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As the 3D data size grows, it is more important to integrate principles of saliency with geometric

processing of meshes. Mesh saliency has been proposed as a computational model of perceptual

importance for meshes and it has been used in graphics for abstraction, simplification, segmenta-

tion, illumination, rendering, and illustration. Even though this technique is inspired by models

of low-level human vision, it has not yet been validated. Here we present a user study that com-

pares the previous mesh saliency approach with human eye movements. Our results show that

the current computational model of mesh saliency can model human eye movements significantly
better than what can be expected purely by chance.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling; I.3.m [Computer Graphics]: Perception

General Terms: Algorithms, Human factors, Verification

Additional Key Words and Phrases: Visual perception, mesh saliency, eye-tracker

1. INTRODUCTION AND RELATED WORK

When people examine an image, their eyes tend to fixate on certain points, then
jump quickly, with saccades, to new points. Although viewers may attend to por-
tions of an image on which they do not fixate, a good deal of evidence suggests
that viewers tend to move their eyes to parts of an image that have attracted their
attention (see [Palmer 1999], Chapter 11, for a brief review). For this reason, many
models of visual attention and saliency have been evaluated by their ability to pre-
dict eye movements. It is not realistic to expect any model to perfectly predict eye
movements, because of the variability between human subjects and even for the
same subject at different times. However, recent research demonstrates that there
is a significant correlation between existing models and human eye fixations. For ex-
ample, Privitera and Stark [2000] compare points of fixation by subjects to clusters
formed by the most salient regions predicted by a large number of simple models
of 2D image saliency. They compare this with the degree to which fixations agree
between subjects. They have found that for a particular class of images (paint-
ings), algorithms based on simple operators including symmetry, center-surround,
and discrete wavelet transform cohere very well with human data and approach
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(a) Original Model (b) Mesh Saliency (c) Human Eye Fixations

Fig. 1. Image (a) shows the Igea model. Image (b) shows its computed mesh saliency and image

(c) shows the human eye fixations color-coded for six subjects.

the coherence among fixations across subjects. Parkhurst et al. [2002] measure the
saliency at points of fixation and show that the model of 2D image saliency of Itti
et al. [1998] is more predictive of fixation points than a random model. Previous
research also makes the useful methodological points that bottom-up models can
better predict the first fixations, which are less influenced by top-down knowledge
([Parkhurst et al. 2002]), and that the exact order of fixations is highly variable
and difficult to predict [Privitera and Stark 2000].

Lee et al. [2005] have proposed a model of mesh saliency as a measure of regional
importance. Their method for computing mesh saliency uses a center-surround
mechanism that is inspired by the human visual system. Similar mechanisms have
been widely used in models of 2D image saliency [Itti et al. 1998] [Koch and Ullman
1985]. Previous research in vision has assumed that visual search simply relies on
two-dimensional aspects of an image. However, Enns and Rensink [1990] have
shown that 3D information can play an important role in making salient objects
pop-out in a cluttered image. As far as we know, there has been no work comparing
models of 3D saliency to eye movements, although many experiments have measured
eye movements as subjects examine 3D objects [Howlett and O’Sullivan 2005] [Kim
and Varshney 2006] [Cole et al. 2006] [Lu et al. 2006].

2. EXPERIMENT

The computational model of mesh saliency uses a center-surround mechanism that
is inspired by the human visual system. Our goal is to explore whether the mesh
saliency model has better correlation with human eye fixations than a purely ran-
dom model. To gather objective evidence of this correlation, we have carried out
an eye-tracking-based user study and have quantified the similarity between the
model and human eye fixations.
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2.1 Physical Setup

We used the ISCAN ETL-500 eye-tracker which can record eye movements con-
tinuously at 60 Hz. The study was carried out on a 17-inch LCD display with a
resolution of 1280 × 1024, placed at a distance of 24 inches, subtending a visual
angle of approximately 31.4 degrees horizontally. The subjects had a chin rest to
minimize head movements and to maintain calibration. Our experimental setup is
shown in Figure 2.

2.2 Eye-tracker Calibration and Subject Selection

The standard calibration of ETL-500 eye-tracker was performed with 4 corner points
and one center point. However, this was not sufficiently accurate for our purposes
due to non-linearities in the eye-tracker-calibrated screen space. Therefore we used
the second calibration step which involves a more densely-sampled calibration phase
similar to [Parkhurst et al. 2002] with 13 additional points. For this we asked the
subjects to successively look at and click on 13 points presented on the screen.
This gave us an accurate correspondence between the eye-tracker space and the
monitor space for that subject. After this we tested the accuracy of the calibration
by asking the subjects to look at 16 randomly selected points on the screen. Of the
9 subjects participating for pay, 6 were able to successfully calibrate to within an
accuracy of 30 pixels (about .75 degree) for each of the 16 points. We proceeded
with our study using these 6 subjects with normal or corrected-to-normal vision.
Our subjects were not familiar with the goals of this study. The subjects were told
to freely view the images with no assigned goal.

2.3 Stimuli

There were a total of 5 models and each model was shown from 10 different views.
We have used the Armadillo, Dinosaur, Igea, Isis, and Male models shown in Fig-
ure 7 for our study.

Since the computational model of mesh saliency relies only on geometric proper-
ties (curvature values), we would like to see whether it actually correlates with the
human eye fixations from any viewing direction. For this purpose, we generated im-
ages from 10 different views and used them in our study. As shown in Figure 3, we
have generated ten (five right-side up and five upside down) views for each model.
We manually choose the first view. We rotate this model −30◦, −15◦, 15◦, and 30◦

Fig. 2. Our experimental setup for the user study with the ISCAN ETL-500 eye-tracker.
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Fig. 3. Ten different views of the Isis model. There are five right-side up and five upside down

views, and these views are rotated 15 degrees apart along the vertical axis.

(a) Diffuse and Specular Lighting (b) Ambient Occlusion Lighting

Fig. 4. The Dinosaur model under different lighting conditions. Local illumination models such as
specular lighting and diffuse lighting can result in high contrast regions depending on the normal
direction, the light position, and the viewer position while ambient occlusion lighting minimize
this effect.

along the vertical axis to generate four more views of the model. Then we turn
each of these views upside down to generate the remaining five views.

Image Ordering: Each user saw 50 images (5 models × 10 views). When we
ordered the images for each user, we minimized differential carryover effects by
placing similar images far apart. Alleviating differential carryover effect was very
important because each user looked at 5 similar images (−30◦, −15◦, 0◦, 15◦, and
30◦).

Image Synthesis Consideration: In our experiments for validating mesh
saliency, we wanted to minimize the influence of lighting on the human percep-
tion of the rendered images. The easiest solution is to use a simple ambient term,
but this approach leads to indiscriminate flatness. Instead, we use ambient occlu-
sion [Landis 2002] [Zhukov et al. 1998], in which each illumination at a vertex is
proportional to the fraction of the environment that it can see. We preprocess the
view-independent occlusion information using ray casting and then use this infor-
mation at runtime for ambient occlusion lighting. The effect of local illumination
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models and ambient occlusion is shown in Figure 4.
The user study had 52 trials (images). The data captured for the first two images

was discarded as they were intended to give the subjects a sense of the duration.
Each trial started with the subject seeing a blank screen with a cross at the center
of the screen. The subject was asked to look at the cross before clicking the mouse
to bring up the next image. This ensured that each trial started with the subject’s
eyes fixated at the center of the image. Each image was shown for 5 seconds. Each
study took about 5 minutes.

2.4 Hypothesis

Our hypothesis is that the computational model of mesh saliency has better correla-
tion with human eye fixations than a random model regardless of viewing direction
for the first few seconds after stimulus onset.

As we have explained in Section 2.3, there are three independent variables in our
experiment: models, rotations of models, and right-side up vs. upside down views.

Models and rotations: Parkhurst et al. [2002] have observed that fixations for
the subjects are usually biased towards the center. In our experiment, each subject
is asked to look at the cross at the center of the screen before each trial. By using
different models and rotating the models, we change the distances from the center
to the high saliency regions.

Right-side up vs. upside down views: Recent work on gaze control has
focused on two attentional models: bottom-up stimulus-based information and top-
down memory-based knowledge [Henderson 2003]. The 3D models we used in our
study were not absolutely knowledge-free as they were scanned models of animals or
humans. Subjects could use generic semantic and spatial knowledge even though we
are measuring their eye movements for short time (the first five seconds). Parkhurst
et al. [2002] support this argument by showing that stimulus dependence is greatest
for early fixations in their work. We include upside down views to slow down the
onset of top-down attentional effects.

3. DATA ANALYSIS

3.1 Fixation Points

We divide the raw data points from the eye-tracker into two groups – fixation points

which correspond to a user looking at a single location and saccade points which
correspond to fast eye movements from one fixation point to the next. We followed
an approach similar to the one suggested by Stampe [1993] to identify fixations and
saccades. Figure 5 shows a two step process to extract fixation points from the raw
data points. We considered data points that had a velocity greater than 15◦/sec
as saccade points and removed them. We then averaged consecutive eye locations
that were within 15 pixels and classified them as a single fixation point. Some
researchers have advocated discarding short (exploratory) fixations in measuring
the attention of the viewer [Henderson and Hollingworth 1998]. We ignored the
brief fixations below the threshold of 133ms. This corresponds to 8 consecutive
points in the ISCAN ETL-500 eye-tracking device.
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(a) Raw Data Points (b) Saccades removed (c) Fixation Points

Fig. 5. Image (a) shows all the raw data points from the eye-tracking device. Image (b) shows
the points remaining after removing saccade points. Image (c) shows final fixation points after

removing brief fixations and combining consecutive points if they are spatially close.

3.2 Normalized Chance-adjusted Saliency

3.2.1 Chance-adjusted Saliency. Parkhurst et al. [2002] introduced the notion
of chance-adjusted saliency to quantify the correlation between stimulus saliency
and fixation locations for an image. They compute the chance-adjusted saliency as
follows. Consider a collection of images Ii, 1 ≤ i ≤ N . A subject is asked to look
at each image in turn. This generates a set of fixation points fij , 1 ≤ j ≤ Fi for
each image Ii. Let us consider the k-th fixation points fik across all the images Ii.
Let sik be the saliency value at the k-th fixation point fik in the image Ii. They

compute the mean fixation saliency for the k-th fixation points as s̄f
k = 1

N

∑N

i=1
sik.

To compute the mean random saliency, they first generate Fi random points rij over
each image Ii, where 1 ≤ i ≤ N and 1 ≤ j ≤ Fi. Then, the mean random saliency
s̄r

k is computed as the average saliency over the k-th random point rik across all
the images Ii, 1 ≤ i ≤ N . Finally, they define the chance-adjusted saliency (sc

k) for

the k-th fixation points as the difference between the mean fixation saliency (s̄f
k)

and the mean random saliency (s̄r
k): sc

k = s̄f
k − s̄r

k.

3.2.2 Normalized Chance-adjusted Saliency. We observed three shortcomings
in using the previously defined chance-adjusted saliency to quantify the correlation
between human eye fixations and the model of mesh saliency.

(1) The chance-adjusted saliency was developed for images in which there is a
well-defined saliency at every pixel. We are trying to measure the correlation
between a mesh saliency approach and the fixation points on the mesh but
not the fixations on the entire rendered image. Therefore, we should only
consider the foreground pixels that are covered by projected triangles of the
mesh. This ensures fairer comparisons between a random model and the mesh
saliency model for 3D rendered images because excluding the background pixels
would prevent lowering the average saliency values in a random model. Figure 6
shows the points considered in chance-adjusted saliency and normalized chance-
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Fig. 6. The left image shows the random points in chance-adjusted saliency computation. These
points are scattered all over the image. The right image shows the points that we consider in

normalized chance-adjusted saliency computation. We only include the foreground pixels that are
covered by projected triangles of the mesh. For each fixation point represented as a cross, we also
take into account the eye-tracker accuracy of 20 pixels, which is represented as a circle.

adjusted saliency.

(2) The chance-adjusted saliency does not consider eye-tracker accuracy. Since the
fixation point acquired from the eye-tracker can differ from the actual pixel
that a user looked at, we have to consider the eye-tracker accuracy as shown in
Figure 6(b) when we assign the mesh saliency value to the fixation point.

(3) The chance-adjusted saliency is defined over a collection of images. This re-
stricts the analysis of the effect of different models and viewing directions. We
need a method that normalizes saliency on a per-image basis.

We define normalized chance-adjusted saliency in this section. First, we consider
the eye-tracker accuracy ε which depends on both the accuracy of the eye-tracking
device and the calibration steps. We have used ε = 20 pixels, subtending a visual
angle of approximately 0.5 degree horizontally. Note that a fixation point and a
pixel share the same coordinate system. Let us consider the the pixel pij on which
a fixation point fij falls. Instead of taking the saliency value on a fixation point
fij , we compute the error-adjusted saliency sε

ij as the maximum of the saliency
values within a radius of ε = 20 pixels around pij in the image Ii, 1 ≤ i ≤ N :
sε

ij = max
k∈N ε

j

sik, where N ε
j = {k|dist(pij , k) ≤ ε}. For each rendered image Ii, we

compute the mean (s̄εr
i ) of the saliency sε

ij of the pixels j that are covered by the
rendered mesh. Then, we define our normalized chance-adjusted saliency for the
fixation point fik as sn

ik = sε
ik/s̄εr

i .

3.3 Results

Figure 7 shows the fixation points and computed mesh saliency for one viewpoint
of each model. Fixation points are color-coded for six subjects. We observe that
most fixations are close to warm-colored salient regions computed by the model of
mesh saliency.

The results of our normalized chance-adjusted saliency values can be seen in Ta-
ble I and Figure 8. We have shown the average of the normalized chance-adjusted
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(a) Original Models

(b) Computed Mesh Saliency

(c) Human Eye Fixations

Fig. 7. The comparison between the model of mesh saliency and human eye fixations.

The first row shows the original Dinosaur, Isis, Male, Armadillo, and Igea models.

The second row shows the computed mesh saliency for each model. Here warm

colors indicate high saliency regions while cool colors indicate low saliency regions.

The third row shows the human eye fixations from our eye-tracking-based user study.

Fixation points are color-coded for six subjects.

Table I. Normalized chance-adjusted saliency values for each model.

Model Average StdDev

Armadillo 1.4497 0.3206

Dinosaur 1.5144 0.5212

Igea 2.0149 0.3735

Isis 2.2343 0.3927

Male 1.9786 0.5157
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Fig. 8. Average normalized chance-adjusted saliency value across subjects for each

viewing direction for each model. For all the cases, the values are higher than 1,

which is the value that can be expected by chance.

saliency values across all views of each model in Table I. In general, we have ob-
served that the computational model of saliency has a higher correlation with hu-
man eye fixations than a random model as the normalized chance-adjusted saliency
values are higher than 1, the value that can be expected purely by chance. However,
there is considerable variability depending on the models and rotations of models
as shown in Figure 8.

To observe the influence of models and viewing directions, we first carried out
a two-way ANOVA on the normalized chance-adjusted saliency values with two
conditions: different models and viewing directions. For both models and viewing
directions, we have observed significant differences: F (4, 250) = 54.90, p < 0.001
and F (9, 250) = 3.698, p < 0.001, respectively. The difference between viewing
directions is especially interesting. The result indicates that even though saliency
of each vertex in a model can be computed once and does not change, the projection
of a model could result in different behavior in drawing viewers’ attention depending
on viewing directions. The possible causes include occlusion amongst salient and
non-salient regions and distance changes from the center to the salient regions (as
we explained in Section 2.4).

Next we carried out a two-way ANOVA on the normalized chance-adjusted
saliency values with two conditions: different models and right-side up vs. upside
down views. We have observed significant differences, F (4, 290) = 41.73, p < 0.001,
for different models as expected. We have observed there are no significant differ-
ences between right-side up and upside down views, F (1, 290) = 1.99, p = 0.159.
This indicates that regardless of inversion of right-side up views, there is significant
correlation between eye fixation points and the model of mesh saliency. Turning
the model upside down is likely to reduce the effect of semantics, and therefore
this result indicates that the effect of semantics is not high enough to influence the
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Table II. List of pairwise t-tests (two-tailed).

Model t-Value p-Value

Armadillo −8.37 < 0.0001

Dinosaur −7.20 < 0.0001

Igea −18.26 < 0.0001

Isis −17.18 < 0.0001

Male −12.54 < 0.0001

correlation between eye fixations and the mesh saliency model during the first five
seconds.

Since the standard deviations are high and there are high variance among mod-
els in Table I, we have carried out a pairwise t-test on the average saliency values
between fixation points and random points for each model (this is the only con-
dition in the test). We compared the model of saliency to the random model as
in Parkhurst et al. [2002]. We compute the average saliency values from randomly
chosen locations lying on the foreground instead of the observed fixation locations.
Table II shows that there are significant differences in the average saliency values
for all the 3D models between the mesh saliency model and the random model.

The results validate that the mesh saliency model has significantly higher correla-
tion with human eye fixations than a random model regardless of viewing direction.

4. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

We have used a few devices to reduce the effect of semantics in this paper. The
first one is including upside down views. The second one is limiting the time to the
first five seconds. Others [Parkhurst et al. 2002] [Santella and DeCarlo 2004] have
also used similar durations. However, even five seconds could be considered too
long since semantic interpretation starts increasing right after the stimulus onset.
We plan to study more about the effect of semantics as we vary the durations.
Another thing we can do for reducing the effect of semantics is to experiment on
semantic-free objects such as some man-made objects or close-up views of scanned
models.

According to the results of the two-way ANOVA in Section 3.3, there is no
significant difference between right-side up and upside down views. However, the
lack of significance might be simply due to the lack of power (i.e. running more
subjects will change the results). We plan to perform a user study with more
subjects in the future.

In this paper, we have taken the first steps towards validating the existing mesh
saliency model through an eye-tracking based user study. We have introduced the
notion of normalized chance-adjusted saliency which is a robust measure of success
of a mesh saliency model. We have observed significant correlations between the
model of mesh saliency and human eye fixations regardless of the viewing direction.
Having a validated model of mesh saliency will be greatly useful for several contexts.
For example, it could be helpful for identifying the role of 3D information in visual
search task as Enns and Rensink [1990] have explored in their work. In addition, we
can now build further saliency-based systems for tasks such as visual enhancement.
Conversely, our carefully designed user studies can be also helpful for designing a
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better visual saliency model which better models human eye movements.
At present we have analyzed the effect of turning each model upside down, but

more dynamic analysis can be performed in the future. For example, we can an-
alyze if people fixate on same or different locations as the model rotates. Our
normalized chance-adjusted saliency can give us a general correlation between hu-
man eye fixations and the mesh saliency model. However, this measure cannot let
us directly compare the mesh saliency model to other algorithms or to human eye
movements. By clustering the most salient regions predicted by a computational
model of mesh saliency, we can compare the agreement between the mesh saliency
model and eye movements with the inter-subject agreement of fixations as Privitera
and Stark [2000].

Another interesting future work will be comparing the mesh saliency model to
other 3D measures such as the magnitude of curvature. It will also be interesting
to compare and contrast the 3D mesh saliency with 2D image saliency.
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