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Abstract

One of the key problems in appearance-based vision is understanding how to use a set of
labeled images to classify new images. Classification systems that can model human perfor-
mance, or that use robust image matching methods, often make use of similarity judgments that
are non-metric; but when the triangle inequality is not obeyed, most existing pattern recogni-
tion techniques are not applicable. We note that exemplar-based (or nearest-neighbor) methods
can be applied naturally when using a wide class of non-metric similarity functions. The key
issue, however, is to find methods for choosing good representatives of a class that accurately
characterize it. We show that existing condensing techniques for finding class representatives
are ill-suited to deal with non-metric dataspaces.

We then focus on developing techniques for solving this problem, emphasizing two points:
First, we show that the distance between two images is not a good measure of how well one
image can represent another in non-metric spaces. Instead, we use the vector correlation
between the distances from each image to other previously seen images. Second, we show that
in non-metric spaces, boundary points are less significant for capturing the structure of a class
than they are in Euclidean spaces. We suggest that atypical points may be more important in
describing classes. We demonstrate the importance of these ideas to learning that generalizes
from experience by improving performance using both synthetic and real images.
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1 Introduction

The availability of large image databases makes it possible to classify a new image by querying
the database. To identify the class of a new object or scene from an image, we need to build up
some representation of classes using previously seen images. Two approaches to this problem have
dominated computer vision, pattern recognition and cognitive science. In one parametric approach,
some compact representation is generated that attempts to capture what is essential to each class.
This might be a prototype of the class, a list of essential features, a parameterized model, or a set
of geometric surfaces that delineate the set of images belonging to the class, encoded in a neural
net. In a second, exemplar-based approach, some or all previously seen examples are stored and
compared directly to new images.

Almost all work following these approaches has assumed that images may be thought of as
vectors that can be compared for similarity using the Euclidean distance. However, this may not
be a valid assumption. A number of recent approaches in computer vision compare images using
measures of similarity that are not Euclidean, and in fact not even metric, in that they do not obey the
triangle inequality. This can occur because the triangle inequality is difficult to enforce in complex
matching algorithms that are statistically robust. Moreover, much research in psychology suggests
that human similarity judgments are also not metric. This raises serious questions about the extent
to which existing work on classification can be applied using complex models of similarity, either
in computer vision or as cognitive models.

The problem is illustrated in Fig. 1, showing the different decision boundaries that arise when
using three non-metric distance functions, in comparison with the metric Manhattan and Euclidean
distances.

Non-metric distances turn up in many application domains, such as string (DNA) matching,
collaborative filtering (where customers are matched with stored “prototypical” customers), and
retrieval from image data bases. Fig. 7 shows one example, the output of an algorithm for judging
the similarity of the silhouettes of different objects [9]. Given a series of labeled pictures of common
objects (cars and cows, Fig. 7a,b), we may wish to identify new silhouettes (Fig. 7d) based on their
similarity to the previously seen ones. [1] reviews many such algorithms, and discusses why their

use will typically lead to non-metric distances.



Figure 1: The Voronoi diagram for two points using, from left to right, p-distances with p = 2 (Euclidean distance),
p = 1 (the Manhattan distance, which is still metric), the non-metric distances arising from p = .5, p = .2, and the
min (1-median) distance. The p-distance between 2 points (z1,%;) and (z2,v,) is: (|z1 — 2P + |y1 — yz|”)%; the
min distance is min(|z; — z2], |y1 — y2|). The min distance in 2-D is illustrative of the behavior of the other median
distances in higher dimensions. The region of the plane closer to the one point is shown in dark gray, and closer to the
other in light gray.

In this paper we make two contributions to this problem. First, we show that existing classifica-
tion methods can indeed encounter considerable difficulties when applied to non-metric similarity
functions. Then we show how exemplar-based approaches can be modified so that they are ap-
propriate for a range of different non-metric similarity functions, including some commonly used
ones.

More specifically, we first make the minimalistic assumption that higher-order representations
of images (e.g., as a set of features) are not given; we are only given a (possibly complex) comparison
algorithm which takes as input any two raw images and returns the similarity between them. Thus
the choice of class representation needs to be image-based, and classification can only be based
on nearest neighbors. We then consider an approach to nearest neighbor classification in which
representative images are selected from each class. A new image is then classified according to its
nearest neighbor among these representatives.

Existing methods select representatives so that every member of the class has a representative
nearby. That is, one image is chosen as a stand-in for others that are close to it. We show that
this technique is often ill-suited to non-metric spaces. Rather, we show that it is preferable to
pick stand-ins for an image such that the image and its stand-ins have similar distances to other,
previously seen images. We demonstrate analytically some of the conditions under which this
strategy is preferable, and show experimentally that it is effective.

The rest of this paper is organized as follows: In Section 2 we discuss why non-metric

distances are often the method of choice in applications, and why most existing work on supervised



classification is ill-suited to handle these cases. In Section 3 we describe our approach to the
organization (or condensing) of a non-metric image database. In Section 4 we describe a concrete
condensing algorithm, and compare it to other algorithms using both simulations and real data.
Finally, in Section 5 we discuss the possibility of relaxing the assumptions in this paper and building

parametric supervised learning algorithms suited to specific non-metric distances.

2 Some Challenges Raised by Non-metric Distances
2.1 Why non-metric distances are important

Our work is motivated by work on image similarity that suggests that practical and psychologically
valid measures of similarity are non-metric. Note that some authors use the phrase non-metric to
imply a qualitative, or rank ordering of distances. We use non-metric in the standard mathematical

sense. A distance function, D(I;, I;), between pairs of images, is metric when:
1. D(I;,1,) >0
2. D(I;,1;) = 0if and only if I, = I,.
3. D(I,,1,) = D(I,, I)) (symmetry).
4. D(I1, ;) < D(I,,I;) + D(I,I3)  (the triangle inequality).

We are interested in spaces in which the last condition fails. Failure of symmetry is also of interest,
but this is beyond the scope of the present paper.

Distance functions that are robust to outliers or to extremely noisy data will typically violate
the triangle inequality. One group of such functions is the family of image comparison methods
that match subsets of the images and ignore the most dissimilar parts, see [1, 9, 2, 20]. As one
example, Huttenlocher et al.[17, 18] perform recognition and motion tracking by comparing point
sets using the Hausdorff distance. They consider only a fixed fraction of the points for which this
distance is minimized. By not considering the most dissimilar parts of the images, these methods
become both robust to image points that are outliers, and non-metric. We call these non-metric

methods median distances. A k-median distance between two vectors (or images, represented as



vectors) X = (21, %2, ..., 2Z,) andy = (Y1, 42, - - -, Yn) is defined as:
d(x,y) = k—median{|z, —yi1|,. .-, |xn — yn|}

where the k-median operator returns the k-th value of the ordered difference vector. Related robust
techniques, such as M-estimation which identify outliers and weigh them less heavily, also lead to
non-metric distances [13].

Also, the use of non-metric L? distances, with 0 < p < 1 has been suggested for robust image

matching [7]. An L? distance (or p-distance) between two vectors X, y, is defined as:

=

d(x,y) = (O |wi — wil?) (1)
=1

Thus, p = 2 gives the Euclidean distance, and p = 1 gives the Manhattan distance. These distances
are non-metric for p < 1 (see Royden [23]). As shown in Fig. 2, they are less affected by extreme

differences than the Euclidean distance, and can therefore be more robust to outliers.
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Figure 2: Graphs of z? (left), °° (middle) and x° (right). We can see that when properly normalized, for
p-distances less than 1 the cost function rises quickly at first, than more slowly, so that extreme values do not dominate
total cost.

A second reason for non-metric distances to arise is that image distances may be the output
of a complex algorithm, which has no obvious way of ensuring that the triangle inequality holds.
Jain et al. [19], for example, perform character recognition and other image comparisons using
a deformable template matching scheme that yields distances that are not symmetric and do not
obey the triangle inequality. Related elastic matching methods have been widely used (e.g.,
[1,9, 15, 26, 30, 25]) in ways that do not appear to lead to metric distances. In fact, Basri et al.[1]
show that contradictions can exist between forcing such methods to obey the triangle inequality

and other goals that are desirable in deformable template matching.



Figure 3: Judgements of visual similarity between these three images may violate the triangle
inequality.

Finally, we are interested in image comparison methods that model human vision. This may
also be desirable in many applications. However, there is much work in psychology that suggests
that human similarity judgments are non-metric. Most notably, Tversky et al. (e.g., [27]) showed
in a series of studies that human similarity judgments often violate metric axioms: in particular, the
judgment need not be symmetric (one would say “North Korea is similar to Red China”, but not
“Red China is similar to North Korea”), and the triangle inequality rarely holds (transitivity should
follow from the triangle inequality, but the similarity between Jamaica and Cuba and between Cuba
and Russia does not imply similarity between Jamaica and Russia). Figure 3 provides a visual
analog of this example. Many observers will find that the centaur is quite similar to the person and
to the horse. However the person and the horse are quite different from each other. For observers
who determine that the dissimilarity between the horse and person is more than twice as great as
the dissimilarity between either shape and the centaur, there is a violation of the triangle inequality.
Intuitively, this occurs because when comparing two images we focus on the portions that are very
similar, and are willing to pay less attention to regions of great dissimilarity. Consequently, any
computer vision system that attempts to faithfully reflect human judgments of similarity is apt to

devise non-metric image distance functions (see also [24] for discussion of this issue).



2.2 Why existing methods are not suitable to deal with non-metric distances

In this paper we specifically focus on the problem of supervised classification in non-metric spaces.
Despite the importance of non-metric distance functions, most work on supervised classification
has considered the case in which the training dataset consists of points in Euclidean space, with
the L? norm. For example, in linear discriminant analysis and in many multi-layer neural network
models, hyperplanes are found that separate labeled points as well as possible. Similarly, the mean
point of a set is used in methods such as k-means clustering, and minimal linear spanning bases
are used in methods such as Radial Basis Functions [22] or PCA methods. As we will discuss in
Section 5, such approaches would require significant modification to be applied to classification in
non-metric spaces.

We should note that, in contrast to supervised learning, there has been a good deal of work on
clustering, or unsupervised learning that is applicable to non-metric spaces. An early example of
such work, which stresses the importance of non-metric distances, is [21]. Brand [4] has proposed
clustering based on E-M in non-metric spaces. In addition, clustering methods based on graph
partition or physical models (e.g., [3, 16]) are suitable for non-metric clustering. These works do
not directly address the issue of using these clusters for classification of new data (though see [21]
for some comments).

Throughout most of this paper we assume only that we can compute distances between images.
We do not have a mapping from images to vectors in some vector space. In this case, it is simply not
possible to construct parametric descriptions of classes, such as linear separators. Only exemplar
based methods need not face these problems, because they represent classes using elements of the
training set directly, rather than attempting to construct new objects in the space. In particular, we
consider nearest neighbor methods which classify a new item as belonging to the same class as the
item in the training set to which it is closest.

One can compute nearest neighbors in a non-metric space with the brute force approach,
computing the distance to a test image from all elements in the training set. Recently, [11] have
shown improvements over nearest neighbor methods by representing each object by its distance
to all others, and then applying support vector machines to the resulting vectors. However, these

approaches can result in impractical space and time complexity, because they requires storing all



previously seen images, and require explicit computation of many distances. In particular time
complexity may be high because many similarity functions used in computer vision are complex,
and require considerable computation. Many techniques have therefore been devised to speed up
nearest neighbor classification. Some of these methods build tree structures that rely on the points
lying in a Euclidean [8] or at least in a metric space [29].

A more heuristic approach to decrease the time and space complexity of nearest neighbor
classification - the use of condensing algorithms - has been proposed for metric spaces but is
potentially applicable in non-metric spaces as well. These algorithms select subsets of the original
training classes that are as small as possible, and that will correctly classify all the remainder of
the training set, which is then discarded. For example, Hart [14] proposed an iterative algorithm
that initializes a representative set, and then continues to add elements from the training set that
cannot be correctly classified by the representative set, until all remaining training elements can be
correctly classified. Gowda & Krishna [10] propose an algorithm like Hart’s, but which explicitly
attempts to add first to the representative set the points nearest the boundary. Fukunaga & Mantock
[12] propose an iterative algorithm, that attempts to optimize a measure of how well distances to
the representative set approximate distances to the full training set.

Dasarathy [6] more explicitly searches for the smallest representative set that will correctly
classify the training set. We will discuss this algorithm in more detail, and show experiments
with it in Section 4. Dasarathy notes that once an element is added to the representative set, it is
guaranteed that other elements of the same class will be correctly classified if they are closer to
this representative element than to any element of any other class. A greedy algorithm is used,
in which the representative set is augmented at each step by the training element that guarantees
correct classification of the largest number of elements not yet guaranteed to be correctly classified.
This basic step is followed by subsequent steps that refine the representative set, but in practice
these are not found to be important.

Condensing algorithms do not explicitly rely on distances that obey the triangle inequality.
However, we will discuss in the next section two significant problems that arise when applying

existing algorithms to non-metric space, and discuss basic ways of resolving these problems.



3 Our Approach

Our goal is to develop condensing methods for selecting a subset of the training set, and then classi-
fying a new image according to its nearest neighbor among this subset. The goal is to find a subset
of the training set which minimizes errors in the classification of new datapoints: a representative
subset of the training data whose nearest distance to most new data items approximates well the
nearest distance to all the training set. Thus we emphasize that the representative set maintains the

same generalization function as the whole dataset.

3.1 Basic intuition: looking beyond distance

In designing a condensing method, one needs to understand when is one image a good substitute
for another? Our answer to this question is what most distinguishes our approach from previous
work on nearest neighbors in metric spaces. So we begin by considering the answer to this question
that is implicit in previous work. In what follows, let 7; and 7, denote two arbitrary elements of
the training set, and let j denote a new image that we must classify. Let d(i, j) denote the distance
between two element, 7 and j.

In a metric space, the triangle inequality guarantees that the distance between 7; and 7, bounds
the difference between d(iy, j) and d(i,, j), that is, |d(i1, j) — d(is, 7)| < d(i1,42). Thus when
d(iy, 1) is small, we know that one of these images can substitute for the other. However, in a non-
metric space, the value of d(71, 7,) need not provide us with any information about the relationship
between d(iy, j) and d(i,, 7). Our first observation is that we must use more information than just
the distance between two datapoints to decide whether the presence of one in the training set makes
the other superfluous.

More specifically, what we really need to know is when two images will have similar distances
to other images, yet unseen. We define the redundancy R(i;,i,) of two images 4,4, as the
probability that |d(i1, j) — d(iz, j)| is small for some arbitrary image j. In this section we make
general points which are independent of the way we measure the redundancy of two images. (In
the next section we use specific functional forms to measure redundancy.) This idea is quite simple,
but it requires a different outlook than that taken in previous metric-space condensing algorithms.

Existing condensing methods focus on choosing representative points from the boundaries



between classes. Boundary points are especially important to retain as representatives in metric
spaces because they influence the decision boundary between two classes in the region that is near
the classes. Our second main intuition is that it is important to retain atypical examples in the
training set rather than just boundary points. An “atypical” image is any image that is dissimilar
from most other images in the class, and especially from the already chosen representatives of the
class. Atypical points can be important to retain as representatives because points that are far from
the other representatives can have a big effect on the decision boundary between the two classes,

especially (but not only) in non-metric spaces.

3.2 A 2-D domain

Let us illustrate these points in a simple 2-D domain. Thus, in this section, all “images” are 2-D
vectors. In this domain we will use the non-metric 1-median distance, i.e., the min distance. The
min distance may not be a good robust estimator; our goal is only to demonstrate ideas that apply
to other median distances in higher dimensions. The relevant geometrical structure is the Voronoi
diagram: a division of the plane into regions in which the points all have the same nearest neighbor.

Our first example is Fig. 1, showing that non-metric distances (Fig. 1, three right-most pictures)

can produce much more complex Voronoi diagrams than do metric distances (Fig. 1, two left-most

distances.

pictures). Fig. 4 further illustrates the complex structures that classes can take with non-metric
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Figure 4: The Voronoi diagram for two sets of points, each containing 5 points (shown as squares and crosses). The
distance functions used are, from left to right, p-distances with p = 2 (Euclidean distance), p = 1 (the Manhattan
distance), p = 0.5, p = 0.2, and the median distance. The region of points closer to the class of crosses is shown in
black, and the region closer to the class of squares is shown in white.

Next, Fig. 5 shows a simple example illustrating the potential value in looking beyond just the

distance between images to measure their interchangeability as representatives of a class. In the top



right we show the Voronoi diagram, using the median distance, for two clusters of points (i.e., each
point in the plane is labeled according to the cluster to which its nearest neighbor belongs). One
cluster, P, consists of four points (labeled p, p,, p3, p4 in the upper left, otherwise shown as black
squares) all close together both according to the median distance, and to Euclidean distance. The
second cluster, (), (labeled ¢, ...¢s in the upper left, otherwise shown as black crosses), all have
the same z coordinate, and so all are separated by zero distance when using the median distance;

however, the points are divided into two subgroups, ¢; and g, on top, and ¢z, g4, ¢s on the bottom.

Fi gure 5: Top: Two clusters of labeled points (left) and their Voronoi diagram (right) using the median (min) distance.
Bottom: The Voronoi diagram resulting when only ¢3 and g4 represent class @) (left) and when ¢, and ¢z are chosen as
representatives (right).

To characterize  well, it is important to pick representatives from both the bottom group and
the top group. To illustrate this, the bottom left-hand figure shows the Voronoi diagram produced
when we represent () using ¢; and ¢4, while the bottom right figure shows the Voronoi diagram

resulting when we choose ¢, and ¢;. Clearly the latter choice produces a Voronoi diagram much
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more faithful to the true one.

Existing condensing algorithms cannot handle this situation. First, every element of ) will
correctly classify all the other elements; no point will be preferable in this regard. Second, ¢3, g4
and g5 are nearest to class P, and would be judged boundary points. So although cluster () is really
split into two distinct groups, this is not directly reflected in their distances to each other, or in their
distances to the boundary of cluster P. However, one can detect the two subgroups of cluster )
in a natural way by looking at the pairwise redundancy of elements of (Q; for example, although
d(q1,q5) = 0, R(qi, ¢s5) is small because the distances from ¢; and ¢s to the elements of P are quite
different. Noticing this difference between ¢y, ¢s is important if we want to do more than classify
already seen images well, while keeping the decision boundary similar using only representative
subsets.

In summary, by considering a 2-D domain we first see that robust, non-metric distances lead to
rather odd, non-intuitive decision boundaries between clusters. Second, we see that for a median
distance, the extent to which two images have similar distances to other images can be a good
predictor of their interchangeability as class representatives, much better than just the distance
between them. Third, we see that boundary points play a much weaker role in determining the
important parts of the decision boundary in non-metric spaces than they did in metric spaces. We
wish to emphasize that while these results are illustrated in a 2-D domain, it should be clear that

they extend to higher dimensions as well.

3.3 Correlation vs. distance

In deciding how well one image can substitute for another as a class representative, we are primarily
interested in how similar their distances to new images will be. In other words, we are interested
in estimating the redundancy of the two images i,4,: the probability that |d(i;,7) — d(i2, )]
is small for some arbitrary image j. We compare two methods of estimating redundancy: (1)
the distance between the two images; and (2) the correlation between their distance vectors:
{d(i1, k)|Vk € T,k # i1,i2} and {d(i2, k)|Vk € T,k # 41,12}, where T is the training set. In
Section 3.3.1 we show that when the Euclidean distance is used for classification there is no need
to look at correlation, pairwise image distance alone gives an excellent indication of how well one

image may substitute for another. In Section 3.3.2 we show that, when a robust distance such as the
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median is used, vector correlation gives a reliable estimate of redundancy while pairwise similarity

can fail miserably.

3.3.1 Euclidean space: distance predicts redundancy

In Appendix A we show that in the Euclidean space, proximity of points implies large redundancy.
More specifically, let P;, P>, and P5 denote three training points in the Euclidean space. Assume
d(Py, P,) < d(Py, P3). Let  denote a new, test point, and let d; denote the distance from @ to P;.
In the appendix we show that for most distributions of test data (), with probability greater than %
we will have |d, — d| < |dy — d3|. We also describe the unlikely form the density on () would have
to take for ds to provide a better approximation of d; than does d,. Thus if we use image proximity
to predict redundancy, we will only be fooled by special distributions of test cases. (But we are not
likely to be fooled if the training sample is taken from the same odd distribution as the test data.)
Relying on a specific estimator of redundancy, such as the correlation of distance vectors,
to predict interchangeability, instead of relying on distances, can be either disadvantageous or
advantageous: The disadvantage is that similarities of distances to the training set can be noisy.
The training set may accidentally contain a preponderance of atypical images, leading to inaccurate
predictions. At the same time, as long as the test set is sampled from a symmetric distribution in
space, the distance between two points perfectly predicts their “true” similarity no matter how “bad”
the sampling of the training set is. The possible advantage of using redundancy in Euclidean spaces
is that if the training and test sets both come from the same non-uniform and biased distribution,

we will learn this bias from the training set, and use it to better predict performance on the test set.

3.3.2 Median: distance does not predict redundancy

We now consider the case of median distances. For this case, we show that if one image pair is
separated by a smaller distance than another, this does not necessarily mean that their redundancy
is higher. More specifically, we will show an example where for the median distance, unlike the
Euclidean case, the distance between two images is not monotonically related to their similarity to
new images.

We will now describe an example where this condition does not hold for the median distance.

12



Let all the coordinates of P, differ from those of P, by the same small amount €. Let the first half
plus one of the coordinates of P; be identical to P;, and the rest be different by the same very large
amount o. The median distance between P, and P is €, while the median distance between P; and
P; 1s 0. Thus, with the median distance, Ps is closer to P, and P is farther than P,. However, for
any point in the space, its distances to P; and P, cannot differ by more than €. On the other hand, a
point can have similar distances to P, and P5 only in two cases. First, if its most similar coordinates
to these objects, the ones used to determine the median distance, are the first ones (which P; and
P; share). Second, for special configurations in which it is 7 away from each point in some of its
remaining coordinates (other special cases are possible too, for which the new point is at least 5
from both points). Thus |d; — d,| is always small, while |d; — d;| is small only for a tiny fraction
of possible test points. This shows that the distance between two points can in fact be an arbitrarily
poor predictor of future distance similarity. The closest pair of points need not be the pair with the
most similar distances to new points.

At the same time, for the median distance, clearly distance vector correlation is a good predictor
of future distance similarity when the images in the test set come from the same distribution as the
images in the training set. Moreover, since R(P;, P;) ~ 0 even if only a small part of the data
space is sampled (as long as the sample includes enough points that share more than half their
coordinates with P; and fewer than half with P;), the distance vector redundancy will distinguish
P, and P; in spite of the fact that d( Py, P;) = 0, even when the distribution of the training set is
different from the distribution of the test set. Thus, in principle, the distance vector correlation can
predict future distances to completely new datapoints, coming from previously un-sampled areas

of the dataspace.

3.3.3 Discussion

We have shown that when a Euclidean distance is used, there is no need to look at past distance
redundancy. Distance alone is an excellent indication of how well one image may substitute for
another. But when a robust distance, such as the median, is used, the picture changes completely.

In this case we can obtain more reliable results by focusing instead on past distance redundancy.
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4 Comparison of algorithms

We now draw on these insights to produce concrete methods for representing classes in non-metric
spaces, for nearest neighbor classification. In the following we will first describe four different
condensing algorithms (Section 4.1). In Section 4.2 we will describe a series of simulations
comparing the different algorithms under various conditions. In Section 4.3 we will describe a

comparison of the different algorithms given a real data set of classes of silhouettes.

4.1 Description of algorithms

We compared the following four algorithms: the first two algorithms, random selection and
boundary detection, represent old condensing ideas; the last two algorithms, atypical selection and
correlation cover, apply new ideas discussed above for class representation in non-metric spaces.
Each algorithm selects a representative set of examples S of size (..

In describing these algorithms, we use the word cover as follows: Let P denote a class of
images. For p;,p, € P, p; covers p, if and only if d(py, p2) < d(p», q), Vg & P. That is, choosing

P as a representative guarantees correct classification of p,.

Random selection: for every class C, compute S$ by: randomly (but without repetitions) choose

Q. examples from C.
Every algorithm for the selection of class representation should be able to perform better
than this simplest brute-force algorithm.

Boundary detection: for every class C, compute S as follows:

1. compute an approximation to the minimal cover of size < (). using a greedy algorithm

2. until size of S is ()., add boundary points which are furthest from S

This algorithm is described in detail in appendix B.1.

Part 1 of this algorithm resembles the first iteration of Dasarathy’s algorithm [6]; subsequent
iterations were not found by [6] to significantly affect the results. While capturing the

essence of most condensing algorithms which look for class boundaries, our implementation
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ignores important differences which address the issue of computational efficiency, since such

differences are not relevant for our purpose here.
Atypical selection: for every class C, compute S as follows:

1. compute an approximation to the minimal cover of size < (). using a greedy algorithm

2. until size of S is ), add atypical points (not necessarily on the boundary) which are

furthest from S

This algorithm is described in detail in appendix B.2.

This algorithm tests our second observation, that class boundaries fail to capture important
class structure, and that “atypical” points - which are far from the representative set - should

also be included in the class representation.

Selection based on correlation: our most important computational observation is that in non-
metric spaces looking only at the distances between datapoints is not sufficient; we argued that
some comparison of the distances to other points should be a better measure of “similarity”

between datapoints. The following implementation tests this idea.

We compare datapoints by simply measuring how well their vectors of distances are corre-
lated. More specifically, given two datapoints X, Y and their corresponding distance vectors
x,y € R", where x is the vector of distances from X to all the other training points and y
is the vector of distances from Y to all the other training points, we measure the correlation
between the datapoints using the statistical correlation coefficient between x,y (in future

work, we will investigate other measures of correlation):

X_/'Lx-y_uy
Oy Oy

corr(X,Y) = corr(x,y) =

Above i, p, denote the mean of x, y respectively, and o, o, denote the standard deviation

of x, y respectively.

We explored two ways of using correlation between datapoints. Version 1 below is sig-
nificantly less efficient than the previous algorithms, since it requires the computation of
correlation between any two datapoints. Version 2 only requires the computation of corre-

lation between any two datapoints within the same class. Since both versions performed
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roughly the same in all our tests on both simulated and real data, version 2 is our preferred

algorithm; in subsequent discussions only results with version 2 are described.
Version 1:

Repeat the atypical selection algorithm as described above in B.2, but whenever the distance

between two datapoints is used - use instead the correlation between them.
Version 2:

For every class C, compute S as follows: using a greedy algorithm, choose (). points that

maximize Vy - a combined measure of distance cover and correlation at each datapoint X .

Define Vx as Vx = (Nx +1) - 1—0%’ where: Corry is the maximal correlation of X with

points in S, and N is the number of not-yet-covered points which get covered by X .
This algorithm is described in detail in appendix B.3.

Note that this algorithm chooses representatives by combining N x, which measures how well
each point covers previously uncovered points in terms of distances, with 1 — C'orr x, which
indicates how atypical (measured by how uncorrelated) the point is relative to previously

chosen points.

4.2 Simulations

To compare the four algorithms described above, we simulated data representing various conditions:

1. For simplicity, each datapoint was chosen to be a vector in R’ or R*. 30 clusters were

randomly chosen, each with 30 datapoints.

2. To study how the structure of the data affect the performance of each algorithm, we simulated

3 cases:

(a) ““Vanilla”: the points in each class form a small cluster in the data vector space.
Specifically, the center of each cluster is chosen randomly in space, and the class
members are chosen from a spherical normal distribution spread around the chosen

center.
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(b)

(©

One outlier: the points in each class cluster around a prototype, but many class
members vary widely in one dimension (which may be different for the different class
members). Specifically, the center of each cluster is chosen randomly in space, and the
class members are chosen from a spherical normal distribution; for about half the points,
however, one coordinate (randomly chosen) takes an arbitrary value totally different

from the center value.

Irrelevant features: the points in each class cluster around a prototype, but many class
members vary widely in a small number of dimensions (less than half, and fixed for the
different class members). Specifically, the center of each cluster is chosen randomly
in space, and the class members are chosen from one of 2 normal distributions spread
around the chosen center: half the points are chosen from a spherical normal distribution,

and half the points are chosen from an elongated elliptical normal distribution.

In case (a) above robust distances are not really required, whereas in cases (b),(c) robust

methods are needed to guarantee good performance.

. We simulated 4 distance functions: Euclidean (L?), L%, L%, and median. Note that the

middle two are non-metric but bounded, i.e., the violation of the triangle inequality is bounded

by a constant scaling factor, while the median distance can arbitrarily violate the triangle

inequality (see Appendix C).

deviation).

During the simulations, 1000 test datapoints were randomly chosen from a uniform distribution
in R7 and R?. Each test datapoint was classified based on: (1) all the data, (2) the representatives
computed by each of the four algorithms described in Section 4.1. For each algorithm, the test
is successful if the two methods (classification based on all the data and based on the chosen
representatives) give the same results. Thus for each algorithm we attach a score of percent correct:
the percentage of test datapoints that scored success in this simulation block. We repeated each

block 20 times, to gather statistics on the variability in the percent correct value (mean and standard

Fig. 6 summarizes representative results of some of our simulations. Note that our test data

comes from a different distribution than the training set. By using uniformly distributed test data,
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we estimate the volume of the difference in the voronoi diagrams produced by the complete set and

the representative subset.

4.3 Test with Real data

To test our method with real images, we used the local curve matching algorithm described in [9].
This curve matching algorithm is designed to compare curves which may be quite different, and
return the distance between them. The steps of the algorithm include: (1) the automatic extraction
of feature points with relatively high curvature, (2) feature matching using dynamic programming
and efficient alignment; the final distance is the median of the inter-feature distances. Thus this
algorithm is non-metric, due to both the noisy selection of features and the final median step.

In our test we used 2 classes, with 30 images each. The first set included images of 2 similar
cars from different points of view. The second set included images of a cow from different points
of view, including occluded images. Two of the original images are shown in Fig. 7d. The contours
from the cow class, which were automatically extracted, are shown in Fig. 7a, and the contours
from the car class are shown in Fig. 7b. 30 images were used as test images; the contours extracted
from these images are shown in Fig. 7c. These are also cow contours: some were obtained from
different viewpoints of the same cow, and some from the same viewpoints with more occlusion.

We used the four algorithms described in Section 4.1 to compute representative sets of 5 and
7 contours for each class. We then compared the classification of the test data based on these
representatives, to the classification obtained using all the data. Results (percent correct scores) are

given in Fig. 8.

4.4 Discussion of results

In Fig. 6b,c the correlation-based algorithm performs significantly better than any other algorithm
given any of the three non-metric distance functions; given the Euclidean distance, its performance
is similar (or slightly, but significantly, better) as compared to the boundary and atypicals meth-
ods. Surprisingly, the boundary method performs significantly worse than a random selection of
representatives with the median distance and the L% distance.

In Fig. 6a, which represents the “vanilla” case where the data lacks any “interesting” structure

and where a class is just a clump of entities which are truly close to each other and well separated
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Figure 6: Simulation results, with data chosen from R” (left column) and R> (right column). Plotted are the values
of percent correct scores, as well as error bars giving the standard deviation calculated over 20 repetitions. Each graph
contains 4 plots, giving the percent correct score for each of the four algorithms described in Section 4.1: random
(selection), boundary (detection), atypical (selection), and (selection based on) correlation. Each plot gives 4 values,
for each of the different distance functions used here: median, L%2, L% and L?. (a) Data is chosen from a normal
distribution. (b) Data is chosen from a normal distribution, where in half the datapoints one coordinate significantly
differs from the distribution’s center. (c) Data is chosen from 2 concentric normal distributions, one spherical and one
elongated elliptical.
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Figure 7: Real data used to test the four algorithms: a) 12 examples from the first class of 30 cow contours. b) 12
examples from the second class of 30 car contours. c) 12 examples from the set of 30 test contours. d) 2 examples of
the real images from which the contours in a) were obtained.

from the other classes, all the methods are comparable in performance. In this case, one would not
actually need to make use of a robust, non-metric distance function. Occasionally, especially with
the Euclidean distance, the random selection performs significantly worse than the other methods,
although its score is not much lower (and the difference may not be worth the additional effort).

Finally, the results with the real data as shown in Fig. 8 also confirm this picture: The correlation
method performs much better than any other method. The boundary method does only slightly (but
probably not significantly) better than random.

Also note that the atypical selection algorithm for which we show results here computes atypicals
based on distance, and does not perform noticeably better than the other distance-based algorithm.
As mentioned above, although we do not show results here, the same algorithm, computing covers
and atypicals using correlation, performs approximately as well as the other correlation-based

algorithm shown here.

4.5 Summary of results

Both the simulations and the real data clearly demonstrate an advantage to our method over existing
methods in the classification of data in non-metric dataspaces. Almost as importantly, in metric
spaces (4th column in Fig. 6a-c) or when the classes lack any “interesting” structure (Fig. 6a), our

method is not worse than any existing method. Thus it should be generally used to guarantee good
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Figure 8: Results with real data: each graph contains 4 plots, giving the percent correct score for each of the four
algorithms described in Section 4.1: random (selection) where standard deviation of performance is also plotted,
boundary (detection), atypical (selection), and (selection based on) correlation. The number of representatives chosen
by the algorithm was limited to 5 (first column) and 7 (second column).
performance when the nature of the data and the distance function is not known a priori.

Note that although the random method sometimes performs as well as the other methods, it does
not provide any criteria as to how many points should be selected for the representative set. This
is a rather important hidden advantage of the three principled methods over the random method,

especially the correlation method which uses a threshold to determine how many points should be

selected.

5 Extension: Parametric methods

Up to now, we have considered non-parametric methods of supervised learning, in particular
nearest neighbor classification. This is naturally suited to learning in non-metric spaces, and can
be used when our distance function is a black box. However, parametric methods have been very
successful in Euclidean spaces. In this section we consider the extension of parametric methods
to data described by non-metric distances. We start by relaxing our assumption that the distance
function is a black box, and consider specific non-metric distances.

Parametric methods typically represent objects as vectors in a high-dimensional space, and
represent classes and the boundaries between them in this space using geometric constructions

or probability distributions with a limited number of parameters. Some of the simplest and most
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popular parametric methods look for a hyperplane that best separates two classes. Up to now
we have considered our distance function as a black box, so that the construction of objects like
hyperplanes simply wasn’t possible. But even if we considered distances defined over a feature
vector space, such as the robust median distance, Fig. 1 tells us that linear discriminants and
hyperplane separators are still inappropriate.

A linear discriminant between two classes in the Euclidean space is effective when each class
can be represented by a prototypical example. This follows the simple observation that using
a linear discriminant is equivalent to performing nearest neighbor classification with respect to
two points (i.e., the two prototypical examples representing each class), where the separating
hyperplane is perpendicular to the line connecting these two points and located midway between
them. Thus the most obvious generalization of linear discrimination to non-metric space is via
the use of prototypical examples and nearest neighbor classification (or networks of Radial Basis
Functions).

More specifically, we propose that the natural generalization is to seek a prototype instance
of each class and perform nearest neighbor classification using these prototypes, and using the
distance function that is appropriate to the space. Optimal prototypes are defined as points in the
vector space such that nearest neighbor classification according to the given distance produces
correct classification of the training set. Unfortunately, finding the optimal prototypes for most
distance functions, including the median, is prohibitively computationally demanding.

A simpler approach is to represent each class by its generalized “centroid”. In the Euclidean
space, the centroid (or mean) is the point ¢ whose sum of squared distances to all the class members
{g:}, - (Z?: L d(q, qi)z)% - is minimized. Suppose now that our data come from a vector space
where the correct distance is the LP distance from (1). Using the natural extension of the above
definition, we should represent each class by the point § whose sum of distances to all the class

members 1

n P
(Sataar)
i=1
is minimal. It is now possible to show that for p < 1 (the non-metric cases), the exact value of
every feature of the representative point ¢ must have already appeared in at least one element in the

class' (see [7] for discussion of closely related results).

IThe proof goes as follows: since 2P is monotonic, the minimum of the sum, E, is obtained for the same g as the
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Moreover, the value of these features can be determined separately with complexity O(n?) or
less (less for p = 1, where the median feature obtains the minimum), and total complexity of
O(dn?) given d features. § is therefore determined by a mixture of up to d exemplars, where d is
the dimension of the vector space. Thus there are efficient algorithms for finding the “centroid”
element of a class, even using certain non-metric distances. Moreover, the point which replaces
the centroid in L? spaces for p < 1 contains values from at most d datapoints, which means that
the representation is “sparse” - a desirable property for data compression.

We will illustrate these results with a concrete example using the corel database, a large
commercial database of images pre-labeled by different categories (such as “lions”), where non-
metric distance functions have proven effective in determining the similarity of images [5]. The
corel database is very large, making the use of prototypes desirable.

We represent each image using a vector of 11 numbers describing general image properties, such
as color histograms, as described in [5]. We consider the Euclidean and L% distances, and their
corresponding prototypes: the Euclidean mean and the L°’-prototype computed according to the
result above. Given the first 5 classes, each containing 100 images, we found their corresponding
prototypes; we then computed the percentage of images in each class which are closest to their
own prototype, using either the Euclidean or the L% distance and one of the two prototypes. The

results are the following:

| prototype: | mean | 11 existing features ||

L9 distance 68% | 80%
Euclidean distance || 72% | 73%

In the first column, the prototype is computed using the Euclidean mean. In the second column the
centroid is computed using the L distance. In each row, a different function is used to compute
the distance from each item to the cluster prototype. Best results are indeed obtained with the
non-metric L% distance and the correct centroid for this particular distance as prototype. While
performance in absolute terms depends on how well this data clusters using distances derived from
a simple feature vector, relative performance of different methods reveals the advantage of using a

prototype computed with a non-metric distance.

minimum of EP. But EP is separable in the features, thus the minimum can be computed for each feature separately.
Finally, since for p < 1 2P is concave, the minimum for each feature must equal the feature value at some point.
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Another important distance function is the generalized Hamming distance: given two vectors
of features, their distance is the number of features which are different in the two vectors. This
distance was assumed in psychophysical experiments which used artificial objects (Fribbles) to
investigate human categorization and object recognition [28]. In agreement with experimental
results, the prototype ¢ for this distance computed according to the definition above is the vector

of “modal” features - the most common feature value computed independently at each feature.

6 Conclusions

We feel that our paper makes two main contributions. First, we reassessed the relevance of existing
supervised classification techniques to application-based and human-like classification. We argued
that classification systems that can model human performance, or use robust matching methods that
are typically used in successful applications, make use of similarity judgments that are non-metric,
and in particular, do not obey the triangle inequality. In this case, most existing pattern recognition
techniques are not relevant. Exemplar-based methods, however, can be applied naturally when using
a wide class of non-metric similarity functions. The key issue, however, in applying exemplar-
based methods in such settings is to find methods for choosing good representatives of a class, that
accurately characterize it.

We then focused on developing techniques for solving this problem, emphasizing two points:
First, we showed that the distance between two images is not a good measure of how well one
image can represent another in non-metric spaces. Instead, we suggested considering the correlation
between the distances from each image to other previously seen images. Second, we showed that in
non-metric spaces, boundary points are less significant for capturing the structure of a class than they
are in the Euclidean space. We suggested that atypical points may be more important in describing
classes. We demonstrated the importance of these ideas in greatly improving classification results
using both synthetic and real images.

Finally, we have suggested ways of applying parametric techniques to supervised learning
problems that involve a specific, non-metric distance function. We have shown how to generalize
the idea of linear discriminant functions in a way that may be more useful in non-metric spaces. And

we have shown a “proof-of-concept” for classification using the centroid of a class as determined

24



by the specific distance, with L? distances for p < 1.

A Proof: distance predicts redundancy in the Euclidean space

This appendix shows that in the Euclidean space, proximity of points implies that they are more
likely to have similar distances to new points.

Let P, P,, and P; denote three training points in the Euclidean space. Assume d(P;, P;) <
d(Py, P3). Let () denote a new, test point, and let d; denote the distance from @ to P;. If we
consider () to be a random variable, then we wish to know the probability that d; is more similar
to d; than to ds, that is, that |d; — d,| < |d; — d3|. We address this question by first dividing the

space into two disjoint subsets, G and H, where

QEQ <~ |d1—d2|<‘d1—d3|
QEH — ‘dl—d2|>‘d1—d3‘

We then show that for many reasonable distributions of @, Pr(Q € G) > 1.

Some notations

The following definitions are illustrated in Fig. 9. First, without loss of generality we may assume
that P, P, and P; lie in the X-Y plane. Let () be a pointin R". Define /;; to be the line connecting
P; and P;. Define n;; to be the hyperplane normal to /;; and passing through the point on [;;
equidistant to P; and P;. Note that n», 1,3, and n;3 generally all intersect the X-Y plane at a
common point, O. To see this, note that n;; describes the set of points equidistant between P; and
P;. Also, n;; intersects the X-Y plane in a line (normal to /;;). Therefore, n;, and n,3 generally
intersect the X-Y plane in a point? that is equidistant between P; and P>, and between P, and P;.
This point is also obviously equidistant between P, and P;, and so lies on n3.

Next we define our coordinate system so that O is at the origin. To simplify our exposition, we
first consider a compact subset of the Euclidean space, consistent of a huge hypersphere centered

at the origin.

’Ina non-generic case, n > and ny; may be parallel when Py, P> and P; are collinear. In that case, we may say that
they intersect at a point at infinity in the projective plane. This may be handled in a manner similar to the reasoning
given below, but we do not explicitly consider it here.
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Without loss of generality, we may assume that the distance from O to P;,1 < i < 3is 1,
1.e., all P; lie on the unit circle. We define the X axis to be the line bisecting P, and P, i.e., the
intersection of ny; and the X-Y plane. Let the coordinates of P; be (x;,¥;), then x, = z3, and
ys = —y,. Again without loss of generality we suppose x, > 0, y, < 0. The fact that P, is closer
to P, than P; implies that y; < 0. Next, consider the triangle formed by P, P, P5. Define the
three angles of this triangle to be a, b, ¢, where a is the angle at the vertex P;, and b and c are angles
at the vertices P, and P; (see Fig. 9).

Each hyperplane n;; divides the space into two regions, one in which points are nearer to P;
than P}, the other its complement. Together, the 3 hyperplanes divide the space into six regions.

The regions are defined as follows:

d<d <dy = Q€A
d:<di<d, = Qe A,
di<dy<dy = QeDB
dy<dy<dy = QebB
di<dy<d, = Qe
h<di<d = Qe

We then note that in the X-Y plane each of these regions is triangle shaped with a vertex at O
bounded by two lines meeting at O and by a circular arc at the boundary of the space. For example,
A\ is just the wedge of space defined by the intersection of one half-space bounded by 7, and one
bounded by n;3. Note that the angle of this intersection is a. In general, the angle at O of A; and
A, is a, of B; and B, is b, and of C; and C, is ¢. Therefore the volume of A, relative to the volume
of the compact space, is 5-.

Now, we note that By, B, C G, and C;,C, C H. This follows directly from their definition. For
example, if () € By, then d, is in between d; and d3, and must be closer to d; than d5 is. However,
A and A, are divided between G and H, depending on whether d;, which is in between d, and d5,
is closer to one or the other. Furthermore, note that b > c¢. This follows from the law of sines, and
the fact that d(Py, P,) < d(P;, P3). Note also that this implies that ¢ < %, which further implies

that the volume of C; U C, must consume less than half the space.
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Derivation: lower bound on the relative volume of G

We now prove that the volume of G consists of at least half the space. This implies, for example,
that if we sample () from the space with a uniform distribution (or any distribution rotationally
symmetric about the origin) than Pr(Q € G) > 3.

The following definitions are illustrated in Fig. 9. Suppose for the moment that z; < x,, and
define Py ;i = (—1,0). Note that P s, is equidistant to P and P;. Define P o, = (—22,y2).
We say that a point is in between two other points on the circle if it lies in the smaller portion of
the circle between them. First, we note that if P; lies between P ,,q, and P, then the angle b is
greater than 5. Since the region B; U B, C G has angle 2b, G will occupy more than half the space,
which completes the proof for this case. Therefore w.l.o.g. suppose that P; lies between Py,
and P 04

Our proof consists of two steps: first we show that in the limit when P, = P y;p,, the volume
of G is exactly half the space. Then we show that as we move P, away from P, ,,;, and towards

P 142, the volume of G can only grow.

case 1: P, = Py

When P, = P, by symmetry we can see that the space must divide evenly between H and
G. Specifically, suppose @@ = (z,y,2,....) € H. Define Q,,, = (2, -y, 2, ...), i.e., Q with the
sign reversed on its y coordinate. Then d(Q, Pi) = d(Qopp, P1),d(Q, P») = d(Qopp, P5) and
d(Q, P3) = d(Qopp, P>); this implies that Q,,, € G. Therefore, when P, = P, ,,,,, G and H are
symmetric about the hyperplane normal to the Y axis - n,3, and the relative volume of each is
exactly 3.

Define G’ to be the region G when Py = P ;. Also define A} to be the region .4; when
Py = P jin, and similarly define A3, By, B;, C7, C; and n;;. Next we will show that G’ C G when

Py has any value between P i, and P 4.

Some geometrical orderings:

We start by ordering the various hyperplanes according to their line of intersection with the X-Y

plane. We specifically order by the angle that this line makes with the X -axis in counterclockwise
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direction, giving us the following 2 possible orders (see Fig. 9):

IA
IN
VAN
IN

X =0° = n'23 = N3 77,/12 ni ’I'L,13 13 S 180°

X =0 =mnh = ny3 < njp, < nj; < np < npz < 180° (2)

Define a new hyperplane, M, which passes through the midpoint between P ,,;, and P, and
is normal to the vector between these points. M divides the space between points closer to P, and
those closer to P i, (see Fig. 9). Since M is perpendicular to the vector connecting Py ,,;, and
P, while n!, is perpendicular to the vector connecting P ,,,;;,, and P, and since n’; is the z-axis,
M must lie between n); and n}, which bound the regions B}, B5. From (2) and n; < M < nj,
it follows that M lies completely inside B} and B;. It subsequently follows that all points in .45,
the region bounded by n}, and n'; and lying above 75 (above the X axis), are also above M and

thus further from P, than they are from Py ;.

case 2: P, € [P in, Pl maz)

We now show if ) € G’ then Q € G.

First note that (2) implies that A}, C A, UB,, B C B and B} C B;. Thusif Q) € Bjor Q € B,
then Q € G. If Q € A, NG’ then Q is in either A; or B, (and not C; or C,). If Q € B, then @ € G.
Thus we only need to consider the cases where Q € AN A NG andQ € AN A NG
Q € A, implies that:

d(Q, P3) < d(Q, Prymin) < d(Q, P)
Q@ € G’ implies that:
d(Q, Pimin) — d(Q, P3) > d(Q, P») — d(Q, P min)

and so
2d(Qa Pl,min) > d(Qa PZ) + d(Qa P3)
We have shown that ) € A also implies:
d(Q7 Pl) > d(Q: Pl,min)
Thus
2d(Q, P) > d(Q,P,) +d(Q,P;) = d(Q,P)—d(Q,P;) >dQ,P)—dQ,P)
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Since ) € A,, it follows that ) € G. Similar reasoning shows that @ € A1NG = Q € G. In
addition, although our reasoning so far has assumed that x; < x,, similar arguments show that the
same is true for z; > x,.

This proves our result, that G always contains at least half of the space. Thus, if the test points
(Q are sampled from a uniform distribution on our compact space, then d, will be closer to d; than
d3 is to d, with probability larger than %, and P, will provide a better substitute for P, than does Ps.
This conclusion remains true if the test points are sampled from a distribution which is spherically
symmetric about O on the whole Euclidean space, or any distribution that does not assign to region

‘H probability larger than its relative volume.

B Detailed description of condensing algorithms
B.1 Boundary detection:

For every class C, compute its representative set of examples S of size ()., using the following

algorithm:
1. compute cover

(0) Initialization:
e set of representative examples S is empty
e set of examples which are incorrectly classified A < C

(1) For every datapoint ¢ in C \ S, compute N, - the number of points in A closer to ¢ than

to any point in any other class (i.e., the number of points covered by c).

(2) Find ¢ with the largest value of N, overall ¢ € C \ S. Let T; denote the group of points

in A closer to ¢ than to other classes (i.e., the points covered by ¢).
(3) update:
e A+ A\T;
e S+ Su{c}
<= while size of S is smaller than @), and A not empty, return to
(1)
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2. Add boundary points: while size of S is smaller than @), repeat:

(1) Ve € C, compute
e [, - the distance of c to the nearest datapoint in another class
e d. - the distance of c to the nearest datapoint in the representative set S
e Ao=d.— D,

(2) Find ¢ which produces the largest A, over all ¢ € C.

(3) update:

e S+ Sufc}

B.2 Atypical selection:

For every class C, compute its representative set of examples S of size ()., using the following

algorithm:

1. compute cover, same as described in B.1 for the boundary algorithm.
2. Add atypical points: while size of S is smaller than (), repeat:
(1) Yc € C\ S, compute
e d, - the distance of c to the nearest datapoint in the representative set S
(2) Find ¢ which obtains the largest d, overallc € C \ S.
(3) update:
e S+ Sufc}
B.3 Selection based on correlation:

For every class C, compute its representative set of examples S of size ()., using the following

algorithm:
(0) Initialization:

e set of representative examples S is empty

30



e set of examples which are incorrectly classified A < C
(1) For every datapoint ¢ in C \ S, compute

e N, - the number of points in A closer to ¢ than to any point in any other class
e Corr, - the maximal correlation of ¢ with points in &

o V.= (N, +1). =Corr

(2) Find ¢ which obtains the largest V. over all ¢ € C \ S. Let T denote the group of points in A

closer to ¢ than to other classes (i.e., the points covered by ¢).
(3) update:

[ J A(_A\Té

e S+ SuU{e}

<= while size of S is smaller than (). and V.. > ¢ for some threshold ¢, return to (1)

C A bounded triangle inequality for non-metric L” distances

It is known that for p < 1, the p-distance defined in (1) does not satisfy the triangle inequality:
given 3 points q1, ¢, q3 € R", d(q1,q3) > d(q1,q2) + d(q2, ¢3). More specifically, let x denote the

vector connecting ¢, ¢;, and y denote the vector connecting ¢,, ¢3; then
L 1 " 1 " 1
QO lzi + w7 > QO [zif”)> + Q_ [wil”)>
1 1 1

We will now show that there exists k > 1 such that the k-bounded triangle inequality is satisfied:

d(q1,q3) < k(d(q1,q2) + d(q2, g3)); more specifically,
i 1 i 1 " 1
O |z +yilP)e < w((Q aP)r + O lwil)?) 3)
1 1 1
First, from the concavity of f(t) = t? for p < 1, and for a,b > 0:

1
ﬁ(ap—l-bp)g(a—l-b)pgap-i-b”
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where the first inequality follows from w < (“2)P. Leta = (i;: |xi|p)%, b= (i;: |yi|p)%; then

n

(3 )3 + (i )PP = (a+ B

1 1 2 " 1
Py pP) = P PY — P P
> 21-p (a )= 21_;,,(; |4 ; yil?) = 21—p ;(‘lﬂ |yil”)

1
S Dl + P

1

1 n
> ﬁzl:mi‘f’l/dp

>

Thus (3) holds with k¥ = ZI_TP. Furthermore, this inequality cannot be improved; a worst case,
for which equality is obtained, is the case where n is assumed even, x is the vector whose even
components are 1 and the odd ones are 0, and y is the vector whose odd components are 0 and the
even ones are 1.

Note that the smaller p is the larger the bound & is, and the further from metric the corresponding

p-distance is.
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Figure 9: Illustration of definitions given in the text.
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