Bento: Safely Bringing
Network Function Virtualization to Tor

Michael Reininger Arushi Arora Stephen Herwig
University of Maryland Purdue University University of Maryland
Nicholas Francino Jayson Hurst Christina Garman
University of Maryland University of Maryland Purdue University
Dave Levin
University of Maryland
ABSTRACT (SIGCOMM °21), August 23-28, 2021, Virtual Event, USA. ACM, New York,

Tor is a powerful and important tool for providing anonymity and
censorship resistance to users around the world. Yet it is surprisingly
difficult to deploy new services in Tor—it is largely relegated to
proxies and hidden services—or to nimbly react to new forms of
attack. Conversely, “non-anonymous” Internet services are thriving
like never before because of recent advances in programmable
networks, such as Network Function Virtualization (NFV) which
provides programmable in-network middleboxes.

This paper seeks to close this gap by introducing programmable
middleboxes into the Tor network. In this architecture, users can
install and run sophisticated “functions” on willing Tor routers. We
demonstrate a wide range of functions that improve anonymity,
resilience to attack, performance of hidden services, and more. We
present the design and implementation of an architecture, Bento,
that protects middlebox nodes from the functions they run—and
protects the functions from the middleboxes they run on.

Bento does not require modifications to Tor, and we evaluate it
by running it on the live Tor network. We show that, with just a
few lines of Python, we can significantly extend the capabilities
of Tor to meet users’ anonymity needs and nimbly react to new
threats.
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1 INTRODUCTION

Anonymity systems are critical in achieving free, open commu-
nication on today’s Internet. Tor [24] in particular has become a
staple in resisting censorship and allowing journalists to safely
communicate with their sources [65].

Das et al. [22] described the fundamental trade-offs that anon-
ymity systems must make as an “anonymity trilemma”: no one
system can simultaneously achieve strong anonymity, low latency,
and high bandwidth. Tor trades off strong anonymity in favor of
greater performance; DCNets [19] trades off performance for strong
anonymity. The anonymity trilemma tells us that each anonymity
system must cement its place in this design space, and users in turn
must choose the system that suits their anonymity goals.

In this paper, we show that there may be another way to over-
come this trilemma. While all three properties may not be simulta-
neously achievable for all users, we argue that a more programmable
anonymity network can let users choose the precise set of trade-offs
they want, when they want them.

We present Bento, a novel architecture that augments Tor by
allowing relays to act as user-programmable “middleboxes.” Bento
allows clients to write sophisticated middlebox “functions” in a
high-level language (Python, in our implementation) and run them
on willing Tor relays. For example, we present a basic network
function that adds bidirectional cover traffic to a circuit, thereby
temporarily achieving stronger anonymity for a subset of the users
at the cost of increased bandwidth consumption.

Bento is inspired by recent impressive innovations in network
function virtualization (NFV). NFV provides programmable in-
network middleboxes [7, 8, 16, 38, 43, 47, 72, 74] that can be used
to construct more robust, scalable and resilient network services.
Bento extends prior work in NFV by demonstrating that it is possi-
ble to safely deploy functions on middleboxes in adversarial settings.
More specifically, we operate within a threat model that prior NFV
work has not explored: one in which the client and middlebox (Tor
relay) are mutually distrusting. By using recent advances in trusted
execution environments [34], Bento ensures that the client is pro-
tected from the middlebox, and the middlebox is protected from
the client.

We demonstrate a wide diversity of functions that significantly
improve various aspects of Tor, including: (1) Browse: a function


https://doi.org/10.1145/3452296.3472919
https://doi.org/10.1145/3452296.3472919
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

that offloads a client’s web browser to avoid website fingerprint-
ing attacks, (2) LoadBalance: a function that automatically scales
hidden service replicas up and down to handle varying load, and
(3) Dropbox: a function that allows Tor to be used as an anonymous
file store.

Bento safely extends Tor without requiring modifications. Rather,
it runs on top of Tor; users terminate circuits at Bento middleboxes
to deploy and execute functions. As a result, it is incrementally
and immediately deployable—to this end, we have made our code
publicly available at https://bento.cs.umd. edu.

Contributions We make the following contributions:

e We introduce the first architecture to safely bring the power of
NFV to anonymity networks like Tor. Critical to many of the
security guarantees of our architecture are recent developments
in trusted execution environments.

o We identify, design, and implement critical components that are
necessary to ensure expressiveness and safety of an anonymous
middlebox architecture. Although we focus on Tor, many of
these components are broadly applicable.

e We present middlebox functions that solve a wide diversity of
problems that have long plagued the Tor network, including
website fingerprinting defenses and more robust hidden services.

e We evaluate our prototype architecture and functions on the
live Tor network and show that it extends Tor’s capabilities and
defenses while adding nominal performance overhead.

Roadmap We present background and related work in §2. We
then present Bento’s overview (§3), goals (§4) and design (§5). We
analyze Bento’s security properties in §6. We present two Bento
functions in depth—Browser in §7 and a hidden service load bal-
ancer in §8—and then briefly describe a wider range of functions
in §9. We discuss ethical concerns in §10. We summarize both the
current limitations of Bento and avenues for future work in §11
and conclude in §12.

2 BACKGROUND AND RELATED WORK

In this section, we provide a broad overview of Tor and a description
of our threat model. We also review related work on programmable
middleboxes and on extending Tor’s features, ultimately showing
that there is a surprisingly large gap between the two. One of the
goals of this paper is to bridge this gap by securely bringing NFV
to anonymity systems.

2.1 Tor Background

Tor [24] is a peer-to-peer overlay routing system that achieves a
particular type of anonymity known as unlinkability: an adversary
can identify at most one of a source/destination pair, but not both.
Tor achieves unlinkable communication by routing traffic through
a circuit: a sequence of overlay hosts known as Tor relays. There
are typically three relays in a circuit: an entry node (who commu-
nicates with the source), a middle node, and an exit node (who
communicates with the destination). The source node is responsi-
ble for choosing which Tor relays to include in a circuit, and for
constructing the circuit.

Proxied communication To anonymously communicate with a
server that is not in the Tor network, a Tor client creates a circuit to
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an exit node, and then instructs the exit node to open a traditional
network connection to the desired destination. Tor relays specify in
their exit node policy which hosts and which ports they are willing
to connect to (and whether they prefer not to be exit nodes at all).

Hidden services Inaddition to connecting to external servers, Tor
supports hidden services! [50, 78], which allow users to host services
anonymously. Briefly, hidden services operate as follows: To host a
hidden service, one chooses a pseudonymous identifier and a set
I of Tor relays to serve as introduction points. The hidden service
creates Tor circuits to each i € I and (anonymously) publishes the
mapping between its identifier and I. To connect to the hidden
service, a client chooses a Tor relay r to serve as a rendezvous point,
and creates a Tor circuit to it. The client then chooses an i € I,
creates a circuit to it, and requests that it forward r (and some
additional information) to the hidden service. In turn, the hidden
service creates its own circuit to r. After this process, r serves as
a bridge between the client and hidden service circuits, providing
connectivity between the two.

2.2 Threat model

Bento runs on top of the existing Tor network, and as a result we
adopt the same network-level threat model. This can vary by user
and application, but a common assumption is that of a powerful
routing-capable adversary [67], such as a nation-state. Such an
adversary often controls a large network—and can even influence
nearby routes to go through its network—but cannot have a global
view of Internet traffic. Adversaries can also actively participate in
the Tor network [3].

In addition to these routing-capable, network-based adversaries,
our architecture requires us to consider the threats that can arise
from an altogether new mode of interaction: loading and running
code on other users’ machines. We assume that users naturally
have physical access to their machines, and can thus introspect on
running processes. However, we also assume that some Bento mid-
dleboxes will have secure, trusted execution environments (TEEs),
such as Intel SGX. We explicitly assume that these environments are
safe; that is, for any code or data being executed or stored inside of
a secure enclave, we assume that the attacker cannot introspect on
either, despite having physical access to the machine. This assump-
tion has been drawn into question by recent attack discoveries [81],
but we do not believe these vulnerabilities are fundamental to TEEs
(and many have been patched [68]). Nonetheless, we note that we
are not strictly bound to SGX; Bento uses conclaves [34] (“contain-
ers of enclaves”), a system designed to work with any TEE with
similar properties to SGX.

Attacks Tor has been targeted by both academics and real-world
attackers [3, 10, 17, 27, 30, 33, 36, 41, 46, 50, 55, 56, 61, 69, 77, 86].
To show some of the potential benefits of Bento, we consider two
broad classes:

First, deanonymization attacks [3, 15, 27, 36, 56] seek to infer
the two endpoints of a Tor circuit through passive or active traffic
analysis. Routing-capable adversaries are very well-suited for these
kinds of attacks, as they can influence traffic on the entry leg and

! These are sometimes also referred to as “onion services”; Tor developers use the terms
interchangeably [58].
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the exit leg to go through networks they control—at that point, they
can perform straightforward traffic correlation attacks [41].

Second, fingerprinting attacks [12, 13, 50, 82-84] observe only
the traffic from the source, and use deterministic traffic patterns
from web servers to act as fingerprints. Typical defenses involve
reordering or batching requests and sending junk control packets to
make websites appear indistinguishable from traffic patterns alone.

We describe state of the art website fingerprinting attacks in §7
and deanonymization attacks in §9.1.

2.3 Programmable Middleboxes

Middleboxes are network devices that sit on the traffic path (often
between two routers or switches) and perform processing on pack-
ets as they traverse the network. Historically, middleboxes were
monolithic (a single box served a single purpose, such as a firewall
or load balancer) [28, 32, 39, 44, 70, 85]. Moreover, unlike typical
computers, traditional middleboxes were not re-programmable: of-
ten, simply getting a new version required getting an entire new
physical device.

Recent innovations in network function virtualization (NFV) (7, 8,
16, 38, 39, 43, 47, 72, 74, 85] allow network operators to instantiate
middleboxes in virtual machines and place those VMs at arbitrary
locations in the network [29]. Some approaches have explored how
to make NFV more easily programmable by means of constructing
modular, composable functions that can be deployed onto middle-
boxes [8].

Many network services today depend on a variety of middleboxes—
including firewalls, load balancers, traffic shapers, or intrusion de-
tection systems—and increasingly many are relying on programmable
middleboxes with NFV. As a result, there is a significant gap be-
tween the capabilities of the “non-anonymous” Internet and the Tor
anonymity network. Bento seeks, in effect, to “modernize Tor” by
incorporating programmable middlebox functionality. We demon-
strate that this will make it feasible to deploy a far more sophisti-
cated set of anonymous services than is possible today.

2.4 Extensions to Tor

The closest piece of related work to our programmable middleboxes
is FAN (Flexible Anonymous Network) [66]. FAN seeks to make
the Tor protocol itself more programmable, allowing for custom
Internet privacy and lightweight updates through the use of Pro-
tocol Plugins, which are pieces of code that are merged into the
Tor codebase and executed inside a userland virtual machine. In
contrast, Bento sits atop Tor, and as a result, is complementary to
FAN.

Prior work has also looked to improve the security and privacy of
Tor using TEEs. SGX-Tor [48] combines SGX and Tor, reducing the
Tor attacker down to a network-level adversary with no insight into
the internal state of Tor components. Large parts of the Tor code
and data are placed into an enclave to both protect sensitive data
and leverage the correctness of execution and integrity guarantees
of SGX. This prevents a number of well-known attacks, including
low resource attacks to demultiplex circuits, and also allows nodes
to protect the list of relays used. Bento expands on this considerably,
by allowing users to safely deploy new, tailored functions (not just
the existing Tor codebase).
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@ Upload and invoke function @ Run function
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Tor circuit

@ Deliver website

Figure 1: Overview of installing, and executing a Browser
“function” that runs on an exit node, downloads a given URL,
and delivers it, padded to some threshold number of bytes. To an
attacker sniffing the client’s link, it appears the client uploads a
small amount and then downloads a large amount.

3 OVERVIEW OF BENTO

Before describing its goals (§4) and design (§5), we first present a
high-level overview of how Bento enables users to extend Tor with
programmable functions.

In Bento, a client can offload processing that would have hap-
pened on their own machine to another node in the Tor network
altogether. We depict this in Figure 1, and describe each step with
a motivating example.

Motivating Example A user, Alice, wishes to anonymously
browse a website over Tor, but fears that an adversary has the
ability to observe traffic entering and leaving her machine. Such an
adversary could launch a website fingerprinting attack [12, 13, 82—
84] by correlating traffic patterns with known websites. Typical
solutions to this problem would have Alice alter her traffic patterns
while visiting the website, requiring assistance from the website or
modifications to Tor itself.

Writing a Function First, Alice writes or downloads a Bento
function: a program that is intended to be run on other Tor nodes.
These functions can be powerful, but they are constrained to a
limited API (§5), and run in a restricted sandbox. Critically, they run
outside of unmodified Tor—in essence, they are like small servlets
running on Tor relays.

Alice’s function, Browser, is a program that takes as input a
URL to download (we detail it in §7). Upon being invoked, Browser
starts an HTTPS client, autonomously fetches the URL, saves it to
a single digest file, and returns the file, padded to some multiple of
bytes. Such a program can be written in about four lines of Python
(see Appendix A).

Choosing Where to Run a Function Some Tor nodes opt into
acting as Bento boxes, who are willing to run functions on behalf
of other users. Like exit nodes, Bento boxes publicly specify a
“middlebox node policy” of what API calls they are (not) willing to
support. Alice searches the Tor directory for Bento boxes meeting
Browser’s criteria and chooses one at random. Alice then creates
a circuit to her chosen node and, with its permission, uploads and
executes the function.

Composing Functions To further thwart the attacker, Alice de-
cides to go offline completely during the website download by com-
posing two functions together, as shown in Figure 2. She instructs
the Browser function to also deploy, on a separate node, a simple
Dropbox function that "puts" and "gets" a data file. Browser then



@ Run Browser

4/@9 Install Dropbox;

Put data

@ Install Browser+Dropbox

Figure 2: Example of composing two functions: Browser runs
a web client to download a website, and Dropbox stores a piece of
data to later be fetched.

delivers the file to Dropbox rather than directly to Alice, allowing
her to visit the Dropbox node at any time to fetch the data.

From the perspective of an attacker who can sniff Alice’s link,
not only would she not provide activity that could be fingerprinted:
she would not appear to be online at all while the website was being
downloaded!

Why This Helps An attacker observing Alice’s communication
sees one small upload from Alice (when she installs and executes
the function), followed by a large download (the padded website).
Thus, because Alice is not actively involved during the download of
the website, the attacker cannot gain any of the informative traffic
dynamics that prior fingerprinting techniques require.

There are many other ways to combat website fingerprinting,
but all of them require changes to Tor, clients, or web servers—an
architecture like the one described here would greatly facilitate
development and deployment.

Are We Nuts? This example shows that a programmable Tor
would be useful, but is it worth the risk of Tor relay operators to
run unvetted code (from anonymous sources)? Is it safe for users
to run sensitive tasks on other users’ devices? Traditional NFV has
not had to address such issues, because network management is
typically not performed in adversarial settings. Addressing these
safety concerns (and hopefully opening up a new space to apply
NFV) is Bento’s central aim. We describe our design goals next.

4 BENTO GOALS

We identify five main goals that we believe are important for any
programmable anonymity network:

Expressiveness We wish to empower users to write (or use)
sophisticated, composable functions. To this end, we make use
of a high-level programming language (Python) with no inherent
limitations. To demonstrate Bento’s expressiveness, we implement
a wide range of functions in §9.

Protect functions from middlebox nodes We must protect
users’ functions against confidentiality and integrity attacks on
untrusted third-party middleboxes. This is similar to the large body
of work on making safe use of untrusted third-party compute re-
sources like cloud computing [20, 34, 57, 62, 71, 79] or even Tor
itself [48]. To achieve these, we employ recent advances in deploy-
ing legacy software in trusted secure enclaves [34] (see §5.4).
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Protect middlebox nodes from functions We must also pro-
tect the users who run the middlebox nodes. Much like how Tor
relays can express the destinations for which they wish to serve
as exit nodes, middlebox nodes should be able to express policies
over the actions they do and do not wish to perform on behalf of
other users. Our solution is middlebox node policies, which allow
middlebox operators to specify which system calls to permit, and
how many resources to provide to functions (see §5.5). We enforce
these policies by mediating access to all resources (see §5.3).

No Harm to Underlying Tor Deploying Bento should cause
no degradation to the existing anonymity properties of Tor. Our
functions run purely on top of Tor, and interface with it via the
Stem library (see §5.3).

No Extensions to Tor We aim to sit strictly on top of Tor, and
to require no additional user privileges, so as to support more
robust applications. Conversely, FAN [66] permits programmability
strictly within the confines of altering Tor itself. Such efforts are
complementary to Bento, and could be co-deployed.

5 BENTO DESIGN

Bento is a service that clients connect to using Tor. A Bento server
runs on the same machine as its companion Tor relay, but as its
goal is to not modify Tor, it runs as a separate process listening
on a separate port. Tor relays can provide access to their Bento
server by either allowing their exit node policy to connect to the
Bento server via localhost, or Bento may run as a hidden service.
Figure 3 presents an overview of Bento’s components.

5.1 Functions

At the core of Bento’s programmability are user-written and pro-
vided functions that they can run and interact with on specific Tor
relays called Bento servers. We have two competing goals with
functions: On the one hand, they should be expressive enough to
permit new, sophisticated features, services, and defenses. On the
other hand, they should also be restrained from running completely
arbitrary code on Tor relays or otherwise potentially compromising
Tor’s anonymity and security guarantees.

Bento addresses this by placing no inherent constraints on the
functions’ code?. Appendix A provides an example listing; functions
can essentially be arbitrary Python in our implementation. Rather
than enforce safety by limiting functions’ code itself, Bento servers
run functions in sandboxes, and enforce a set of policies specified
by the server operators detailing what they wish to allow functions
to do (e.g., some may not want to allow functions to write to disk).
This combination ensures that functions can remain precisely as
powerful as the Bento server operators are willing to let them be.

In the remainder of this section, we detail the aspects of the
Bento server that enable safe execution and negotiation of server
policies.

5.2 Bento Server

Bento servers spawn and manage a dedicated container for each
client’s function, and forward traffic to the appropriate container.

2The only constraint on functions in our implementation is that they be written in
Python.
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Figure 3: Design of a Bento middlebox node. Bento sits above an unmodified Tor, and augments it with programmable middleboxes to
the Tor network. (Purple arrows denote Tor traffic; orange arrows denote Bento traffic.)

Containers protect server operators from functions that (mali-
ciously or inadvertently) over-consume resources, access sensitive
files, or interfere with other functions running on the same machine.
Additionally, Bento servers expose (and mediate access to) inter-
faces to system resources, including an optional narrow interface
to the server’s Tor relay. We detail this in §5.3. Finally, Bento em-
powers its operators with the ability to control what sorts of tasks
they will perform on behalf of others. We describe these “middlebox
node policies” in §5.5.

Bento servers protect the confidentiality and integrity of a client’s
function and associated data from the untrusted Bento operator by
allowing them to execute in Intel SGX enclaves [6, 35, 54] within the
container. This has the added benefit of providing plausible denia-
bility to the Bento operators with respect to a function’s processing
of abusive content. We describe this in §5.4.

5.3 Container Management

Bento operators are responsible for providing container images.
This design choice allows operators basic control over the types of
functions that may run, and avoids the overhead of clients uploading
containers. The images themselves are not applications per se, but
rather servers that communicate with the Bento client to handle
the post-launch provisioning, loading, and execution of the client-
provided function.

Initializing and Shutdown When a Bento client connects to
a Bento server, it requests a container image. The server spawns
the container and returns to the client two tokens: an invocation
token and a shutdown token. From this point onward, the client
includes the invocation token in subsequent messages, and the
server forwards the messages to the corresponding server running
in the container.3

The Bento server terminates and reclaims the container’s re-
sources either when the container’s function terminates, or the

3We note that tokens can be blinded, especially with the use of an enclave, but we
leave that for future work.
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client presents the shutdown token. The distinction between invo-
cation and shutdown tokens allows a client to share the invocation
token (and thus, use of the function) with other users while re-
taining exclusive shutdown rights. Regardless, Bento functions
fate-share with the middlebox nodes they run on, and thus must
assume that the function may ungracefully terminate at any time.

Sandboxing and Resource Accounting Bento servers use Linux’s
cgroup and namespace features to provide containers with a nomi-
nal amount of memory and limited space in a chrooted file system,
so that clients cannot access any files but their own. An operator
may further manage these resource limits in aggregate over all con-
tainer instances, ensuring that the co-resident Tor relay maintains
a set minimum portion of the machine’s total resources.

To ensure that functions cannot violate a Tor relay’s exit node
policies, the Bento server converts the exit node policies into anal-
ogous iptable rules, and applies these rules to each container. Note
that, if the relay does not wish to run as an exit node, then this
would similarly preclude all functions it runs from direct network
access, and functions would be strictly limited to communicating
via Tor circuits. Bento also permits operators to apply system call
filters in the form of seccomp policies [26] to disallow a function’s
use of specific system calls, such as fork and execve.

Container Interface to Tor Instance We envision policies that
middlebox node operators may wish to enforce that cannot be sat-
isfied using OS-level sandboxing techniques alone. For instance,
functions may use the popular Stem library [75] to programmat-
ically create circuits and launch hidden services. To permit safe,
shared access to Stem, Bento includes as part of its policy enforce-
ment layer a Stem “firewall” to which functions must connect (via
a local socket) to issue all Stem invocations. The firewall maintains
state about the circuits each function is allowed to access, and the
Stem routines the function may invoke.



5.4 Standard Container Images

Although operators may advertise any image for running a client’s
function, we envision two standard images that collectively handle
a broad set of use cases.

Python container The Python container provides an execution
environment for a client-provided Python application. This con-
tainer targets cases where the client’s function does not process
sensitive information, and is Bento’s most direct analog to FAN’s
proposed use cases [66]. For instance, the Bento client and function
might further encapsulate the source-to-destination TLS stream
with a padding scheme to foil deanonymization attacks. This con-
tainer also allows non-sensitive network measurements, such as of
the latency or bandwidth to a Tor relay or destination server.

Python-OP-SGX container The Python-OP-SGX container is
similar to the Python container, but instead executes the Python
application, as well as an optional companion Onion Proxy, in
Intel SGX enclaves by using a library OS for running unmodified
applications in SGX [34, 80]. In this way, the container guarantees
the confidentiality and integrity of the application’s memory.

This container targets two broads use cases: (1) the function
is a specialized application-level proxy, such as a web proxy that
caches content for future client download or that transforms the
plaintext content so as to avoid fingerprinting attacks, or (2) the
function itself is a hidden service. Since a function, acting as a
hidden service, has keying material that it must share with a Tor
instance, the container cannot safely use the operator’s Tor instance
to manage the hidden service, and thus the container allows the
function to spawn a dedicated Onion Proxy.

Our implementation specifically makes use of conclaves (“con-
tainers of enclaves”) [34], which allow for arbitrary legacy applica-
tions to be deployed within a set of interconnected enclaves, where
some enclaves securely provide traditional OS services on behalf
of the enclaved application, such as an encrypted and integrity-
protected filesystem. In Figure 3, we refer to such an enclaved
filesystem as FS Protect.

FS Protect generates an ephemeral encryption key when the
filesystem is launched in an enclave; the container ensures that
the enclaved filesystem is the only writable filesystem available to
the function, and therefore that all filesystem writes are encrypted.
Prior to function execution, the Bento client attests the container’s
image and establishes a secure TLS channel to the container’s func-
tion loader; the Bento client then uploads the function, and any
associated data to copy to FS Protect, over this channel. In addition
to securing the client’s on disk content, FS Protect simultaneously
provides the Bento operator with plausible deniability in the event
that the function uses abusive content, as, much like Tor traffic, the
function’s execution and on-disk resources are unobservable by the
operator.

Attestation Before uploading its function, a Bento client gains
assurance that the Bento server is running correctly by using SGX’s
remote attestation feature [42] to verify that the application is truly
running inside an enclave as well as check the current TCB version
of the remote system to see if it has been patched against known
vulnerabilities. To assure a client that it is operating correctly, a
Bento box generates an attestation verification report when it first
loads the Bento server by creating a quote and sending it to the
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Intel Attestation Service (IAS).* Note that the only code needing
attestation is the Bento execution environment (including Python),
not the individual user functions.

We envision two paths for client verification of this attestation.
Traditionally, the server generates an attestation report and returns
the report to the client, who could then present the report to IAS for
verification. This can be done at any time before a client loads the
function, preventing any correlation between client and function
load. Alternatively, the Bento server can perform this verification
and, similar to OCSP stapling [1], return to the client both the report
itself as well as Intel’s verification of the report. Thus, Intel (and
others) only learns which relays are running conclaves (which is
already in the public directory).

5.5 Middlebox Node Policies

Allowing other users to run custom software on one’s own machine
has obvious risks, particularly in the context of an anonymous
network such as Tor. For any such architecture to be viable, it must
give users power to assert what they are and are not willing to do on
behalf of others. Tor itself runs into this challenge with respect to
exit nodes: not all users are willing to connect to any service on any
machine. Tor’s solution to this is exit node policies: fine-grained
policies of which IP addresses and ports it will or will not visit on
behalf of other Tor users.

We borrow this idea and introduce middlebox node policies. At
a high level, these are similar to exit node policies: middleboxes
specify what they are and are not willing to perform on behalf
of others. The primary difference is the set of actions the policies
themselves span.

Middlebox Node Policy Design Bento’s middlebox node poli-
cies are boolean values over the set of API calls that Bento exposes
to functions. Every system call and Stem library function that can
be exposed to functions is also specified in the middlebox node
policy. This is similar in spirit to how Android applications obtain
permissions: users can specify (to some extent) the resources the
applications may have access to, but beyond that are not able to
assert policy over the internal workings of the applications.

Our architecture’s design is not strictly bound to this specific
choice of policy space. There are alternative designs, such as requir-
ing that certain API calls be invoked only from functions within
an enclave, or incorporating taint tracking and restricting network
calls based on the flow of tainted data, and so on. Ultimately, we
believe that a more comprehensive discussion among the Tor de-
veloper and user communities will be necessary in finalizing the
policy space.

Disseminating Middlebox Node Policies We envision that mid-
dlebox node policies could be disseminated as part of the Tor direc-
tory, as with exit node policies. However, such integration with Tor
is not strictly necessary. To support immediate, incremental deploy-
ment, we have implemented a function that runs on a well-known
port that returns the node’s middlebox node policy, allowing users
to query Bento nodes to see what they support.

Function Manifest Files When a user sends a function to a
Bento server, the user includes the function’s manifest file, similar

4We will not go into the full details of the attestation process here but encourage the
interested reader to see [37].



in spirit to an Android app manifest. Upon receiving the manifest,
Bento compares it to its own middlebox node policy; if the manifest
asks for more permissions than the node’s policy permits, then
the function is rejected. Otherwise, the Bento server sets up the
execution environment, and constrains the sandbox or conclave to
permit only the specific API calls that the manifest file requested
(even if the middlebox policy allowed for more).

6 BENTO’S SECURITY PROPERTIES

We evaluate how Bento achieves its security goals from §4.

6.1 Attacks Against Functions

One of our primary goals is to protect functions from middleboxes,
and from other functions running on those middleboxes. We envi-
sion two classes of attack:

The first class involves altering or exfiltrating data or code as it
executes. Conclaves give Bento strong guarantees of confidentiality
and integrity [34], subject to the reliability of the trusted hardware.
Data stored (and code run) in a conclave is protected against inspec-
tion and tampering from both other applications and an adversary
with physical access. Thus, even if a middlebox and adversarial
function were to collude, the code and data are protected.

Alternatively, an attacker might try to inject packets into a func-
tion that he himself does not control. We prevent this attack through
the invocation token provided on function load. This token is then
required to direct any further communication or requests to the
running function (see §5.3).

6.2 Attacks Against Middleboxes

We envision several concerns that a Bento middlebox operator
might have about its safety. We discuss them here, along with how
our design helps to prevent them.

Running arbitrary code One of the benefits of Bento is its ability
to allow for arbitrary code. This of course brings with it concern
that third-party programs may run amok. Bento does not seek
to limit what a third-party program can do within a container,
but rather what side-effects it can have on the system itself. As
described in §5.5, Bento achieves this with middlebox node policies
and function manifests.

Resource exhaustion attacks A malicious function could try to
consume a large amount of resources on a Bento box. Our OS-level
sandboxing mitigates this, as it allows us to restrict the maximum
level of resource consumption of the processes running in the sand-
box.

To work around the resource restrictions on a single function, an
adversary might try a denial of service attack on the middlebox by
rapidly flooding the middlebox with a large number of functions.
We prevent this from starving out the rest of the middlebox and
its processes through the OS sandbox as well, by limiting the total
resource consumption of Bento to a specified amount.

While Bento is able to limit the total resources that any given
function can consume, it does not yet have a mechanism for ensur-
ing fairness amongst users. This brings several concerns, such as
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a malicious user preventing others from loading functions, lever-
aging functions (and the middleboxes’ resources) as a tool for un-
dertaking DDoS attacks, and using functions to modulate the mid-
dlebox’s CPU or network bandwidth so as to affect the traffic of
others. However, there are many existing lines of work in this space
that we believe are promising and would also apply here, such as
proofs of work [9, 25], anonymous credentials [18], or combinations
thereof [14, 21, 31]. We leave these to future work.

Abusive functions Bento has several safeguards to protect against
abusive functions. For instance, by adopting the relay’s exit node
policy (§5.3), Bento restricts the parties with which a function can
communicate.

The primary remaining potential for abuse is that of storing
illicit content on the operator’s machine. In the most extreme case,
an operator can protect themselves by setting a policy that prevents
functions from accessing the filesystem or storing any data on the
node. However, this greatly restricts the functions that could be run
on such a node. Alternatively, the operator can allow functions to
execute in the Python-OP-SGX container (described in §5.4), which
encrypts all filesystem writes with an ephemeral key inaccessible to
both the operator and the function itself. As a result of this design, a
Bento operator can only ever access encrypted data, resulting in the
same level of protection and plausible deniability as Tor currently
provides to standard relay operators. Thus we believe that Bento
does not make Tor relay operators more susceptible to abuse.

6.3 Attacks Against Users

As many users employ Tor specifically to protect their anonymity,
we must be careful that Bento does not compromise this. To discuss
the various deanonymization challenges a user might face (and
why Bento protects against them), we will briefly walk through the
life cycle of a user’s interaction with Bento.

A user must first fetch the middlebox node policy for its chosen
Bento server. This could be done over a Tor circuit if the user wishes
to hide that she is using Bento.> She also obtains the attestation
verification report, to ensure that the node is setup correctly. We
discuss how we would maintain a user’s privacy when validating
this attestation in §5.4.

Next, the user uploads her function. Note that a node operator
should not be able to link function uploads to a specific user (or even
identify them) as there is nothing fingerprintable about uploads in
terms of the code itself. For maximum privacy, function uploads
could also be encrypted and only decrypted within the enclave. The
node then returns the necessary tokens to the user, which could be
blinded for privacy as we discuss in §5.3.

When the user wishes to run her function, she sends her mes-
sages to it with the (blinded) invocation token. We note that prevent-
ing a malicious operator from fingerprinting a function’s system
call patterns, network calls, and the like in order to identify what
function a user is running (or identify that two separately uploaded
functions are actually the same) is outside of the scope of this pa-
per. We believe techniques that build oblivious filesystems for SGX
(such as [2]) would be applicable here. While a network adversary
might be able to tell that a Bento node is running a function, he

SWe will subsequently assume that all user interactions with the Bento node are done
over Tor circuits if the user wishes to preserve strong anonymity.



will not be able to link this function back to the specific user who
uploaded and invoked it, as a privacy-conscious user only interacts
with the node over Tor circuits.

Finally, when the user is done with her function, she uses the
(blinded) shutdown token to terminate it.

One final attack on users we consider is that of an “adversarial”
function, such as one that seeks to deanonymize a user or identify
a specific Tor node they are using by running a function that tries
to affect their traffic in some way, rendering it easier to fingerprint.
This could be achieved, for example, by creating a function that
over-consumes CPU or bandwidth on the node, thus slowing down
any traffic which passes through only that specific node, or trying
to “tag” another user’s traffic in some way. While it is difficult
to rule out all possible variants of this attack, there are two key
properties of Bento that greatly mitigate these threats. First, Bento
provides strong sandboxing and isolation when executing processes,
preventing a function from introspecting on or affecting another
user’s data or network traffic. Second, Bento servers can restrict
how many resources a function is permitted to use (see §5.3 and
§6.2), preventing starvation and other side-effects. Together, these
safeguards help prevent an untrusted function from affecting the
resource consumption of another or from trying to starve a co-
resident process.

7 CASE STUDY: BROWSER

In a website fingerprinting attack, an adversary is able to view all
traffic to and from a victim client. The attacker uses the patterns of
packet transmissions as a fingerprint of the website. For websites
with mostly static content, these patterns can be an effective finger-
print, allowing the adversary to uniquely identify which website
the user is visiting.

Although Tor users can take some measures to prevent website
fingerprinting attacks, no existing solution effectively prevents an
adversary from deriving salient features from users’ web brows-
ing traffic. Recently, Tor has integrated preliminary mechanisms
into the protocol to introduce dummy traffic and confuse most
fingerprinting techniques through traffic padding. However, these
solutions increase the load into and out of the Tor network, while
not introducing sufficient noise into the contents of web traffic.

7.1 Prior approaches

Past efforts in securing Tor web browsing against fingerprinting
attacks largely propose making significant changes to the underly-
ing Tor source code. WTF-PAD [45] introduces adaptive padding
techniques to optimize bandwidth by padding Tor traffic in low
usage streams. Additionally, Walkie-Talkie [84] makes use of half-
duplex communication such that the server must reply to the client
in non-overlapping bursts, thus shielding identifiable web traffic
behaviors.

7.2 Function overview

The insight behind the Browser function is that the adversary
cannot observe identifiable behaviors if the user is not the one
running the web client! Browser runs the web client on a separate
Bento box (an exit node, in this case). The function then packages
up the entire webpage and ships it back to the client. The size of the
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Attack Accuracy Defense
93.9% None (unmodified Tor)
69.6% Browser, OMB padding
8.25% Browser, 1MB padding
0.0% Browser, 7MB padding

Table 1: Accuracy of Deep Fingerprinting [73] attacks against
unmodified Tor and Browser with varying amounts of padding.
Browser offers significant defense.

page alone can reveal information about it, so Browser pads this
up to a given multiple of bytes. Both the URL to fetch and the size
to pad to are provided by the client when invoking the function.
We present the code to Browser in Appendix A.

This is immediately deployable without changes to Tor or to the
Tor Browser. As shown in Figure 3, our implementation creates
a basic application-layer web proxy at the exit node of the user’s
circuit. Although the current design of of Browser is not suitable
for latency-sensitive interactions (e.g., video chatting or online
gaming), it can easily be adapted to support cookies for interactive
browsing.

7.3 Evaluation

We evaluate three aspects of the Browser function: its efficacy as a
website fingerprinting defense, its performance in terms of page
load time, and its scalability.

Browser as a website fingerprinting defense We first evalu-
ate Browser under the adversarial conditions showcased in prior
work [73]. We used the same experiment setup as Sirinam et al. [73]:
10 medium-sized Amazon E2 instances, each running a Bento client,
and all Tor traffic between the client and its guard relay is recorded.
We visited 100 popular websites [4] at least 10 times using a stan-
dard Tor browser and again using Browser (with 0OMB, 1MB, and
7MB padding of random bytes), running inside of an SGX-based
conclave. We apply a sophisticated fingerprinting attack involving
deep learning [73]. To train the deep learning models, we used 5
NVIDIA 1070 and 2 NVIDIA 1070ti GPUs.

We summarize our results in Table 1. Unmodified Tor results in a
93.9% accuracy for an attacker. Merely by using Browser—without
any padding—the change in traffic patterns results in a significant
decrease in attacker accuracy, down to 69.6%. Adding even a nomi-
nal amount of padding (1MB) results in a drastic decrease to 8.25%
accuracy, and a large amount of padding (7MB) renders the attack
completely ineffective (0% accuracy).

The reason Browser is so effective is because it fundamentally
removes the benefits of being an adversary close to the client; to the
attacker, the traffic patterns appear to be a modest upload (installing
the function), and then a pause (while the webpage is loaded at the
Bento box), and a long stream of packets back. This removes much
of the information that fingerprinting attacks rely on. We believe
this points to a broader class of promising functions: those that
offload tasks from a client into autonomous agents who can act on
the user’s behalf from other nodes within the network.

Performance of Browser Our performance benchmarks for
Browser focus on the time to fully download a webpage—from



Standard Browser
Domain Tor | OMB 1MB 7MB
indiatoday.in 5.0 64 349 86.0
yahoo.com 6.7 6.3 212 874
netflix.com 8.5 8.1 284 863
ebay.com 6.1 7.0 223 818
aliexpress.com 3.1 59 377 919

Table 2: Download times (in seconds). Bold numbers denote in-
stances where Browser performs faster than standard Tor. Note
that users can obtain the viewable webpage in the time to down-
load the OMB version; the additional download time is purely for
padding.

the time the client issues the request to the function until it is done
downloading, with various padding levels.

Table 2 shows our results. At a high level, it is mostly what
one might expect: larger websites or large amounts of padding
increase the download time. With greater padding comes greater
security, but also a decrease in performance—a direct result of the
“anonymity trilemma”. However, for smaller websites, the time to
download the entire website using Browser can sometimes actually
be lower than traditional Tor. This is because TCP’s performance for
small file transfers is heavily affected by round-trip time (RTT); in
traditional Tor, this is the circuit’s RTT plus the exit node-to-server
RTT. For Bento, it is just the latter.

Note further that the results represent the full time to download
the content, but because the padding comes after the webpage, the
client receives (and can render) the webpage in the amount of time
it takes to transfer under the OMB case. It is important, however,
that the user’s subsequent actions be delayed until after the full
padding has downloaded.

Scalability of Browser We provide a brief analysis of the scal-
ability of Browser (and other functions), as well as of Bento as a
whole.

One of the main potentials for overhead in our architecture is the
use of SGX and conclaves. A thorough microbenchmark analysis of
conclaves and SGX overhead was performed in [34], so we do not
repeat them here. However, we summarize some of the relevant
results for completeness. The authors of [34] note that the time
to swap in and out of the conclave introduces nominal overheads
for running a "CDN" (a highly latency-sensitive application); these
overheads would be even less impactful for Tor, as it already expe-
riences high latency overheads from the Tor circuits themselves.
We also note that the page load times from the previous section
were measured while using SGX, and, in some cases, the download
time is actually lower. Thus, the use of conclaves does not provide
a significant performance impact.

A second notion of scalability is the number of functions that can
run on a single node. SGX provides a limited amount of protected
memory (128MB), with only 93MB of this usable by applications
[34], meaning that we are constrained in the number of functions
that can be running concurrently on a node. To quantify this, we
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Figure 4: The LoadBalancer function forwards requests from
the Introduction Point to one of its hidden service replicas. In our
implementation, LoadBalancer automatically scales the replicas
up and down to meet demands.

estimate® the memory required by Bento and Browser by run-
ning them outside of conclaves. The maximum memory usage of
a Bento server and Browser is roughly 16—20 MB, depending on
the webpage being downloaded. We add to that the estimated 7.3
MB required for conclaves to obtain the total memory footprint of
running the Browser function in Bento.

We make a few observations about these results. First, Bento is
implemented in Python with little concern for memory footprint,
so it is likely that these numbers would be easily improved if mem-
ory usage is a concern. Second, even without optimization, we are
already able to run multiple functions without straining the SGX
memory limits (we additionally note that the memory required by
a function is highly dependent on which function one is running).
Third, SGX has support for paging; as we do not expect all func-
tions loaded on a node to always be running, enclaves could be
paged out if they are not currently being invoked. In summary, we
do not believe memory usage is a fundamental limitation of the
architecture or a barrier to scalability.

8 CASE STUDY: HIDDEN SERVICE LOAD
BALANCER

In the “non-anonymous” Internet, it is common to replicate popular
servers, dynamically scale them up and down as demand varies,
and use a load balancer middlebox to direct requests to the least
loaded servers. This is surprisingly difficult in Tor. Here, we show
how to easily do it with Bento.

8.1 Prior approaches

Load balancing over anonymity networks has been introduced
previously. PeerFlow [40] proposes load balancing for Tor relays
through a bandwidth-weighted voting process, limiting the ability
of an adversary to fake the bandwidth.

For hidden services, OnionBalance [59] introduces the notion
of pre-creating replicas and publishing a different descriptor (and
set of Introduction Points) to the hidden service directory for each
replica. The default Tor client will randomly choose an Introduc-
tion Point from those descriptors, thus evenly distributing clients
across replicas. This unfortunately makes it heavily dependent on

®1t is difficult to provide exact measurements for memory usage within SGX because
of its inherent security properties and design.
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Figure 5: Per client bandwidth with and without our LoadBalancer function. The plot on the left shows per client download speed
without the LoadBalancer while the plot on the right demonstrates the benefit from utilizing our function. As more clients access the

hidden service, additional replicas are spun up to handle the load.

the maximum number of introduction points available, as well as
limiting adaptability and exhibiting slow failover [76].

To improve the scalability of hidden services, Sucu introduces ad-
ditional techniques for load balancing [76]. The primary technique
performs balancing at the circuit level and requires modifications
to the Tor source code.

8.2 Function overview

LoadBalancer can spin up new hidden service replicas and di-
rect client requests to (or away from) replicas to distribute load
and improve performance. Similar to how hidden services operate
today, LoadBalancer establishes introduction points and listens
for clients’ incoming requests to join them at a rendezvous point.
However, rather than connect to the rendezvous point itself, Load-
Balancer chooses from a set of replicas (or spins up a new replica)
and instructs the replica to connect to the rendezvous point on
its behalf. To create a replica, the LoadBalancer copies all files
(including the hostname and private key) to the new instance; this
motivates deploying LoadBalancer within conclaves. Figure 4
provides an overview.

LoadBalancer receives periodic messages from replicas describ-
ing their load, and uses high- and low-watermark thresholds to
determine when to create or remove a replica. Replica creation is
transparent to clients: there is but one set of introduction points
(that the LoadBalancer establishes), and, naturally, clients never
learn the identities of the hidden service nodes. Our current selec-
tion process randomly chooses a replica from all active middlebox
nodes, but this could be more sophisticated, taking into considera-
tion properties like geography, latency, etc.

8.3 Evaluation

We evaluated LoadBalancer with multiple replicas of our hidden
service running on the Tor network and varying load on the hidden
service.

Our experiments are performed with four Tor nodes that host
the hidden service (Amazon EC2 T2 instances with 2 vCPUs, 4
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GB RAM and Ubuntu 18.04 OS) and thirteen clients (Amazon EC2
micro instances with Ubuntu 16.04, 1 GiB Memory, 1 CPU). Clients
arrive at roughly 1sec intervals, and each client downloads a 10
MB file from the hidden service. We perform the experiment with
and without LoadBalancer, keeping the environment consistent
across runs.

Figure 5 shows the results. Without the LoadBalancer, we can
see that the download speed of each client reaches roughly the same
maximum, as the clients share the single server’s bandwidth, and
the clients take roughly the same amount of time to download the
file. With LoadBalancer configured to permit at most two clients
at a time, we observe considerably improved use of resources. At its
peak, a total of four machines (the original plus three replicas) ser-
vice the clients’ requests, resulting in shorter download times, more
dedicated use of each replica’s bandwidth, and better performance
overall.

9 OTHER FUNCTIONS

Here, we demonstrate Bento’s breadth in solving a wide range
of problems by briefly describing other functions we have imple-
mented. These span a wide range of application domains, and some
of them address longstanding questions within the Tor community.

9.1 Cover Traffic

Anonymity systems that offer “strong anonymity” [22] send cover
traffic whenever there are hosts with nothing to send. This ensures
that the size of the anonymity set (the set of principals who could
have taken a given observed action) is as close to the entire set of
participants as possible. Tor explicitly chose not to do this, instead
preferring efficient, low-latency use of its collective resources, under
the assumption that if it was fast and easy enough to use, then
increased usage would naturally create additional cover traffic.

Unfortunately, that is not always the case. Circuit fingerprinting
and website fingerprinting attacks are facilitated by the fact that
there is not always sufficient cover traffic.



Function overview Cover instructs a Bento box to ensure that
a given circuit always transmits at a fixed rate, sending junk traffic
if it has no legitimate traffic to send.

To see the strength of this simple primitive, consider how it could
compose with Browser: a client could establish bidirectional cover
traffic with an exit node, then initiate the download of a webpage.
Instead of waiting until the webpage is fully downloaded to begin
sending it, the Bento box could send back immediately, permitting
support for interactive webpages without sacrificing anonymity.

9.2 Dropbox

In developing other functions, we found it useful to be able to
ephemerally store files in the Tor network. Allowing users to store
files without having to remain online gives them the flexibility to
thwart attackers by going offline without having to interrupt their
computation. More generally, it provides a level of indirection that
is useful in composing functions, making this deceptively simple
function quite powerful.

Function overview After a user installs a Dropbox function
on a middlebox, the function operates in two phases. The first
phase accepts a put request, along with the invocation token, which
serves as a capability [88] permitting access to that dropbox. When
Dropbox receives a put request with the appropriate token, it saves
the data in the function’s chrooted directory and, if written to disk,
using an ephemeral key stored in the enclave (§5.4). The second
phase permits get requests with the same invocation token, up to
either some maximum amount of bandwidth, number of requests, or
expiry time, after which the function deletes the file and terminates.

9.3 Shard

Functions like Dropbox provide a level of indirection: users can
store a file at one point in time, keep it stored in the network, and
return at a later time to retrieve it. Although powerful, it also intro-
duces some potential concerns: Suppose an adversary’s machine
were used to run the Browser function in Figure 2, outside of a con-
clave. Then, the adversary would not know the client who initiated
the connection, but he would know the location of the Dropbox
function. If the stored file is only available at that one known lo-
cation in the network, then it puts the attacker in a potentially
powerful position to launch a fingerprinting attack. Additionally,
with only a single copy of a file, if the machine hosting Dropbox
crashes, then the file will be lost.

Function overview The Shard function addresses these con-
cerns by applying a digital fountain approach [11, 53] to spread
a single file across multiple machines. It takes as input a file, a
number of shards N to create, and a minimum number necessary
to reconstruct the file, 1 < k < N. Shard uses standard linear
encoding techniques to ensure that retrieving any k of the N shards
suffices to reconstruct the file. (In the trivial case where k = 1 and
N > 1, Shard simply replicates.) Shard then deploys these shards
by invoking the Dropbox function on other machines. When the
user is ready to obtain the files, it chooses a subset of drop-off
locations.
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This empowers users in three ways. First, if any of the Dropbox
nodes fail, then the file is still available. Second, if a user subse-
quently learns that certain regions of the network are less trust-
worthy or more susceptible to attack, then she has flexibility over
where she accesses the data. Finally, using multiple shards increases
the probability that one user’s shards are at the same location as
other users’, resulting in additional cover traffic.

9.4 Future ideas

Multipath routing An open research question in Tor is how to
efficiently use the network’s overall bandwidth, as well as adapt to
traffic congestion. Several works [5, 87] propose adding a multipath
routing scheme that splits a stream across multiple circuits sharing
a common exit relay, and that dynamically schedules traffic over
the stream’s circuits based on their throughput. Rather than modify
the Tor code base, we are exploring whether multipath routing
designs can be implemented as Bento functions.

Geographical avoidance Prior work has introduced provable
avoidance routing [49, 51, 52]: allowing users to specify geographic
regions where packets should not traverse, and then providing
proof that the packets did not go through such regions. However,
as these techniques rely on end-to-end RTT measurements and
knowledge of the location of each Tor relay on the circuit, they
are not immediately applicable to hidden services, wherein no one
entity (neither the source nor hidden service) knows the entire end-
to-end circuit. We are exploring whether functions, running inside
an enclave at the rendezvous point, enable computing the proofs of
avoidance while maintaining privacy.

Hidden service DDoS defense To mitigate DDoS attacks against
hidden services, Tor supports client authentication to the HSDirs
and introduction points—solutions that are only appropriate for
private hidden services. A number of proposals [23, 60, 63, 64]
recommend additional defenses that change the topology of the
introduction points, add new cell types to assist in rate limiting, or
require client-side proofs of work prior to establishing a connection.
We are exploring whether these approaches can be implemented as
function-specific protocols, rather than modifying Tor’s existing
protocols.

10 ETHICAL CONSIDERATIONS

As our experiments were performed over the actual Tor network,
we were careful not to impact the security and privacy of its users
or the performance of the network. We ran our own exit relays
and hidden service servers (as this is where our Bento functions
are deployed), and experimented with fingerprinting only our own
traffic.

11 LIMITATIONS AND FUTURE WORK

This paper might raise more questions than it answers; we believe
that is a good thing! In seeking to achieve properties that would
be much more complicated or inefficient in the current design of
anonymity networks like Tor, we allowed ourselves to take rather
drastic departures. As a result, we have identified important goals
for any programmable anonymity network, and have provided a
proof-of-concept architecture that achieves them.



That said, we acknowledge there is a considerable amount of
future work necessary for programmable anonymity networks to
become a practical reality. Though we have discussed many of
Bento’s limitations throughout the paper, we summarize them here,
along with a few others that were not previously discussed. We
believe that many of the existing limitations provide interesting
avenues for future work.

Reliance on a TEE One limitation is that Bento explicitly includes
a trusted execution environment in its trusted compute base (Intel
SGX in our implementation). If the TEE were compromised, what
would that mean for Bento? In the worst case, an attack on the TEE
would allow a Bento operator to possibly introspect on running
functions, view a user’s data as the function executes, or alter the
execution of a function—a complete breakdown of anonymity for
some functions. Moreover, the Bento operator might also lose access
to the plausible deniability that we discuss in the case of abusive
content.

These concerns are mitigated somewhat by the fact that Bento
permits flexibility in which TEEs users are willing to trust. Bento is
built on top of conclaves—which are not strictly bound to SGX—and
thus we too can work with any TEE that has similar properties.

Even without access to a TEE, we believe the programmable
anonymity networks and Bento can still be useful. Many basic
functions, such as Cover, that do not contain sensitive information
could potentially be executed even without a TEE (see our discus-
sion in Section 5.4). We also note that trusted hardware is just one
way to achieve the properties of a TEE. One interesting avenue for
future work would be to explore if there are other ways to achieve
our stated goals without using a TEE, such as with computation
over encrypted traffic [62, 71].

Lack of fairness Another limitation that we have previously
discussed is that Bento currently does not have a mechanism im-
plemented for ensuring fairness among users. This leads to several
concerns in the case of malicious users, such as loading numer-
ous functions on many Bento servers to prevent others from us-
ing the system or leveraging fuctions and middlebox resources
to carry out DDoS attacks. We believe that this is an interesting
area of future work, and that many existing research areas such as
proofs of work [9, 25], anonymous credentials [18], or combinations
thereof [14, 21, 31] are potentially promising.

Unclear incentives for adoption In this paper we do not solve
a number of questions pertaining to incentives for users to run
Bento, nor for the Tor community at large to adopt it. Perhaps the
best way to answer this question is a further demonstration of the
power of programmable anonymity networks: What else can be
done with Bento? What other problems can be solved, features can
be introduced, or spaces in the anonymity trilemma explored once
one has access to a programmable Tor network? This paper is the
first step towards programmable anonymity networks; to facilitate
further work in this vein, we have made our code publicly available.

12 CONCLUSION

We introduced programmable anonymity networks and showed
them to be possible and useful. We showed with a series of ap-
plications that even simple programs running on nodes in the Tor

832

network can result in significant improvements to security, per-
formance, and resilience. We also addressed the elephant in the
room—the natural concerns of running untrusted code on other
users’ machines—and presented an architecture that leverages re-
cent results in trusted execution environments to ensure safety
for both users and relay operators. We view this paper as the first
step towards programmable anonymity networks, and hope that it
gives rise to exploration of new domains in which to apply NFV. To
assist in these future efforts, we have made the Bento code publicly
available at https://bento.cs.umd. edu
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Appendices are supporting material that has not been peer-
reviewed.

A EXAMPLE CODE

This appendix contains sample code of the Browser function. This
and other example functions are provided in our public code repos-
itory, available at https://bento.cs.umd. edu.

def browser (url, padding):

# Fetch contents of site

body = requests.get(url, timeout=1).content

# Compress contents
compressed = zlib.compress (body)

# Pad to nearest multiple of 'padding'
final = compressed
if padding - len(final) > O0:
final = final +
(os.urandom(padding - len(final)))
else:
final = final +

(os.urandom((len(final) + padding) % padding))

api.send(final)

Listing 1: Python implementation of browser function.

B ARTIFACT APPENDIX
Abstract

Our certified artifact consists of prototype implementations for
the Bento server, as well as clients and functions that showcase
various use cases. The server may run client functions either in
normal userland or within an SGX enclave, based on command-line
arguments.

Scope

The provided artifact allows one to setup and run their own Bento
server and clients. As such, one can validate all experiments from
Sections 7 and 8. The software specific to each evaluation is located
in the experiments directory. Each evaluation has a corresponding
README:

e Browser - upload and execute a function that fetches a web-
page, padding the response with dummy bytes.

e Cover — upload and execute a function that fetches a web-
page, generating coverage traffic in the process.

e LoadBalancer - run a function that acts as a load balancer
for a hidden service.

e WebsiteFingerprinting — The deep fingerprinting attack [73];
used to evaluate the effectiveness of Browser’s padding scheme.

Additionally, once they have setup a client and server, a user can
also develop and write their own Bento functions!

Contents

Our artifact contains four primary pieces: 1) the source for the
client and server packages, 2) a set of self-contained projects and
experiments using Bento (these correspond to the experiments in
the paper), 3) a set of simple tests and sample functions, designed to
get the user started and introduce them to both running functions


https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en
https://bento.cs.umd.edu

and writing their own, 4) thorough documentation, including the
source for the Bento website, which contains detailed documenta-
tion for setting up and running a client and server, as well as the
various functions described in the paper.

Hosting

Our verified code can be found at
https://github.com/breakerspace/bento, commit 1de0d46.
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Requirements

We developed and successfully tested our Bento client and server
code on Ubuntu 18.04 with Python 3.6. Our development machine
was an Intel NUC (NUC10i7FNH).

Our Bento server optionally requires access to SGX-capable hard-
ware. For running functions within an SGX enclave, we use the
Graphene-SGX LibOS available athttps://github.com/oscarlab/
graphene, version 1.1, commit 73b774f. Additionally, we use the
SGX Linux kernel module from https://github.com/intel/
linux-sgx-driver, version 2.11.0, commit 2d2b795, and the SGX
platform software (that is, the SDK and PSW) from https://
github.com/intel/linux-sgx, version 2.9.1, commit fdc9b33.
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