O3), for i = 1, 2 or 3. But groups from adjacent convex sections of an object can not appear
to come from non-adjacent convex sections, telling us:

P(typezladjv d7 117127(117@2701 = 02)

P(typei|adj7d7llv127a17a2701 7£ 02)
P(typei|adj,d,li,ly, a1,a2,01 # O3) + P(lypez|ady, d,li, 1z, a1,a3,01 # O3)

fori =1or 2.

We now consider the orientations produced by randomly located groups of edges when
01 # O3. To estimate the probability that group one falls in group two’s projection, GROPER
subtracts the angle group one presents to group two, a, from the angle of projection, 8, and
divides by 27, or uses 0 if & > 8. GROPER determines these angles in two ways. If group two

15

/>
-

G-
e

e
=

Za

Figure 8: Two groups with a type; relationship. “t” represents the aspect the right group

[

presents to the left. “a” is the angle of projection of the first group. The probability that the
second group falls in the first’s projection is approximated by “2—::

—_ ——— e . L = =

Figure 9: Finite projection. After rotating the right-side group to fall in the left’s projection,
“t” is the aspect the right group presents, and “a” is the left group’s angle of projection. The
probability that the right group falls in the left’s projection is again approximated by “2—::

16

R

7
p L

)B

Figure 10: A and B have a type; relationship, and seem more likely to come from the same
object than A and C, which are the same, but have a type; relationship. These go better
together than A and D, which have a types orientation.

has an infinite projection, @ is the angle formed by its first and last edges, that is a¢;. « is the
angle formed by lines from the first point in group two to the first and last points in group one.
If group two has a finite projection, then GROPER finds the point, p, where the lines defined
by group two’s first and last edges intersect. # equals the angle formed by lines from p to the
first and last points of group two. To find «a, we rotate group one so that it falls inside group
two’s projections, without altering its distance from group two. Then, « is the angle formed by
lines from p to the beginning and ending of group one. If group one does not fit inside group
two’s projection, GROPER assigns a zero probability to its randomly falling there. Figures 8
and 9 illustrate these probabilities.

Next, to find the probability that group two falls in group one’s projection, we assume this
probability is independent of the previous one, and calculate it in the same way. This allows
GROPER to estimate P(type1|d,li,lz,a1,a2,01 # O3) by multiplying these two probabilities
together.

To find P(typei|d, 1,1, a1,a2,01 # O3) we look at the simple case where the two groups
have only a negligible size. In this case, we find in Appendix C that:

T —ap —ay+ 2
P(typ€3|01 ;é 027d, 1171276117@2) = 2 - 2

If either group has a finite projection, GROPER uses an angle of 0 for that group.

GROPER finds the probability of {ypes occuring using the probabilities of type; and types
occurring.

This approach yields some intuitively satisfying results. For example, the above probabilities
imply that, all other factors being equal, groups with a lower {ype of orientation have a greater
chance of coming from the same object. Figure 10 shows an example.

GROPER uses one more piece of information to evaluate the likelihood that two groups
came from the same object. When they have a {ype, orientation, GROPER uses the distance
from the groups to the intersection of their projections. We call the distance from group one to
group two’s projection tnty, and define inty similarly for group two. See Figure 7 for an example.

17

Figure 11: Groups B and C seem to go together better than groups A and B. The same distance
separates each pair, but the distance to the intersection of their projections differs greatly.

The greater these distances, the less the probability GROPER assigns to the hypothesis that
the two groups came from one object.

GROPER uses this information because of psychophysical intuitions. For example, groups
A and B in Figure 11 differ from B and C in that the projections of B and C intersect
closer to the groups. Because of this difference the groups on the left seem to go together
better. Section 5 shows results that indicate that this constraint improves GROPER’s per-
formance considerably. We use these probabilities by multiplying L(typeq|d,01 = O3) by
P(inty|adj,d,01 = O3) * P(intz|adj,d,01 = O3), and multiplying L(typez|d,01 # Oz) by
P(int1|d,01 7£ 02) * P(Z'fbt2|d701 7£ 02)

The likelihood of groups coming from the same object should vary inversely with ¢nt; and
intz, but we do not know at what rate. So, as a default we have used P(int;|d,01 = O3) =
MazP — d and P(int;|d,01 # O3) = 1, normalized to be a probability distribution. Maz P
stands for the maximum diameter of a convex part, which we set to 150 pixels. We have also
tested GROPER using P(int;|01 = O3) = (MazP — d)*, and MaxzP = 75 pixels. Two things
are clear, whichever distribution we try, however. When only a small distance separates the
end points of two groups, then tnt; and iniy; will have low values for most orientations of the
groups, and so provide little information. Hence in these cases, GROPER does not attempt to
use this information. And secondly, when int; exceeds Maxz P, the two groups could not really
come from adjacent convex parts, and should be treated as having a types relationship.

3.4 Producing Larger Groups

When two groups do not provide enough information to allow GROPER to recognize an object,
GROPER combines other groups with the original two, and estimates the probability that
each triple of groups came from a single object. It does this by taking the maximum of:
L(Ol = 02) * L(Ol = 03), L(Ol = 02) * L(02 = 03), and L(Ol = 03) * L(02 = 03)

GROPER does place one restriction on this calculation. Previously, for the distance between

18

two groups, GROPER used the minimum distance from the start of one group to the end of
the other. We do not want to hypothesize a connection between the start of group one and the
ends of both group two and three. So we use the distance from the start of group one to the
end of group two, and from the end of group one to the start of group three, and then try it
the other way around, using the maximum probability that emerges.

4 Recognition

We now briefly discuss GROPER’s recognition component. This consists of indexing and ver-
ification modules. GROPER indexes into a table that describes the relationships between all
pairs of edges in each model. Verification uses matches between image and model features to
solve for the location of the model, and then looks for additional matches. The entire system
performs the following steps:

1. Summarize polygonal models of all known objects in a look-up table.

2. Make line approximations to all the intensity edges in an image.

3. Form simple convex groups.

4. For every convex group with four or more edges, perform steps seven and eight.

5. Form a pool of all pairs of simple groups. For each pair, estimate L(O1 = O3).

6. Choose the group from the pool thought most likely to have come from a single object.
7. Use indexing to see which model edges might match this group of image edges.

8a. If no modeled edges match the image edges chosen, return to step six.

8b. If only a few sets of model edges match these image edges, perform a verification step
on set of matches. Remove from future consideration the edges matched to a recognized
object, and return to step three.

8c. If a group could match many objects, pair it with all the other groups and add each
combination to the pool. Return to step six, choosing the next five groups to explore
from these new ones.

We have discussed grouping. Edge detection is done using the Canny[5] or Marr-Hildreth[27]
edge operators. Straight line approximations to edge contours are found using a standard
technique. We connect the start and end of a connected string of edge pixels with a line, then
break this line at the point of maximum deviation. We then repeat this process recursively, until
each line approximates edge contours to within two pixels (see Pavlidis and Horowitz[29] for a
description of this type of algorithm). In the remainder of this section we describe GROPER’s
indexing and verification.

19

max]l

minl

angle

os=-g

oMo S

Figure 12: Two edges are in bold. Five parameters describe their relationship.

Indexing determines the sets of edges from modeled objects that might have produced a set
of image edges. Verification finds the position of an object in the image using a match between
image edges and model edges. This position then allows GROPER to locate additional edges
the object might have produced.

Since short lines found by the straight-line approximator tend to be quite uncertain in their
angle, GROPER discards all edges less than ten pixels long before attempting recognition.
Grouping does use these edges?.

Because indexing only guides the recognition process, we do not mind if indexing produces
some false positive matches. Later, verification will perform a rigorous test and reject them.
However, we do not want indexing to miss a correct match, for then we may abandon a group
that could lead to recognition.

GROPER uses an indexing scheme closely related to one proposed independently by Wallace[39].
We can describe the relationship between two edges with five variables. We can then fill a five-
dimensional array with the values that describe all pairs of edges in the object models in our
library. To find objects that might have produced two edges, we calculate these five variables
and look in the table. For more than two edges, we take the intersection of the result of a table
look up for each pair.

The above account leaves out some details. First, we must worry about sensing error.
GROPER makes an entry in the table for every possible set of variables that each pair of edges
might produce, given some allowed error. Secondly, GROPER uses two ways of describing the
relationship between two edges. If the edges are not parallel, GROPER finds the point where
they would intersect. It then calculates the angle between the edges, and, for each edge, the
minimum and maximum distance from the edge to this intersection point (see Figure 12). For
parallel edges, GROPER uses the angle between the edges (that is 0), the distance between
them in the direction of their normals, the minimum and maximum distance from the beginning
of one edge to the beginning of the other in the direction of the tangent, and the length of the
second edge. Finally, GROPER does not really use a five-dimensional array. It uses a three-

2 A previous implementation of GROPER discarded short edges before performing grouping. Primarily because
of this, some of the results reported in Jacobs[18] differ significantly from those described in Section 5.

20

dimensional array of angle, and the distance of each edge to the intersection point. For a pair of
edges, it makes an entry for every triple of angle, distance from edge 1, and distance from edge
2, that any points on the two edges might produce. It does this because occlusion might cause
only a portion of an edge to appear in the image. Then to find the model edges that match
a pair of image edges, GROPER combines the results of two lookups, one using the smallest
distances from each edge to the intersection point, the other using the largest distances.

This parameterization makes it easy to check for the global consistency of a match, not just
its pairwise consistency. If we perform a table lookup for every pair of edges in a group and
just intersect the results, we might get a match in which, for every pair of image edges some
transformation of the image will align them with the corresponding model edges, but no single
transformation exists that will align all the image edges with the model edges. For more on this
point and its significance, see Grimson and Lozano-Pérez[11]. The parameterization GROPER
uses allows it to keep track, not only of whether two image edges could match two model edges,
but also, of which parts of the model edges they could match. This allows GROPER’s indexing
system to enforce global consistency on the matches it finds. Jacobs[18] describes the method
used to do this.

This indexing system allows GROPER to make use of any collection of edges. It also uses a
good deal of space. The amount of space required increases linearly with the number of object
models, and is proportional to the square of the number of edges in each model. However, the
number of table entries GROPER makes for each pair of model edges is quite large. This is
partly because GROPER takes a simple approach to finding the table entries that does not
miss any correct entries but makes many unnecessary ones. As a result, a table containing
sixteen objects that had from six to thirty-one edges each, required over 400,000 table entries.
A typical object, with ten edges, required over 14,000 table entries. This space requirement
makes it impractical to use a library with more than about a dozen objects.

Verification uses the matches produced by indexing to find a rotation and translation that
maximally aligns the model edges of a match with the image edges. GROPER does this using
a technique developed by Grimson and Lozano-Pérez[11]. It then looks for image edges close
to the proposed location of the object model. If GROPER can in this way account for a given
percentage of an object’s perimeter it decides it has found the object.

Deciding when to perform verification offers a trade-off between accuracy and speed. If we
perform verification when a group of edges matches many model edges, it will take a long time,
but if we do not perform verification we risk the possibility that further grouping will fail to
turn up any additional edges that will lead to a solution. We perform verification when a group
of edges matches five or fewer sets of model edges, but have also found that a threshold of
fifteen matches produces similar results.

5 Results

We test GROPER to measure the amount its grouping system can reduce the computation
needed to recognize objects, and can improve the accuracy of a recognition system. We mea-
sure this for images of two-dimensional, polygonal objects by comparing GROPER’s perfor-

21

mance to that of an identical recognition system that does not use grouping. We also run
GROPER’s grouping system alone on images of curved, three-dimensional objects. We find
that GROPER’s grouping system produces dramatic improvements in the performance of a
recognition system. And, we find that GROPER’s grouping system works almost as well on
images of real three-dimensional objects as it does on images of simple two-dimensional objects.
This leads us to expect that GROPER could produce similar improvements in the recognition
of three-dimensional objects.

Finally, we vary the parameters of GROPER’s grouping system, as described earlier, to
show that the system does not depend on a precise tuning of these variables.

5.1 Recognition

SEARCHER uses all GROPER’s code except its grouping module. Grouping orders GROPER’s
search through the space of collections of image edges. SEARCHER performs a backtracking
search through this space instead. Like GROPER, when SEARCHER finds that some edges do
not match any known object, it does not consider any other collections of edges that include
these. And, like GROPER, when SEARCHER recognizes an object it removes from consider-
ation any edges that this object can explain. Since SEARCHER has no way to tell the object
side from the background side of an edge, it must consider both possibilities in its search, just
as GROPER imposes figure/ground judgments on its groups. By replacing GROPER’s guided
search with an undirected search, SEARCHER shows us how much GROPER’s grouping com-
ponent adds to its performance.

We tested GROPER and SEARCHER on three sets of images of increasing difficulty. First,
we used five images of six objects and a library containing models of those six objects. Then we
used a library of sixteen objects. In the second test we used five images, each containing eight
of these objects. Finally, we used three images containing all sixteen objects in the library.

Figure 13 shows these objects. They were cut out of black paper and placed on a light
background. Figures 14 and 15 show examples of these images and the objects found in them.

Initially, we used loose error bounds for indexing and verification. We allowed for an error
of seven pixels in the sensed location of an edge, and an error of sin({;) in the sensed angle
between two edges. And, the systems accepted any match that accounted for 25% of an object’s
perimeter. We chose these bounds because informal experiments showed that tighter bounds
occasionally caused GROPER to miss an object.

Figure 16 shows the results of these experiments. Occasionally, a system would decide that
a collection of edges could match two or three different objects, and that no additional edges
would narrow down the choice. We counted such a decision as correct if one of those objects
was correct.

Although GROPER performed well on the first two sets of images, SEARCHER performed
terribly, often finding incorrect matches that still fit the loose error bounds we had chosen.
To obtain a better comparison we tuned these bounds to optimize SEARCHER’s performance.
We ran SEARCHER on the first set of images using 48 sets of error bounds. Error in distance
varied between 7, 5, 4 and 3 pixels. Error in angle varied between sin({5), sin({=), and sin(J5).

10 15 20
And we tried object perimeter thresholds of 25%, 35%, 50%, and 60%. SEARCHER obtained

22

YUYy

object1 object2 object4

object5
object6
object9

object? object8 object10 object11

gbT\T

object12 object15 object16

Figure 13: The perimeters of the objects used in tests. The first set of tests used objects 3, 4,
8,9, 10, and 14. The second and third sets of tests used all sixteen objects.

23

Figure 14: The upper left is a scene from the first set of tests. The upper right shows straight
line approximations to the edges found. The lower left shows the objects GROPER found,
acccounting for 25% of the object’s perimeter, allowing for error of 7 pixels in distance, and

sin{s in angle. On the lower right are the objects that SEARCHER found.

24

Figure 15: An image from the third set of tests. Again, the picture on the lower left shows the
objects GROPER found, and the picture in the lower right shows SEARCHER’s finds. Three
hypotheses are overlaid where SEARCHER found three models that explained the same edges.

50% of each object was accounted for, with maximum errors of 3 pixels and sin{z radians.

25

Peri- Angle Dist System Test | False False Nodes

meter Error Error Positives| Negatives | Explored
25% | sin I1/10 | 7 pixels | GROPER 1 0 6 8.6
2 1 .6 394

3 6.7 6.3 370.3

SEARCHER 1 7.2 3.6 2,621.8

2 9 5 10,202.4

3 16.7 8.6 39,653.7

35% | sin II/15 | 3 pixels GROPER 1 0 .8 14.6
2 0 1.2 30

3 7 6 1,098.7

SEARCHER 1 0 0 17,510.2

2 2.2 6 41,579.2

3 5 2.3 226,031.7

50% | sin I1/15 | 3 pixels| GROPER 1 0 -8 14.6
2 0 1.4 29.2

3 .3 6.7 499

SEARCHER 1 0 2 19,260.6

2 A4 A4 45,911.2

3 7 1 252,420.7

Figure 16: This chart shows the average number of mistakes made per image. Nodes Fxplored
indicates the average number of indexing steps per image.

26

AN N\ AN

— ____:/ _: —
|
|
|

.

Z_/ Z_/

Figure 17: On the left, an hypothetical scene. In the middle, dashed lines show an incorrect
hypothesis that accounts for most of a square’s perimeter. On the right, an hypothesis that
seems more likely to be correct.

perfect performance with a distance error of 3 pixels, an angle error of sin({3), and a threshold
of 35%. Higher thresholds caused SEARCHER to miss some objects. We ran GROPER and
SEARCHER using these bounds on all three sets of images. These results also appear in
Figure 16. Again SEARCHER performed poorly overall. Finally we noticed that SEARCHER
did better with a perimeter threshold of 50%), so we also ran experiments with that threshold.

We can see that GROPER requires far less computation than SEARCHER. For example,
using the tightest error bounds, SEARCHER performs over 1,000 times as many indexing steps
as GROPER. In Section 5.3 we show that all of GROPER’s constraints play important parts
in this reduction in computation.

We will now discuss the effects of grouping on the errors a recognition system makes. We
will spend more time discussing error than speed, since it is a more complex issue. But the
main contribution of GROPER is the speed-up that grouping provides.

These experiments tell us that when we do not have error bounds that separate almost all
correct hypotheses from incorrect ones, GROPER has much better accuracy than SEARCHER.
This is because grouping allows us to accept hypotheses not just on the basis of how much of
an object’s perimeter it accounts for, but also on the basis of how well the image edges in the
hypothesis group together.

Figure 17 illustrates this point. Suppose we are looking for a square among the edges on the
left. The dotted lines in the center picture show one hypothesis, which accounts for most of the
edges of a square. But this hypothesis seems wrong. On the right, another hypothesis accounts
for less of a square’s perimeter, but seems correct. This is because the edges hypothesized on
the right to come from a square group well together. The edges in the center group poorly
together, and each edge in the hypothesis groups well with other edges. In fact, GROPER
would only consider the hypothesis on the right, while SEARCHER might try either one first.

This problem emerges when we select error bounds that some incorrect matches can satisfy.
Both GROPER and SEARCHER accept the first matches they find that satisfy their error
bounds. Many other systems do this too, since it greatly reduces computational requirements
(for example, Lowe[25], Huttenlocher and Ullman[16], Ayache and Faugeras[l], and Grimson
and Lozano-Pérez[11]). But this means that SEARCHER will frequently consider incorrect
matches that satisfy the error bounds before finding all the correct matches. On the other

27

hand, GROPER will first find the matches that satisfy the error bounds and that also contain
edges that group well together.

We found GROPER more robust than SEARCHER as error bounds varied. With optimal
error bounds, SEARCHER out-performs GROPER because GROPER’s grouping system causes
it to ignore some hypotheses. But it proved difficult to choose optimal error bounds, and they
varied between test sets. Moreover, slightly sub-optimal error bounds produced significant
errors in SEARCHER’s performance. For example, SEARCHER performed perfectly on the
1z), and accepting
matches that accounted for 35% of an object’s perimeter. On the second set of five images, these
error bounds produced three false negative errors, and eleven false positive errors. Changing
error bounds had much less effect on GROPER’s performance, and GROPER performed well

with weak error bounds. This does not tell us that GROPER performs more accurately than

images in test one, allowing a distance error of 3 pixels, an angle error of sin(

SEARCHER, but that grouping may offer a way of improving the accuracy of a recognition
system.

Furthermore, even though GROPER sometimes makes more errors than SEARCHER, it
always finds fewer false positive matches. False positive matches are harder to recover from
than false negatives, because we could always follow-up GROPER’s work with a more exhaustive
search of the edges for which it can not account.

Why does SEARCHER perform more accurately than GROPER, when they use tight error
bounds? Ironically, most of GROPER’s mistakes seem to occur when GROPER forms a group
of edges that all come from the same object, but one of them is sensed with error exceeding
the allowed bounds. As a result, the whole group can not match the object that produced it.
SEARCHER can find the object using just the accurately sensed lines.

5.2 Grouping

We have tested GROPER’s grouping component by itself on images of curved, three-dimensional
objects. We examined the thirty pairs of simple convex groups that GROPER thought most
likely to come from a single object. This tested the grouping constraints which form the heart
of GROPER’s grouping system. And the number of correct groups found gives us an idea of
the number of objects we might recognize by considering only thirty groups. We also noted the
total number of pairs of simple groups in each image, and the total number of correct pairs,
allowing a comparison between GROPER’s performance and a random search.

We used three sets of images of three-dimensional objects, and the images of two-dimensional
objects discussed in the previous section. Comparing these results shows that grouping performs
almost as well on three-dimensional images, leading us to expect comparable improvements in
a three-dimensional recognizer.

Figure 18 displays the results of these tests. There are two differences between the way we
handled two-dimensional and three-dimensional scenes. For two-dimensional scenes, we counted
a group as correct if all the edges came from the same object, and if GROPER correctly resolved
figure and background for each edge. For three-dimensional scenes, we counted a group as
correct only if all its edges came from variations in an object’s shape, not as a result of lighting.
In the two-dimensional scenes, lighting variations did not produce edges. So, edges from an

28

Number correct

Total number

Total number

pairs found Correct pairs Pairs

Two-Dimensional Test 1 7.2 19.6 564.8
Two-Dimensional Test 2 8.4 23.6 1018.0
Two-Dimensional Test 3 6.3 56.3 4547.0
Three-Dimensional Test 1 7.5 45.5 1331.3
Three-Dimensional Test 2 5 59.5 5613.0
6.7 * 9867.0

Three-Dimensional Test 3

Figure 18: The performance of GROPER’s grouping system. The six sets of images are de-
scribed in the text. For each set, we examined the 30 pairs of simple convex groups that
GROPER picked first. * indicates that these images contained so many edges produced by
lighting effects and complex objects that we could not accurately count all the correct pairs of

simple groups.

29

object’s perimeter, surface markings, or orientation discontinuities counted as correct. But if a
group contained edges produced by shadows or specularities, that group counted as incorrect.
However, we only looked at figure/ground judgements when an edge really came from an object’s
perimeter. Also, for two-dimensional scenes we smoothed images using a Gaussian with a sigma
of 1, during edge detection. For three-dimensional scenes, we found that a sigma of 3 worked
better.

Figure 18 shows that for images of two-dimensional objects, between 6.3 and 8.4 of the first
thirty pairs of convex groups selected by GROPER were right. This meant that GROPER
recognized many or most of the objects in an image with fewer than 30 indexing steps. For
the first set of tests on 3d objects, we formed four images of comparable complexity to the
2d tests. So these had six common objects, mostly without texture. Figures 19 through 22
compare GROPER’s performance on one of these 3d scenes with a 2d scene. On average,
GROPER found 7.5 correct groups in images of simple 3d objects. This means that some
objects produced more than one correct group. This is similar to the results obtained on
comparable images of two-dimensional scenes. Figures 19 and 21 show the large, single convex
groups found in these images, which are also important in speeding the recognition of objects.

Next, we ran the grouping system on two pictures of our lab. Figure 23 shows one of these
pictures. These images contained more pairs of convex groups, and a lower percentage of correct
pairs, than any of the two-dimensional scenes tried. Yet GROPER performed only slightly less
well on these images than it had on the most difficult images of two-dimensional scenes.

Finally, we tested three images containing non-rigid and translucent objects, obtaining
similar results. Figures 3 and 4 show one such scene, and the groups found in it.

These tests show little difference between scenes of three- and two-dimensional objects.
GROPER did find fewer correct groups when images contained more groups altogether, and
when fewer of these groups were correct.

These results indicate that GROPER could serve as a front-end module to systems that rec-
ognize three-dimensional objects in complex scenes, significantly improving their performance.
For example, Huttenlocher and Ullman’s alignment method can use pairs of vertices in the
image matched to model vertices to locate an object. GROPER could order pairs of vertices
based on how well they group together. Or, we could perform the type of constrained search
that Grimson and Lozano-Pérez use on subsets of the image data that GROPER has formed
into groups.

5.3 Varying GROPER’s Parameters

The theory of computation of grouping left some variables and probability distributions unde-
termined. We selected values that made intuitive sense, but we must still be concerned about
the sensitivity of the system to these choices. Partly, we have done this by first fixing these
parameters, and then testing the system on the 22 images described above. But another way to
insure that the system is not sensitive to the choice of parameters is by testing it with alternate
parameters.

For each parameter, we have selected a quite different value that also makes reasonable
intuitive sense. We have found that using these alternate parameters makes relatively little

30

Figure 19: Above, an image and straight-line approximations to the edges found in it. The
lower left shows the convex groups of four or more edges found in the image. The lower right
shows the first pair of convex groups chosen by the grouping system. These edges all come from
the wrench, but one comes from a specularity. This group would not count as correct. Figure
20 shows the next six groups chosen.

31

Figure 20: The second through seventh pairs of convex groups selected by the grouping system,
from the picture in Figure 19. The second and sixth pairs are correct.

32

Figure 21: Above, a picture of two-dimensional objects and line approximations to the edges
found. The lower left shows the convex groups of four or more edges. The lower right shows the
first pair of convex groups chosen by the grouping system, which is correct. Figure 22 shows

the next six pairs chosen.

33

) N

Figure 22: This figure shows the second through seventh pairs of convex groups selected by the
grouping system, from the picture in Figure 21. The second and seventh pairs are correct.

34

Figure 23: A picture of our lab, used in the second set of three-dimensional tests. On the right
are line approximations to the edges found in this image.

difference. We tried the following alternate values: For P(d|O; = O3), we used the distribution
of lengths of occlusions caused by a circle, where originally we used (MaxzD — d)*. For k,
the probability that two convex parts of different objects intersect, we used .5 and 0, instead
of .2. For the maximum object diameter we tried 150 pixels in place of 300 pixels, and for
the maximum diameter of a convex part we tried 75 pixels instead of 150. For the a priori
probabilities that two convex parts of an object come from the same, adjacent, or non-adjacent
sections, we had originally used % for all three values. Instead, we used % for each probability,
with % as the two corresponding probabilities. We also tried setting P(int;|adj,d,01 = O3) =
(Maz P — d)? normalized into a probability distribution, instead of P(int;|adj,d,01 = O3) =
MazP — d. Finally, instead of attempting to verify hypotheses when indexing turned up 4
matches, we used 15 matches as the threshold.

We varied these parameters one at a time, and then all at once. For this final test we used
k = .5 and the original values for the same, adjacent or non-adjacent part probabilities. We ran
GROPER with all these parameter settings on the the second set of images used in recognition
tests. We used error bounds of three pixels for distance, sin{z for angles, and we required
that GROPER account for 50% of an object’s perimeter before accepting a match. We chose
these values since they allowed SEARCHER to perform accurately. We reasoned that if poor
choices of parameters harmed GROPER it would still perform accurately, but would require
more computation. This proved true, simplifying the comparison between different choices.

We also ran GROPER with some of its grouping constraints disabled. We ran GROPER
without a distance contraint, without the intersection part of its orientation constraint, and
without any orientation constaint. Finally, we ran GROPER without any of these constraints.
This final system differed from SEARCHER because it still used small convex groups of nearly
connected edges as its primitives in a search, instead of single lines.

Figure 24 shows the results of these tests. For the most part, alternate parameters do
not make much difference in GROPER’s performance. Disabling any of GROPER’s grouping
constraints had a much greater effect.

The greatest change comes from setting k to .5 instead of .2. Since GROPER sets P(d|0O; #
03) = k* P(d|0O1 = 03) + (1 — k) ¥ t—r24——, increasing k has the effect of diminishing the

MazDiameter?”’

35

Parameters with values different from the defaults

Average number

of nodes explored

All default values 30.6
Distance distribution for circles 30.2
Distance to intersection constraint squared instead of linear 36.2
Probability parts intersect = 0 31.6
Probability parts intersect = .5 45.8
Max number of hypotheses we try to verify = 15 28.8
Max object diameter = 150 28.8
Max part diameter = 75 29.2
Probability groups same convex section = .5 49.9
probability adjacent = .25, probability non-adjacent = .25 '
Probability group same convex section = .25 26.6
probability adjacent = .5, probability non-adjacent = .25 '
Probability group same convex section = .25 9.0
probability adjacent = .25, probability non-adjacent = .5 '
Distance distribution for circles
Distance to intersection constraint squared instead of linear
Max number of hypotheses we try to verify = 15 29.0
Max object diameter = 150 Max part diameter = 75
Probability parts intersect = .5
Null distance constraint 78.8
Null Intersection constraint 63.6
Null Orientation and intersection constraints 64.8
No grouping constraints 459.8

Figure 24: The results of varying GROPER’s parameters.

36

strength of the distance constraint (for k£ = 1, P(d|Oy # O3) = P(d|O; = O3) and there is no
distance constraint). So, as k increases too much the distance constraint becomes less effective.
Since the system works well with & = 0 it seems that & adds an unnecessary complication to
the system.

These results also tell us that each of GROPER’s grouping constraints played an important
part in its success. Disabling either the distance or orientation contraints makes the system sig-
nificantly slower. Disabling both constraints produces a much slower system, although searching
through the space of convex sections of curves produces faster results than searching through
collections of single edges.

6 Conclusions

This research has aimed at producing a grouping system that can assist in the recognition
of three-dimensional objects in real scenes. Lowe has successfully done this by forming small
groups of edges that have a special relationship such as parallelism or co-termination. We have
attempted to use his basic approach to build a grouping system that orders the space of all
sets of edges. We have done this mainly by adding new orientation constraints that allow us to
estimate the likelihood that any set of edges all came from a single object.

We have built a grouping system, GROPER, using these constraints and found that it
performs well on real, complex scenes of three-dimensional curved objects, and that compa-
rable performance on two-dimensional scenes can result in a dramatic improvement in the
performance of a full recognition system. We have also shown that grouping can improve the
robustness of a recognition system. In situations where it is difficult to determine accurate error
thresholds, many correct and incorrect object matches may pass our error bounds. This can
occur because error thresholds are hard to determine a priori, and also because in some im-
ages some incorrect matches may account for more of an object’s perimeter than some correct
matches, for any error bounds. In these situations, grouping can provide a means of reduc-
ing mistakes, by leading a recognition system to discover correct matches that pass our error
thresholds before it discovers incorrect matches that also meet our error bounds.

GROPER’s grouping system arises from an attempt to understand the way that the image
formation process produces constraints on the location and orientation of image edges. This
analysis has led to some intuitions about what types of constraints can form an accurate group-
ing system. But it is the success of our implemented grouping system that provides evidence
that we have understood some aspects of the way that the world makes grouping possible.
This success suggests that the simplified world we have analyzed captures the most important
aspects of the real world.

A Making Random Objects

We built random objects out of random convex polygons. We wanted particularly to make sure
that we constructed shapes with a random size, because this seemed like the factor most likely

37

to influence the size of the occlusions produced by the object. So we selected the area of the
convex shape from a uniform random distribution from 0 to an arbitrary constant.

To determine the number of sides of a convex shape we picked a number between three and
seven, with each number equally probable.

Then, to construct a random convex polygon, we started with a randomly chosen triangle,
and added edges, one at a time, until we had enough. To make a random triangle, we chose a
base with a random length. We then picked a number between 0 and 7 for the angle between
the base and one edge, and a number between 0 and 7 minus the first angle for the angle
between the base and the second edge. To add an edge, we first picked one of the polygon’s
edges at random, and removed it. We connected the polygon again by adding two randomly
chosen edges, subject to the constraint that they must maintain the convexity of the polygon.
We then scaled the polygon so that it would have the appropriate area.

To form an object with a specific number of convex parts, we created each convex part
separately. To connect a convex part to an object, we randomly located each of them in an
image-sized space until they intersected. We then joined them at the points of intersection, and
removed all overlapping material.

B Occlusions Caused by Circles

This appendix derives the probability distribution of the lengths of occlusions caused by ran-
domly located circles. We assume that the radius of a circle is chosen from a uniform random
distribution between 0 and 1. We then generate occlusions by randomly locating two random
circles in the plane. If they occlude, then the distance from the beginning to the end of the
occlusion is the random variable we describe.

Call the radius of circle one, r1, and the radius of circle two, ry. Without loss of generality,
we can assume that circle one is centered at the origin, and that the center of circle two is no
further than 2 from the origin. Let d be the distance of the occlusion, and let a be the distance
separating the centers of the circles.

We wish to know P(d = D), the density function of d, given that an occlusion occurs. We
proceed by finding P(d > D|ry = Rq,72 = R3). Then we integrate over all values of Ry and
Ry, and divide by the probability that an occlusion occurs at all.

Suppose 11 = Ry and ro = Ry;. Without loss of generality, assume that R; > R;. Note

that when ¢ > Ry, a = \/R% — % + \/R% — %. This follows from simple geometry. When

a< Riy,a= \/R%— %—\/R%— %. So, when a = \/R%— DTZ)—I—\/R%—DTZ),d: D, and when

a = \/R% — %2 — \/R% — %2,(1 = D. In between these points, d > D. Therefore, d > D iff

\/R% - D2y \/R% D2 s> \/R% — DT2 — \/R% — %2. So P(d > D|ry = Ry, 73 = R3) equals
the probability that a falls in this range.

The area where the center of circle two can fall, creating a value of a in this range is

ﬂ'(\/R% — DTQ—}-\/R% — DTQ)?—W(\/R% — DTQ—\/R% — DTQ)Q, and the total area in which the center
of the second circle can lie is 47. Therefore P(d > D|ry = R1,73 = R3) = \/R% — DTQ\/R% — DTQ.

38

1 1 D2 D2
P(d > D) = /D /D \/R% — T R% — TdedRQ
Flar

Note that R, and Ry must be greater than % or an intersection of length D can not occur. So,

1/ D D? 2
P(d > D) = (5 1- T — ?COSh_IE)Q

To find P(d = D) we take the derivative of one minus this figure, which is:

This is the probability that d = D when the center of circle two falls within 2 of the center
of circle one. But only some of that time will an occlusion occur. So we must divide the above
figure by the probability that an occlusion occurs to find the probability that d = D given that
an occlusion has occurred.

An occlusion occurs when: Ry — Ry < a < Ry + Ry. That is, when the center of circle two
falls somewhere in an area of size:

F(Rl + R2)2 — F(Rl — R2)2 = 4R1R2

So the probability of an occlusion occurring is: Ry R, for a given Ry and R,. Since the radii
can range from 0 to 1, the total probability of an occlusion is:

1 1 1
/ / RyRydRydRy = =
o Jo 4

C The Likelihood of a type; Orientation

This appendix derives the probability of a type; orientation occurring between infinitesimally
small groups with uniform random orientations.

We will call the two groups A and B. A and B appear on points in the plane, which we will
also call A and B. If infinite, we will call the angle of A’s projection «, and of B’s projection 5.
Two ray’s will bound A’s projection. We will call them a; and ay. by and by will refer to the
rays that bound B’s projection. Without loss of generality, we can assume that A lies at the
origin, and B lies on the x axis. We will call the angle between a; and the x axis , and the
angle between by and the x axis ¢. Figure 25 illustrates these variables.

If either group has a finite projection, we can easily produce an answer. If group A has a
finite projection, then the two groups’ projections intersect only when point A lies inside B’s
projection. Since B’s projection has a uniform, random orientation, it will have a probability
of % of covering point A. Similarly, if B has a finite projection there will be a probability of

39

b2 a,
a9
b1 v e
B
B A X

Figure 25: Two tiny groups with infinite projections.

5~ of a type, orientation occurring. And if both groups have finite projections, they can not
intersect.

Assume that both groups have infinite projections. We will determine the probability that
these projections intersect by dividing the problem into eight different parts. First of all, we
will consider separately the cases when a@ < 7 and when a > 7. Then for each of those cases,
we will divide the possible orientations of A’s projection into four groups, depending on the
quadrant in which the ray aq falls.

First, suppose a < 7.

Suppose that 5 < § < m. The projections intersect only when either A falls in B’s projection,
or when by intersects a1. This happens if ¥ — § < @, i.e. if ©» < 8 + 5. This occurs whenever
¢ has a value between 0 and 7 + §. Furthermore, since # has a uniform distribution between

Z and 7, the projections will also have a fifty percent chance of intersecting if ¢ has a value

2
between 7 + 3 and 7 + 3. So the total probability of intersecting projections is:
T4B+2
27

Suppose that # < 7. A’s projection may fall in one quadrant. This happens when a < 6.
Or, A’s projection may fall in two quadrants. In the first case, the projections will intersect
whenever 0 < % and ¥ — f < 6. The chances that i achieves an appropriate value are:

(B+ a—;g) * % Furthermore a < 6, occurs with probability 1 — % So, the total probability of

a being less than 6, and the projections intersecting, is:

e

™ ™

40

In the second case, when @ < «, the projections intersect only when by or by lie in between
a1 and ay. This has an ot probability of occurring. So, over all, the probability that 8 will

27
be less than «, and that the two projections will then intersect is:

(a+05) 2a _ 202 4+ 203

- k —

21 s 272
Combining these two results, we find that, if # < 7, the probability of projections intersect-
ing is:

T a? 1

B+3+)50

Next, suppose a; falls in the quadrant where x is positive and y negative. In this case, a
makes an angle of a + (27 — @) with the x axis. An intersection occurs if B’s projection extends
anywhere within this range. This happens if 8 — a < %. If ¢» < 3, then A falls inside B’s
projection. So, the total chances of projections intersecting are:

T 1
(Z+a+ﬁ)§

Finally, suppose ay falls in the quadrant where x and y are both negative. First of all, B may
fall in A’s projection, with probability a%. Secondly, if this does not happen, an intersection

occurs if v > 8 — a, or if ¥» < 5. Given that B does not fall in A’s projection, § will randomly

range from 37” to 32—” — a. So an intersection occurs when ¢ falls in a range that varies between

7 to 27 and 37” — a to 27, or ¥ may fall in the range from 0 to §. Overall, the chances of this
happening are:

(r+0)+(5+P+a) 1 F-a

* * e
2 2T b)

When we add in the chances of A’s projection including B, we find that the total probability
of the projections intersecting is:
3T 28a a? 1
22 1 30 S Ty
(4 + +h T T)27r
a1 is equally likely to fall in any of the four quadrants, so, averaging the four results above,
we find that the probability of projections intersecting when a < 7 is:

P af
§‘|‘ﬁ‘|‘a—g
2

Similar, tedious reasoning produces the same result when a > 7.

Acknowledgements

I would like to especially thank Eric Grimson and Tomds Lozano-Pérez for allowing me to
use a lot of code from their recognition system. Eric Grimson also provided a good deal of

41

guidance and many useful suggestions reflected in this paper. My understanding of this topic
also benefitted greatly from discussions with Todd Cass, Dave Clemens, Liz Edlind, Tomds
Lozano-Pérez, Jim Mahoney, Shimon Ullman, and especially Whitman Richards. The image
processing was done on a hardware/software environment developed by Keith Nishihara and
Noble Larson.

General Motors generously provided me with support during much of the time I worked
on GROPER. This report describes research done at the Artificial Intelligence Laboratory of
the Massachusetts Institute of Technology. Support for the laboratory’s artificial intelligence
research is provided in part by an Office of Naval Research University Research Initiative
grant under contract N00014-86-K-0685, and in part by the Advanced Projects Agency of the
Department of Defense under Army contract number DACA76-85-C-0010 and under Office of
Naval Research contract N00014-85-K-0124.

References

[1] Ayache, N. and Faugeras, O., 1986. “HYPER: A New Approach for the Recognition and
Positioning of Two-Dimensional Objects.” IEFE Transactions on Patern Analysis and
Machine Intelligence, 8(1):44-54.

[2] Boldt, M. R. Weiss, and E. Riseman, 1989, “Token-Based Extraction of Straight Lines,”
IEEFE Transactions on Systems, Man and Cybernetics, 19(6):1581-1594.

[3] Bolles, R. and Cain, R., 1982. “Recognizing and Locating Partially Visible Objects: The
Local-Feature-Focus Method.” The International Journal of Robotics Research, 1(3):57-82.

[4] Brooks, R., 1981. “Symbolic Reasoning Among 3-D Models and 2-D Images.” Artificial
Intelligence, 17:285-348.

[5] Canny, J., 1986. “A Computational Approach to Edge Detection.” IEEE Transactions on
Patern Analysis and Machine Intelligence, 8(6):679-698.

[6] Clemens, D. and Jacobs, D., 1991, “Space and Time Bounds on Model Indexing,” IFFFE
Transactions on Patern Analysis and Machine Intelligence, 13(10):1007-1018.

[7] Cox, I., J. Rehg, and S. Hingorani, 1992, “A Bayesian Multiple Hypothesis Approach to
Contour Grouping,” Furopean Conference on Computer Vision, pp. 72-77.

[8] Dolan, J. and E. Riseman, 1992, “Computing Curvilinear Structure by Token-based Group-
ing,” IFEF Conference Computer Vision and Patlern Recognition, pp. 264-270.

[9] Forsyth, D., J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell, 1991, “In-
variant Descriptors for 3-D Object Recognition and Pose”, IEEFE Transactions on Palern
Analysis and Machine Intelligence, 13(10):971-991.

[10] Goad, C., 1983. “Special Purpose Automatic Programming for 3D Model-Based Vision.”
Proceedings ARPA Image Understanding Workshop.: 94-104.

42

[11]

[15]

[16]

[17]

[18]

[19]

[20]

[25]

Grimson, W.E.L. and Lozano-Pérez, T., 1987. “Localizing Overlapping Parts by Searching
the Interpretation Tree.” IEFFE Transactions on Patern Analysis and Machine Intelligence,
9(4):469-482.

Grimson, W.E.L., 1987. “Recognition of Object Families Using Parameterized Models.”
Proceedings of the First Inlernalional Conference on Computer Vision:93-101.

Grimson, W.E.L., 1988. “The Combinatorics of Object Recognition in Cluttered Environ-
ments using Constrained Search.” Proceedings of the Second International Conference on
Computer Vision:218-227.

Grimson, W.E.L. and Huttenlocher, D., 1988. “On the Sensitivity of the Hough Transform
for Object Recognition.” Proceedings of the Second International Conference on Computer
Vision:700-706.

Hoffman, D. and Richards, W., 1984. “Parts of Recognition.” In Visual Cognition, edited
by Pinker. Cambridge, MIT Press.

Huttenlocher, D. and Ullman, S., 1989. “Recognizing Solid Objects by Alignment with an
Image.” Cornell University TR 89-978.

Huttenlocher, D. and Wayner, P., 1992, “Finding Convex Edge Groupings in an Image,”
International Journal of Computer Vision, 8(1):7-29.

Jacobs, D., 1988. The Use of Grouping in Visual Object Recognition. MIT Technical Report
1023.

Jacobs, D., 1992, “Space Efficient 3D Model Indexing,” IEFE Conference Compuler on
Vision and Paltern Recognilion, pp. 439-444.

Kalvin, A., Schonberg, E., Schwartz, J., and Sharir, M., 1986. “Two-Dimensional, Model-
Based, Boundary Matching Using Footprints.” The International Journal of Robotics Re-
search, 5(4):38-55.

Knoll, T. and Jain, R., 1986. “Recognizing Partially Visible Objects Using Feature Indexed
Hypotheses.” IEEE Journal of Robotics and Automation, 2(1):3-13.

Kohler, W. 1959. Gestalt Psychology. New York: Mentor Books.

Lamdan, Y., J.T. Schwartz and H.J. Wolfson, 1990, “Affine Invariant Model-Based Object
Recognition,” IEFE Transactions Robolics and Automalion, 6:578-589.

Lamdan, Y. & H.J. Wolfson, 1988, “Geometric Hashing: A General and Efficient Model-
Based Recognition Scheme,” Second International Conference Computer Vision, pp. 238—
249,

Lowe, D. 1985. Perceplual Organization and Visual Recognition. The Netherlands: Kluwer
Academic Publishers.

43

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Mahoney, J., 1987. Image Chunking: Defining Spatial Building Blocks for Scene Analysis,
MIT AT TR-980.

Marr, D. and Hildreth, E., 1980. “Theory of Edge Detection.” Proceedings, the Royal
Society of London, B207:187-217.

Mohan, R. and Nevatia, R., 1989. “Using Perceptual Organization to Extract 3-D Struc-
tures.” IEEE Transactions on Patern Analysis and Machine Intelligence, 11(11):1121-1139.

Pavlidis, T. and Horowitz, S., 1974. “Segmentation of Plane Curves.” IEFEF Transactions
on Computers, C(23):860-870.

Santalo, L., 1953. Introduction to Integral Geometry. Paris: Hermann & Cie Editeurs.

Saund, E., 1992, “Labeling of Curvilinear Structure Across Scales by Token Grouping,”
IEFEFE Conference Computer Vision and Paltern Recognilion, pp. 257-263.

Schwartz, J. and Sharir, M., 1987. “Identification of Partially Obscured Objects in Two and
Three Dimensions by Matching Noisy Characteristic Curves.” The International Journal
of Robotics Research, 6(2):29-44.

Sha’ashua, A. and Ullman, S., 1988, “Structural Saliency: The Detection of Globally
Salient Structures Using a Locally Connected Network,” IFEF International Conference
on Computer Vision:321-327.

Thompson, D. and Mundy, J. 1987. “Three-Dimensional Model Matching from an Uncon-
strained Viewpoint.” Proceedings of the IEFE Conference on Robotics and Automation:208-
220.

Tucker, L., Feynman, C., and Fritsche, D., 1988. “Object Recognition Using the Connection
Machine.” Proceedings of CVPR:871-878.

Turney, J., Mudge, T., and Volz, R., 1985. “Recognizing Partially Occluded Parts.” IFEF
Transactions on Patern Analysis and Machine Intelligence, 7(4):410-421.

Ullman, S., 1986. “An Approach to Object Recognition: Aligning Pictorial Descriptions.”
M.LT. Al Memo 931.

Van Hove, P., 1987. “Model-Based Silhouette Recognition.” Proceedings, IEEF, Workshop
on Computer Vision:88-93.

Wallace, A., 1987. “Matching Segmented Scenes to Models Using Pairwise Relationships
Between Features.” Image and Vision Computing, 5(2):114-120.

Wayner, P.C., 1991, “Efficiently Using Invariant Theory for Model-based Matching,” IFEF
Conference Computer Vision and Paltern Recognilion:473-478.

Weiss, 1., 1988, “Projective Invariants of Shape,” DARPA IU Workshop, pp. 1125-1134.

44

[42] Witkin, A. and Tenenbaum, J., 1983. “What is Perceptual Organization for?.” Proceedings,
1JCAI-83:1023-1026.

[43] Witkin, A. and Tenenbaum, J., 1983. “On the Role of Structure in Vision.” In Human and
Machine Vision, edited by Beck, Hope and Rosenfeld. New York: Academic Press.

[44] Zucker, S., 1983, “Cooperative Grouping and Farly Orientation Selection,” In Physical and
Biological Processing of Images, edited by Braddick and Sleigh. Springer-Verlag, Berlin.

45

