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Abstract—We study the throughput capacity of wireless net-
works which employ (asynchronous) random-access scheduling
as opposed to deterministic scheduling. The central question we
answer is: how should we set the channel-access probabilityfor
each link in the network so that the network operates close toits
optimal throughput capacity? We design simple and distributed
channel-access strategies for random-access networks which are
provably competitive with respect to the optimal scheduling
strategy, which is deterministic, centralized, and computationally
infeasible. We show that the competitiveness of our strategies are
nearly the best achievable via random-access scheduling, thus
establishing fundamental limits on the performance of random-
access. A notable outcome of our work is that random access com-
pares well with deterministic scheduling when link transmission
durations differ by small factors, and much worse otherwise. The
distinguishing aspects of our work include modeling and rigorous
analysis of asynchronous communication, asymmetry in link
transmission durations, and hidden terminals under arbitrary
link-conflict based wireless interference models.

I. I NTRODUCTION

Two fundamental problems in communication networks are
as follows: (i) What is the capacity of the network under a
given throughput objective? Specifically, given a collection
of communicating source-destination pairs (or connections) in
the network, what is the maximum throughput1 which the
network can deliver to the connections? (ii) How can we
allocate individual connection throughputs, route the data from
the source of each connection to its corresponding destination,
and schedule the transmissions at each link in order to operate
the network close to its capacity? These problems are partic-
ularly complicated in wireless networks due to interference
constraints, which prevent proximate links in the network
from being active simultaneously. These constraints make it
computationally infeasible to determine the optimal routing
and scheduling strategies in a wireless network.

Many recent results in the literature, such as by Kumaret
al. [13], Jain et al. [8], Alicherry et al. [1], Kodialam and
Nandagopal [11], Sharmaet al. [17] and Wanget al. [18]
have addressed the problems of wireless capacity estimation

1or more generally, throughput based utility

and throughput maximization under various models of inter-
ference; they have presented joint routing and link scheduling
strategies which are guaranteed to utilize the networkcloseto
its optimal capacity.

Unfortunately, the scheduling disciplines developed in the
above approaches aredeterministic, and share some common
disadvantages. For instance, these scheduling algorithmsas-
sume that the network is perfectly time-synchronized; all links
agree on the index of the current slot and when the next
slot begins. Further, nodes in deterministic protocols exchange
(possibly large) lists of time slots during which they transmit,
so that other interfering nodes may choose their transmit times
carefully and avoid conflicts. As a consequence, even when the
throughput demand changes for asinglelink, the network may
need to recompute the schedule foreverylink and disseminate
the new schedule. In contrast, in arandom-access network, we
need to specify only a single parameter for each node (or link):
its channel access probability. Once we instantiate the channel
access probabilities at each node, adistributed stochastic
process which is local to each node governs the use of the
common wireless medium, and automatically determines the
per-node throughputs.

Motivated by the pervasiveness of random-access schedul-
ing protocols such as 802.11, we consider in this work the
problems of capacity estimation and throughput maximization
in the context ofasynchronous random-access wireless net-
works. Specifically, consider a link-throughput vector, whose
components specify the throughput achieved by each link in
the network.The central contribution of this work is the
solution to the following problem: given a link-throughput
vector which can be achieved by an optimal scheduling
strategy, what should be the channel access probability
for each link so that the resultant random-access through-
put vector is (component-wise) close to the optimal link-
throughput vector? It is well known that by solving this
fundamental link-scheduling problem and combining it with
standard network-flow linear programming formulations, we
can solve the more general end-to-end routing, scheduling,
and utility maximization problem (see for example [13], [8],



[1], [11], [17], [18]). Our focus is therefore on link-scheduling
strategies for asynchronous random-access networks that per-
form provably closeto optimal scheduling.

A salient aspect of our work is that the access strategies we
develop are oblivious to the throughput vector. Not only does
each link achieve its desired throughput via an appropriate
choice of channel access probability, but it does so without
any knowledge of the throughput demands of its interfering
links.

We now introduce several definitions to describe our tech-
nical contributions in greater detail. Alink-rate vector ~f is a
vector whose components specify the steady-state throughputs
we need to support on each link of the network. Therate-
region of a scheduling algorithmdenotes the set of all link-
rate vectors which can be supported by the algorithm. A
scheduling protocolA is α-competitive2 w.r.t. a protocolB if,
wheneverB can achieve a link-rate vector~f , A can achieve
at least anα-fraction of ~f .3 The network interference degree,
denoted by∆, is defined as the maximum number of links
which interfere with some specific linkℓ, but are mutually
interference-free amongst themselves; this is a key parameter
which will frequently appear in our performance guarantees.
Further, a key contribution of a majority of the deterministic
protocols mentioned above [13], [1], [11], [17] is the design
of deterministicscheduling strategies whose competitiveness
is 1

∆ w.r.t. optimal scheduling; their differences lie mainly in
the interference models they consider.

A. Our contributions

(a) Strategies for synchronous random-access.To demon-
strate the key elements of our approach, we begin our analysis
in Section IV with asynchronousmodel of random-access.
A simple non-linear programming (NLP) formulation exists
in this scenario, which precisely characterizes the achievable
rate-region of synchronous random-access. However, this rate-
region isnon-convex, which introduces significant obstacles in
using existing convex-programming techniques for throughput
optimization in random-access networks. We design a syn-
chronous random access strategy, and prove that it is1

e∆ -
competitive w.r.t. optimal scheduling.4

(b) A first strategy for asynchronous random-access.
We study the asynchronous model of random-access in Sec-
tion V by incorporating the effect of hidden terminals and
non-uniform transmission durations. We design an asyn-
chronous random-access strategy and show that it is1

e∆(γ+1) -
competitive w.r.t. optimal scheduling; here,γ is the maximum,
taken over all linksℓ in the network and over all hidden linksℓ′

that interfere withℓ, of the ratio of the transmission durations
of ℓ andℓ′.

(c) Fundamental limits of random-access.We show that
the competitiveness ofany random-access strategy is bounded
above by (essentially) 1

∆γ . That is, no matter how clever

2Alternatively, competitiveness (or) competitive-ratio of A w.r.t. B.
3As per convention,α-fraction of a vector~f implies that we are multiplying

each component off with the scalarα.
4e denotes the base of natural logarithms throughout this paper.

we are in the choice of per-link channel access probabilities,
we cannot improve upon the (essentially)1∆γ -competitive
factor of asynchronous random-access scheduling. This factor
therefore represents afundamental performance limit on the
competitiveness of random-access (and is not an artifact ofour
strategies or analysis).

(d) Capacity of random-access.We develop novel neces-
sary and sufficient conditions that are linear, and which charac-
terize the achievable rate-region of an asynchronous random-
access network with a given topology and link transmission
durations. The gap between our necessary and sufficient condi-
tions ise∆. In the context of end-to-end utility maximization,
plugging the sufficient conditions into the network-flow for-
mulation (as in [13], [8], [1], [11], [17], [18]) immediately
yields the end-to-end throughputs, the routing, as well as a
random-access link scheduling strategy which approximates
the optimal random-access capacity to within a factor ofe∆.

We observe that for manygeometricmodels of interference
studied in recent literature, it is known that the parameter∆
is upper-bounded by a fixed constant in any network; our
techniques allow us to obtainconstant factor performance
guaranteesunder these models. For instance, for the uniform
Tx-model [13], the Tx-Rx model of interference with param-
eters 1, 2, and 2.5 [1], theK-hop interference model on geo-
metric graphs [17], and the node-exclusive interference model
[17], [9], [14], our synchronousrandom-access strategy has a
competitive ratio of5e, 4e, 8e, 12e, 49e, and2e respectively,
and ourasynchronousrandom-access scheduling strategy has
a competitive ratio ofO(γ) w.r.t. optimal scheduling.

A notable consequence of our results(b) and (c) is that
random-access is generally more competitive when packet
sizes for each link are chosen in proportion to the capacity of
the link (so that link transmission durations become uniform).

We validate our theoretical insights using the CPLEX
solver and NS-2 simulations of the 802.11 random-access
protocol. Our main observations are: (i) the feasible rate
region of random access is indeed non-convex even in simple
settings, and hence unlikely to be computationally feasible.
This necessitates the use of approximate but provably-good
scheduling strategies and capacity estimation techniquessuch
as the ones developed in this work; (ii) the stability conditions
we develop accurately model the dynamics of asynchronous
random-access in multi-hop topologies; (iii) random-access
is generally more competitive as packet sizes are chosen in
proportion to link capacities; this is especially evident in
high-traffic regimes where the network experiences significant
interference; lastly (iv) our new capacity estimation techniques
yield much tighter bounds on the capacity of an asynchronous
random-access network than existing formulations.

II. RELATED WORK

Capacity of wireless networks:Estimating the capacity of
a wireless network and developing communication strategies
which operate the network close to its capacity is a complex
task due to wireless interference. Recent works which address
this problem include those of Jainet al. [8], Kodialam and



Nandagopal [10], [11], Kumaret al. [13], Alicherry, Bhatia,
and Li [1], Balakrishnanet al. [2], Sharma, Mazumdar, and
Shroff [17] and Wanget al. [18]. With one exception [8],
these results are constructive; not only do they estimate the
network capacity, but they also present routing and scheduling
algorithms (and in the multi-channel cases [11], [1], channel
assignment algorithms as well) which can jointly achieve the
capacity. However, the scheduling disciplines underlyingall
of these results aredeterministic, and their results are not
applicable to random-access networks.

Network capacity with random-access scheduling:The
recent results of Lin and Rasool [14], and Joo and Shroff
[9] are most similar in spirit to our work, and deal with the
performance ofsynchronousrandom-access for the special-
cases of node-exclusive and two-hop interference models. In
the node-exclusive model, links interfere with each other only
if they share a common end-point; Lin and Rasool [14] design
a random-access scheduling strategy based on the notion of
periodic contention-frames, which is guaranteed to achieve
a (nearly) 1

3 -factor of the optimal capacity region of the
network. Joo and Shroff [9] propose an improved strategy
for the node-exclusive interference model which achieves a
(nearly) 1

2 -factor of the optimal capacity region. Both of these
works also study the two-hop interference model and propose
synchronous random-access schemes which are guaranteed to
achieve a (nearly) 1

∆+1 -factor of the optimal capacity, where
∆ is the network interference degree.

Our work departs from the results of [14], [9] in the follow-
ing significant ways. Foremost, our analysis of synchronous
random-access is only a building block for our analysis of
asynchronousrandom-access. Synchronization is hard if not
impossible to achieve in practice (without special hardware
such as GPS); often, a central purpose of randomness in
scheduling is to overcome a lack of network synchroniza-
tion. Our work handles two complex challenges thatdo not
arise in the analysis of synchronous wireless networks—the
effect of hidden terminals and asymmetric link transmission
durations—and initiates the capacity analysis of asynchronous
random-access. Further, we study the performance of random-
access underarbitrary link-conflict-based models of wire-
less interference. For synchronized networks, we show that
random-access is1

e∆ -competitive w.r.t. optimal scheduling
under any link-conflict based interference model; for asyn-
chronous networks, we show 1

e∆(γ+1) -competitive strategies.
Single-hop random access networks:Random-access pro-

tocols in general and 802.11 in particular have received ex-
tensive treatment for the special case of a single-hop network
(i.e., every node can communicate with every other node, and
every link interferes with every other link) [3], [4], [5], [7],
[12], [15], [16]. The crucial distinction between these studies
and our work is that we need to address the asymmetry that
is inherent in multi-hop networks. In a single-hop network all
nodes perceive the wireless channel to be in the same state:
occupied or idle. Such symmetry does not hold in a multi-
hop network which introduces significantly more difficult
challenges.

III. B ACKGROUND

A. Network Model

We model the random-access wireless network as a directed
graphG = (V,E). Each link ℓ ∈ E has a fixed capacity
c(ℓ) which denotes the maximum bit-rate at which data can
be transmitted acrossℓ. Link ℓ employs a fixed packet size
M(ℓ) for its transmission, and a single transmission byℓ lasts
for Txmit(ℓ) = M(ℓ)

c(ℓ) units of time. A transmission across
link ℓ will be successful if and only if it is not lost due
to channel errors, and if no other interfering link transmits
simultaneously. We model channel errors by a parameterρ(ℓ)
which denotes the probability that a transmission on linkℓ

will not encounter any channel errors (i.e.,1 − ρ(ℓ) is the
probability that a channel error occurs during a transmission
on ℓ). We define an interference setI(ℓ) for link ℓ; this
consists of the set of all links which interfere with linkℓ. A
transmission byℓ is interference-free only if it does not overlap
in time with another transmission by a link in its interference
set I(ℓ). In our general (non-geometric) interference model,
the interference setI(ℓ) can be specified to be anarbitrary
subset of linksE \ {ℓ}. To model hidden links, we partition
the interference setI(ℓ) into two subsets:hidden(ℓ) ⊆ I(ℓ),
and exposed(ℓ) = I(ℓ) \ hidden(ℓ). If link ℓ is currently
not involved in a transmission, then it can sense any ongoing
transmission by the links in the setexposed(ℓ) and vice-versa.
However,ℓ cannotsense any transmission by the links in the
sethidden(ℓ) and vice-versa. Thus, we could have scenarios
where a link ℓ′ ∈ hidden(ℓ) starts its transmission in the
middle of an ongoing transmission byℓ; this will result in the
failure of the transmission byℓ.

B. Asynchronous random-access model of scheduling

Our asynchronous random-access model of scheduling is
inspired by the basic access mechanism (or the ad-hoc mode
operation) of the 802.11 protocol. Each link perceives time
to be slotted and divided into contiguous chunks of length
Tid. Link ℓ attempts to access the channel during time chunk
i as follows. Let time chunkj be such thatj > i. If
chunk j is not part of an ongoing transmission by any link
in the set{ℓ}

⋃

exposed(ℓ), then ℓ independentlyinitiates a
transmission of the packet during chunkj with probability
τ(ℓ). With the remaining probability1−τ(ℓ), ℓ skips the chunk
j. Once ℓ initiates a transmission, it occupies the channel
for Txmit(ℓ) duration of time. This process is repeated until
the packet is successfully transmitted. In general, the channel
access probabilityτ(ℓ) is a function of the rate demanded by
ℓ, the capacityc(ℓ), and other parameters.5

From the perspective of linkℓ, the channel consists of two
types of periods: (1) an idle period consisting of asequence
of idle chunks (or idle slots) each of lengthTid, followed by
(2) a busy period or a singlebusyslot of lengthTbusy, during
which the channel is either occupied byℓ, some link(s) in
exposed(ℓ), or a combination thereof. Note that a linkfreezes

5Our results can be stated in terms of node-based random-access process
as well; we use a link-based process for ease of exposition.
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Figure 1. Timing diagram illustrating asynchronous random-access. Links
ℓ2 and ℓ3 both interfere withℓ1; ℓ2 is exposed whileℓ3 is hidden. Small
white rectangles represent idle slots, shaded rectangles transmission slots, and
striped rectangles times at which the access process is frozen. The interfering
transmission on hidden linkℓ3 starts in the middle of an ongoing transmission
on ℓ1; in contrast, if the exposed linkℓ2 detects any transmission onℓ1, it
freezes its attempt process and vice-versa. A transmissionon ℓ2 can interfere
with a transmission onℓ1 only if they start during the same chunk.

its attempt process when it is not transmitting but the channel
is busy due to some link inexposed(ℓ). Also, while each
idle slot is of a fixed durationTid, a busy slot has a variable
duration that depends upon which link(s) are transmitting and
how their transmissions overlap. For ease of analysis, we will
assume that theTxmit values are integral multiples ofTid. We
present in Figure 1 a sample illustration of the random-access
process, with a special emphasis on the role of exposed and
hidden links.

C. Optimal vs. random-access scheduling

We now present a simple necessary condition which must be
satisfied by any throughput vector that is achievable through
optimal scheduling. This will be useful in the competitive
analysis of our random-access strategies. Suppose we are
given a link-throughput vector (or link-rate vector)~f =
〈f(ℓ1), . . . , f(ℓm)〉 wheref(ℓi) specifies the steady state rate
we need to support on linkℓi. Recall thatρ(ℓ) denotes the
probability of a transmissionnot failing due to channel errors,
and c(ℓ) denotes the capacity of linkℓ. Let x(ℓ) = f(ℓ)

ρ(ℓ)c(ℓ)
denote linkℓ’s utilization. A link’s utilization is the fraction
of the time it needs to beactive without interferencein any
schedule which achieves the link-rate vector~f .

Clearly, not every link-rate vector can be feasibly scheduled
and additional constraints are necessary to ensure that it can be
scheduled. Recall thatI(ℓ) denotes the set of links which inter-
fere with link ℓ; further, recall that∆ is the maximum number
of links in any setI(ℓ) that are mutually interference-free. It
is well-known (and can be easily verified) that every link-rate
vector ~f that can be achieved through optimal scheduling must
satisfy the followingnecessarycondition:

∀ℓ :
f(ℓ)

ρ(ℓ)c(ℓ)
+

∑

ℓ′∈I(ℓ)

f(ℓ′)

ρ(ℓ′)c(ℓ′)
≤ ∆ (1)

Eqn. (1) states that for any linkℓ, the total utilization of
ℓ and its interfering links can never exceed∆. Specifically,
if a rate vector violates this constraint, then no scheduling
algorithm can achieve this rate vector. We will exploit this

fact to establish the competitiveness of our random-access
scheduling strategies w.r.t. optimal scheduling.

Unlike optimal scheduling, which is allowed to choose
the transmit slots for each link carefully in a deterministic
conflict-free manner, the only parameter which can be tuned
for each link in random-access scheduling is its channel-access
probability. We are interested in analyzing the set of all link-
rate vectors achievable through all possible settings of the
channel-access probabilities of the network links.

For ease of presentation, we make the following simplifying
assumptions regarding network stability. If a link is scheduled
for transmission at a slot when its packet-queue is empty, then
the link will transmit a dummy packet of suitable size. A link
rate vector is said to bestable(or feasible), if a strategy exists
for scheduling the links such that, at each link, the expected
volume of data which is successfully transmitted per slot
equals or exceeds the expected volume of data which arrives
exogenously at this link. Under certain mild conditions on the
traffic arrival process, the stability proofs in this paper can be
extended for multi-hop routing and can be stated rigorously
in a queueing theoretic setting, using the Lyapunov function
framework as in the work of Georgiadiset al. [6].

IV. SYNCHRONOUS RANDOM-ACCESS

We now demonstrate the key elements of our approach with
synchronous random-access, in which time is divided into
equally sized slots of unit length, a transmission on any link
spans one slot, and slots across links are synchronized.

A. Synchronous random-access rate-region

We start by characterizing the exact conditions under which
a given link rate vector~h can be achieved through synchronous
random-access. Recall thatρ(ℓ) is the probability of linkℓ
being free from channel errors during a transmission. Letη(ℓ)
denote the probability that no collision occurs at linkℓ (due to
interference) during a transmission, andτ(ℓ) the probability
with which link ℓ attempts transmission during a slot. We
now present the NLP which precisely characterizes the feasible
link-rate region of synchronous random-access.

∀ℓ ∈ E : h(ℓ) = τ(ℓ)ρ(ℓ)η(ℓ)c(ℓ) (2)

∀ℓ ∈ E : η(ℓ) =
∏

ℓ′∈I(ℓ)(1 − τ(ℓ′)) (3)

Eqn. (2) is the stability condition which states that the rate at
which data arrives at linkℓ is equal to the rate at which data
is successfully transmitted out of linkℓ. The l.h.s. of Eqn. (2)
denotes the expected volume of data (in bits) that enters link
ℓ during each (unit length) time slot. The r.h.s. of Eqn. (2)
denotes the expected volume of data transmitted onℓ during
each (unit length) time slot. This incorporatesτ(ℓ): the prob-
ability of a transmission being attempted onℓ during a slot,
ρ(ℓ)η(ℓ): the probability of the transmission succeeding, and
c(ℓ): the number of bits transmitted during the (unit length)
slot if the transmission succeeds. Since transmission events
across links are independent, we can expressη(ℓ) as a function
of the interfering links’τ ’s. Each link ℓ′ in the interfering
setI(ℓ) chooses to transmit during a time slot, independently



at random, with probabilityτ(ℓ′). The transmission at linkℓ
is interference-free if and only if none of the links inI(ℓ)
transmit in the same slot asℓ. Eqn. (3) captures this. A link-
rate vector~h can be achieved through synchronous random-
access if and only if it is a feasible solution to (2) and (3).
In general, the set of feasible rate-vectors characterizedby (2)
and (3) is non-convex. This is a significant obstacle to directly
plugging-in known convex-programming-based optimization
techniques for network optimization, and necessitates theuse
of approximate techniques developed in this work.

B. Competitive Scheduling

Here, we develop our synchronous random-access schedul-
ing strategy and prove that it is1

e∆ -competitive w.r.t. optimal
scheduling. Suppose we are given a link-rate vector~f which
is guaranteed to be achievable through optimal scheduling
(hence, it satisfies Eqn. (1)). In our random-access strategy,
we assign access probabilities to each linkℓ as follows:

∀ℓ ∈ E : τ(ℓ) = 1 − e
−

f(ℓ)

∆·ρ(ℓ)·c(ℓ) (4)

Theorem 1:Let ~f be a link-rate vector which satisfies Eqn.
(1). If we assign the channel access probabilities for each link
using Eqn. (4), then synchronous random-access achieves a
link-rate vector~h such that each component of~h is at least
1
e∆ times the corresponding component in~f .

Proof: Let us first computeη(ℓ)m the probability of
collision-free transmission for linkℓm as follows:

η(ℓ) =
∏

ℓ′∈I(ℓ)(1 − τ(ℓ′)) = e

∑

ℓ′∈I(ℓ)
−

f(ℓ′)

∆·ρ(ℓ′)·c(ℓ′)

≥ e
f(ℓ)

∆·ρ(ℓ)·c(ℓ)
−1 (5)

The last inequality follows since~f satisfies (1). Let~h be
the link-rate vector achieved by random-access. We have:
∀ℓ ∈ E : h(ℓ) = ρ(ℓ)c(ℓ)τ(ℓ)η(ℓ) {from (2)} ≥

ρ(ℓ)c(ℓ) · (1 − e
−

f(ℓ)

∆·c(ℓ)·ρ(ℓ) ) · e
f(ℓ)

∆·ρ(ℓ)·c(ℓ)
−1 {from (5)} =

ρ(ℓ)c(ℓ) · (e
f(ℓ)

∆·ρ(ℓ)·c(ℓ)
−1 − e−1) ≥ ρ(ℓ)c(ℓ) ·

(

1+
f(ℓ)

∆·ρ(ℓ)·c(ℓ)

e
− 1

e

)

{since∀x : ex ≥ 1 + x} = f(ℓ)
e∆ . This

completes the proof of the theorem.

V. A SYNCHRONOUS RANDOM-ACCESS

We begin our study of the asynchronous random-access
model by extending the stability condition (2) to asynchronous
networks in Section V-A. In general, it seems impossible to
completely specify the stability condition for asynchronous
networks, since it is not easy to obtain a closed form expres-
sion for the success probabilityη(ℓ). However, our specifica-
tion will play a crucial role in the analysis of our scheduling
strategies in Section V-B.

A. Stability condition

Let the expected length of a time slot for a linkℓ in steady-
state beT (ℓ). Recall thatTxmit(ℓ) is the length of a transmit
slot for link ℓ. If the link-flow vector supported by the network
is ~h, it follows that the expected number of bits generated
per time slot for link ℓ is equal toh(ℓ)T (ℓ). Recall that

(1−ρ(ℓ)) is the probability of a channel error occurring during
a transmission across linkℓ, and(1 − η(ℓ)) is the probability
of interference occurring at linkℓ during a transmission. The
expected number of bits successfully transmitted over link
ℓ per time slot isc(ℓ)Txmit(ℓ) times the probability of a
successful transmission onℓ during that transmit time slot;
i.e., τ(ℓ) · ρ(ℓ)η(ℓ) · c(ℓ)Txmit(ℓ). This product differs from
(2) in that it incorporatesc(ℓ)Txmit(ℓ): the number of bits
transmitted over this link-dependent period of time.

We are now ready to state our partial stability constraint,
which states that the expected number of bits generated at
link ℓ is equal to the expected number of bits which are
successfully transmitted onℓ during each slot:

∀ℓ ∈ E : h(ℓ)T (ℓ) = τ(ℓ)ρ(ℓ)η(ℓ)c(ℓ)Txmit(ℓ) (6)

Eqn. (6) is a partial stability condition since we are not aware
of a closed form expression forη(ℓ) in terms of theτ values.
However, this partial specification suffices for our analysis.

B. Competitive scheduling

We now prove our main result that asynchronous random-
access is 1

e∆(γ+1) -competitive w.r.t. optimal scheduling. Recall
that Txmit(ℓ) denotes the length of a transmit slot for linkℓ,
andTid denotes the length of an idle slot. Recall also thatγ

denotes the maximum ratio between theTxmit values of a link
ℓ and a hidden linkℓ′ in its interference neighborhood: i.e.,
γ = maxℓmaxℓ′∈hidden(ℓ)

Txmit(ℓ)
Txmit(ℓ′)

(note thatγ ≥ 1). Sup-

pose we are given a link-rate vector~f which is guaranteed to
be achievable through optimal scheduling (it satisfies Eqn.(1)).
Let ǫ = 1

γ+1 . In our asynchronous random-access strategy, we
assign access probabilities to each linkℓ as follows:

∀ℓ ∈ E : τ(ℓ) = 1 − e
−ǫ·

f(ℓ)
∆(ℓ)·c(ℓ)·ρ(ℓ)

·
Tid

Txmit(ℓ) (7)

The following theorem shows that this choice of access
probabilities achieves the rate-vector

~f
(γ+1)·e∆ .

Theorem 2:Let ~f be a link-rate vector which satisfies Eqn.
(1). If we assign the channel access probabilities for each link
using Eqn. (7), then asynchronous random-access achieves a
link-rate vector~h such that each component of~h is at least

1
(γ+1)·e∆ times the corresponding component in~f .

Proof: Consider a fixed linkℓ. We will now obtain a lower
bound on the rate achieved by linkℓ through the strategy in
Eqn. (7). Letα(ℓ) ∈ [0, 1] be defined through Eqn. (8).

f(ℓ)
∆·c(ℓ)ρ(ℓ) +

∑

ℓ′∈exposed(ℓ)
f(ℓ′)

∆·c(ℓ′)ρ(ℓ′) = α(ℓ) (8)
∑

ℓ′∈hidden(ℓ)
f(ℓ′)

∆·c(ℓ′)ρ(ℓ′) ≤ 1 − α(ℓ) (9)

Consider a transmission by linkℓ which starts at time chunkk.
This transmission spans the chunksk, k+1, . . . , k+ Txmit(ℓ)

Tid
−

1, and will be successful if the following conditions hold: (i)
No link ℓ′ ∈ hidden(ℓ) starts a transmission during the chunks
k − Txmit(ℓ

′)
Tid

+ 1, k − Txmit(ℓ
′)

Tid
+ 2, . . . , k, k + 1, . . . , k +

Txmit(ℓ)
Tid

− 1, and (ii) No link ℓ′ ∈ exposed(ℓ) starts a
transmission during chunkk.



The probability of a linkℓ′ starting a transmission at any
specific chunk is at mostτ(ℓ′), even when conditioned on any
other transmission event. Let ψ

.
= maxℓ

Tid
Txmit(ℓ)

. We have,

η(ℓ) ≥ Πℓ′∈hidden(ℓ)(1 − τ(ℓ′))

(

Txmit(ℓ)+Txmit(ℓ
′)

Tid
−1

)

×
Πℓ′∈exposed(ℓ)(1 − τ(ℓ)) = Πℓ′∈hidden(ℓ)

(

e
−

ǫ·Tid
Txmit(ℓ

′)
·

f(ℓ′)

∆·c(ℓ′)ρ(ℓ′)

)

(

Txmit(ℓ)+Txmit(ℓ
′)

Tid
−1

)

×

Πℓ′∈exposed(ℓ)

(

e
−

ǫTid
Txmit(ℓ

′)
·

f(ℓ′)

∆·c(ℓ′)ρ(ℓ′)

)

. This along with

Eqns. (8) and (9) implies:

η(ℓ) ≥ e−ǫ·(1−α(ℓ))·(1+γ) · e
−ǫψ

(

α(ℓ)−
f(ℓ)

∆·c(ℓ)ρ(ℓ)

)

(10)

Link ℓ perceives any time chunk as being in one of the
following two states: (i) the chunk is idle, or else (ii) the
chunk is occupied by eitherℓ or some linkℓ′ ∈ exposed(ℓ). In
general, the channel alternates between anoccupied periodor
an occupied slot(consisting of contiguous occupied chunks)
and anidle period (consisting of contiguous idle chunks or
idle slots). Letκidle(ℓ) denote the expected number of chunks
in an idle period of linkℓ; let κocc(ℓ) denote the expected
number of chunks in an occupied period of linkℓ. Let pidle(ℓ)
denote the steady state probability of a chunk being idle for
link ℓ. Therefore, we havepidle(ℓ) = κidle(ℓ)

κidle(ℓ)+κocc(ℓ)
. Recall

that T (ℓ) denotes the expected length of a time slot for link
ℓ. Hence,

T (ℓ) ≤
Tid · (κidle(ℓ) + κocc(ℓ))

κidle(ℓ) + 1
≤

Tid

pidle(ℓ)
(11)

The intuition behind the first inequality is that, in steady state,
link ℓ perceivesκidle(ℓ) slots of lengthTid which are idle,
followed by a single occupied slot of lengthκocc(ℓ)Tid (in
expectation).

Observe that linkℓ perceives any fixed chunkk to be idle
if and only if ℓ does not start a transmission during the slots
k − Txmit(ℓ)

Tid
+ 1, . . . , k and no linkℓ′ ∈ exposed(ℓ) starts a

transmission during the slotsk − Txmit(ℓ
′)

Tid
+ 1, . . . , k. Hence,

we have:pidle(ℓ) ≥ (1 − τ(ℓ))
Txmit(ℓ)

Tid · Πℓ′∈exposed(ℓ)(1 −

τ(ℓ′))
Txmit(ℓ

′)

Tid ≥ e−ǫα(ℓ). Combining this with Eqn. (11)
yields:

T (ℓ) ≤ Tide
ǫα(ℓ) (12)

From Eqns. (7) and (10), we have:

τ(ℓ)η(ℓ) ≥ (1 − e
−ǫ·

f(ℓ)

∆·c(ℓ)·ρ(ℓ)
·

Tid
Txmit(ℓ) ) ×

e−ǫ·(1−α(ℓ))·(1+γ) · e
−ǫψ

(

α(ℓ)−
f(ℓ)

∆·c(ℓ)ρ(ℓ)

)

= e−ǫ·(1−α(ℓ))·(1+γ)−ǫψα(ℓ) ×

e
ǫψf(ℓ)

∆·c(ℓ)ρ(ℓ) × (1 − e
−ǫ·

f(ℓ)

∆·c(ℓ)·ρ(ℓ)
·

Tid
Txmit(ℓ) )

≥ eα(ℓ)−1−ǫψα(ℓ) ×

(

e
ǫ·

f(ℓ)

∆·c(ℓ)ρ(ℓ)
·

Tid
Txmit(ℓ) − 1

)

{sinceǫ = 1
γ+1 , and∀ℓ : ψ ≥ Tid

Txmit(ℓ)
}

≥ eα(ℓ)−1−ǫψα(ℓ) · ǫ ·
f(ℓ)

∆ · c(ℓ)ρ(ℓ)
·

Tid

Txmit(ℓ)
(13)

{since∀x : ex ≥ 1 + x}

We are now ready to bound the rateh(ℓ)
achieved by link ℓ in steady-state. We have,
h(ℓ) = τ(ℓ)η(ℓ)ρ(ℓ)Txmit(ℓ)c(ℓ)

T (ℓ)
{from Eqn. (6)} ≥

eα(ℓ)−1−ǫψα(ℓ)
·ǫ·

f(ℓ)
∆·c(ℓ)ρ(ℓ)

·
Tid

Txmit(ℓ)
·ρ(ℓ)Txmit(ℓ)c(ℓ)

T (ℓ)

{From Eqn. (13)} ≥ ǫ
f(ℓ)
∆ eα(ℓ)−1−ǫψα(ℓ) ·

e−ǫα(ℓ) {from Eqn. (12)} = f(ℓ)
(γ+1)·e∆ ·

eα(ℓ)−ǫα(ℓ)−ǫψα(ℓ) {sinceǫ = 1
γ+1} ≥

f(ℓ)
(γ+1)·e∆ {asψ ; 0, andǫ ≤ 1 }. Here the assumption
ψ ; 0 simply reflects the fact that, in practice, the length
of the idle slot is negligible in comparison with the length
of transmission durations. This assumption is by no means
necessary for our analysis: relaxing it affects our competitive
ratio only by a minor factor of1 + ψ. This completes the
proof of the theorem.

VI. FUNDAMENTAL LIMITS OF RANDOM -ACCESS

Theorem 2 states our choice of channel-access probabilities
ensure that the competitive ratio of asynchronous random-
access w.r.t. optimal scheduling is 1

e∆(γ+1) . We now claim
that this ratio is essentially the best achievable and cannot be
significantly improved in general, even by a more clever choice
of channel access probabilities. Given a networkN with a
link set L, defineγ(N ) = maxℓ∈L maxℓ′∈hidden(ℓ)

Txmit(ℓ)
Txmit(ℓ′)

;
further, let∆(N ) denote the interference degree of the specific
networkN . We show:

Theorem 3:Consider the family of networks containing all
networksN such thatγ(N ) ≥ γ∗ and ∆(N ) ≥ ∆∗, where
γ∗ ≥ 1 is any fixed constant and∆∗ ≥ 1 is any fixed
integer. The competitiveness of asynchronous random-access
w.r.t. optimal scheduling is upper bounded byΦ(∆∗, γ∗) =
2(1+ln (∆∗γ∗))

∆∗γ∗ for this family of networks.
Proof: Let N be a network with∆∗ + 1 links ℓ0,

ℓ1, ℓ2, . . . , ℓ∆∗ ; we will nameℓ0 as thelong link and the rest
of the links as theshort links. The short links are mutually
interference-free; but each of them is a hidden link for the
long link and vice-versa. Let all the short links have a transmit
durationTxmit; let Txmit(ℓ0) = γ∗Txmit. Let Txmit = ζTid,
where ζ ≥ 1 is a fixed integer. Let all the links have unit
capacities, and let the channel be error-free (hence lossesare
entirely due to interference). It is easy to see that the link-
rate vector~f = 〈f(ℓ0), f(ℓ1), . . . , f(ℓ∆∗)〉 = 〈1

2 ,
1
2 , . . . ,

1
2 〉 is

achievable in this network through optimal scheduling.
Assume that there exist channel access probabilities which

can support the rate vectorΦ(∆∗, γ∗)~f . The expected fraction
of the time link any short linkℓi is transmitting on the
channel is τ(ℓi)Txmit

τ(ℓi)Txmit+(1−τ(ℓi))Tid
. The link capacity is one

unit, and ℓi achieves a rate of at leastΦ(∆∗,γ∗)
2 ; hence,

τ(ℓi)Txmit
τ(ℓi)Txmit+(1−τ(ℓi))Tid

≥ Φ(∆∗,γ∗)
2 . Combining this with the

fact thatTid ≤ Txmit and by rearranging the terms, we have,
for all short linksℓi:

τ(ℓi) ≥
Φ(∆∗, γ∗)

2ζ
(14)



As in the proof of Theorem 2, consider time being divided
into chunks of lengthTid. A transmission by the long link
ℓ0 occupiesγ∗ζ contiguous chunks; this transmission will be
successful only if no earlier transmission by any short linkℓi
overlaps with these chunksandℓi does not start a transmission
in any of these chunks. It follows thatη(ℓ0), the probability
of a successful transmission byℓ0 is:

Πi∈1,2,...,∆∗(1 − τ(ℓi))
γ∗ζ ≤ Πi∈1,2,...,∆∗

e−γ
∗ζτ(ℓi) ≤ e−(1+ln∆∗γ∗) ≤ 1

e∆∗γ∗ (15)

It is easy to verify that when the link capacity ofℓ0 is one unit,
the rate achievable byℓ0 is upper bounded byη(ℓ0); this value
is at most 1

e∆∗γ∗ by Eqn. (15). Further, it is easy to check that

for all γ∗ ≥ 1, 1
e∆∗γ∗ <

Φ(∆∗,γ∗)
2 . Hence, if the rate achieved

by ℓ1 is at least Φ(∆∗,γ∗)
2 , then the rate achieved byℓ0 is

strictly less thanΦ(∆∗,γ∗)
2 . This contradicts our assumption

and completes the proof of the theorem.

VII. C APACITY OF RANDOM ACCESS

We now address the central cross-layer optimization prob-
lem of maximizing end-to-end connection throughput. The
crux of the end-to-end optimization problem lies in character-
izing the achievable link-rate region of a network efficiently;
here, we present our novellinear characterization of the link
rate-region that is achievable in a given network through
asynchronous random-access. Due to lack of space, we present
these characterizations in Theorems 4 and 5, without proof.

Theorem 4:Every link-rate vector~f which can be stably
scheduled through asynchronous random-access satisfies the
following linear condition:

∀ℓ ∈ E : f(ℓ)
ρ(ℓ)c(ℓ) +

∑

ℓ′∈exposed(ℓ)
f(ℓ′)

ρ(ℓ′)c(ℓ′) + (16)
∑

ℓ′∈hidden(ℓ)
f(ℓ′)

ρ(ℓ′)c(ℓ′) ·
Txmit(ℓ

′)+Txmit(ℓ)−Tid
Txmit(ℓ′)

≤ ∆

Theorem 5:Every link-rate vector~f which satisfies the
following linear condition can be stably scheduled through
asynchronous random-access:

∀ℓ ∈ E : f(ℓ)
ρ(ℓ)c(ℓ) +

∑

ℓ′∈exposed(ℓ)
f(ℓ′)

ρ(ℓ′)c(ℓ′) + (17)
∑

ℓ′∈hidden(ℓ)
f(ℓ′)

ρ(ℓ′)c(ℓ′) ·
Txmit(ℓ

′)+Txmit(ℓ)−Tid
Txmit(ℓ′)

≤ 1
e

We can now combine our linear constraints in Eqn. (17)
with the standard network flow formulations (as in [13], [8],
[1], [11], [17], [18]) to compute the end-to-end capacity ofan
asynchronous random-access wireless network efficiently.

VIII. S IMULATION RESULTS

We present our experimental results from NS-2 simulations
of 802.11 as well as capacity computations using the CPLEX
linear programming solver.

A. Validating the stability condition

We begin our experimental evaluation by validating the
stability condition (6) in a large multi-hop wireless network.
We created a random 200 node network spread over a 1500
× 1500 square grid. We fixed the capacity of each link in the
network to either 24Mbps or 6Mbps with equal probability in
order to provide rate diversity. We picked16 links at random
and created a random link-demand vector~f ; at time t, we
injected data into an active linkℓ at the rateg(t)f(ℓ). Here,
g(t) is a network-wide parameter that increases monotonically
with time, while f(ℓ) is one of the16 components in the
demand vector~f . We fixed packet sizes at512 Bytes and ran
the simulation for120 secs. During each second, we measured
T (ℓ): the average length of a time slot for linkℓ, τ(ℓ): the
channel access probability for linkℓ, andη(ℓ): the probability
of interference-free transmission, on all the16 active linksℓ.

Figure 2(a) shows the observed and predicted channel access
probability for a representative link as a function of time.The
predictions make use of the observedη(ℓ) andT (ℓ) values and
plug them into Eqn. (6) to estimateτ(ℓ). The predicted channel
access probability closely mirrors the observed channel access
probability until ∼ 92 secs. This is the point at which this
link saturates, and hence the stability Eqn. (6) is no longer
applicable.Figure 2(b) plots the CDF of the relative-error of
our prediction compared to our observations forall active
links in the network. The three curves correspond to three
snapshots in time when the load on the network is25%, 50%
and75% respectively of the saturation load.Over90% of our
predictions have significantly less than2% relative error and
thus confirms that Eqn. (6) indeed captures the dynamics of a
stable (yet-to-be saturated) random-access network.

B. Non-convexity

Figure 2(c) illustrates the non-convexity of the random-
access rate-region. In this simulation, we used a four node
linear network with two active link flows. The links were node-
disjoint; the two senders interfered with each other’s receiver
but were hidden from each other. We set the channel to be
error-free, with packet losses due solely to interference.We
fixed the bit-rates of both the links to 6 Mbps and varied the
packet sizes from 500 Bytes to 2000 Bytes (each plot is for a
fixed packet size). We fixed the data arrival rate for the first
flow (x coordinate) and observed the maximum throughput
achievable by the second flow (y coordinate)withoutaffecting
the throughput of the first flow.For any fixed packet size, the
achievable random-access rate-region is the area below its
corresponding curve. This is distinctly non-convex, and the
extent of non-convexity increases as we increase the packet
size and hence, the effect of interference.

C. Competitive Analysis

We now study how the relative value of link transmission
durations affects the competitiveness of random-access. We
start with a simple setting in Figure 3(a). Here, we created
a network with two hidden interfering linksℓ1 and ℓ2, with
6Mbps and 24Mbps capacities respectively. We fixed the
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Figure 2. Validating the stability condition and the non-convexityof random-access rate-region: (a) The predicted channel access probability for a representative
link closely matches its observed access probability (b) The CDF of the relative error between predicted and observed channel access probability for all the
links: more than90% of predictions have a relative error of less than2% (c) The random-access rate-region is distinctly non-convex.
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Figure 3. Competitive analysis of uniform and proportional packet size policies: (a) Proportional packet size policy has a significantly larger rate-region
than uniform packet size policy (b) Proportional packet size policy generally delivers greater throughput fractions than uniform packet size policydespiteits
increased per-packet overhead (c) The competitiveness of uniform packet size size rapidly drops compared to proportional packet size policy as the number
of flows, and hence the extent of interference increases in the network.

packet size on linkℓ1 to 500 Bytes and variedℓ2’s packet size
from 500 to 2000 Bytes. The two extremes correspond to the
uniform packet size policy (500B), and the proportional policy
(2000B), where the packet sizes are chosen in proportion to
the link capacities. We fix the data arrival rate for the first
flow (x coordinate) and observe the maximum throughput
achievable by the second flow (y coordinate)withoutaffecting
the throughput of the first flow.The proportional packet size
policy leads to a significantly larger achievable rate-region
than the uniform packet size policy.

We extend competitive analysis of uniform and proportional
policies for the large200-node multi-hop wireless network
considered in Section VIII-A. In the uniform packet size
policy, we set the packet sizes for all links at2000 Bytes; in
the proportional policy, we set the packet sizes for the slower
links at 500 Bytes, whichincreasesper-packet transmission
overheads. In each run of the simulation, we pickedk random
links and a random link-demand vector~f ; we varied the
number of linksk between2 and20. At time t, we injected
data at an active linkℓ at the rateg(t)f(ℓ), g(t) is a
monotonically increasing parameter, similar to the validation
experiments. We computed the throughput fractiong1 for the
uniform policy, which is the value ofg(t) when the network
became saturated; we also computed the throughput fractiong2

for the proportional policy. The valueg1
g2

is the competitiveness
of uniform policy compared to proportional policy for this run
of the experiment.

Figure 3(b) presents the CDFs of the throughput fractions
delivered by the uniform packet size policy (2000B, 2000B),
and the proportional packet size policy (500B, 2000B).
Clearly, the proportional packet size policy delivers signif-
icantly larger throughput fractions than the uniform policy.
We show the average competitiveness of the uniform policy
w.r.t. the proportional policy in Figure 3(c).Random-access
with proportional packet sizes is generally more competitive
than random-access with uniform packet sizes; this is espe-
cially true when the number of flows in the network increases
and the network experiences substantial interference.

D. Capacity Estimation

As above, we partitioned the network links into fast links
and slow links. We assigned the fast links54Mbps capacity,
and the slow links a capacity of54Mbps

γ
, where γ ≥ 1

is a variable simulation parameter. We selected two end-to-
end connections with arbitrarily chosen source and destina-
tion nodes, and computed the total throughput that could be
delivered by the network using the CPLEX solver. We used
two distinct linear programs (LPs): LP1 uses the mathemat-
ical programming formulation of [13], [1], [11], [17] as-is,
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Figure 4. Existing capacity formulations (LP1) do not account for relative
values of link transmission durations and could significantly overestimate the
achievable throughput. Our new capacity formulation (LP2)accounts for the
disparity in link transmission durations.

without incorporating the capacity loss due to random-access
scheduling. LP2 uses the constraints developed in Section VII.

Figure 4 presents the computed capacity as a function ofγ.
Since the LP formulation with existing capacity constraints
(LP1) do not take the relative link transmission durations
into account, it severely overestimates the network capacity.
Our new formulation (LP2) takes this factor into account
and captures the fact that the capacity of the random-access
network decreases asγ increases.

IX. CONCLUSIONS

We initiate the capacity analysis of asynchronous random-
access wireless networks. Through the rigorous notion of
competitive analysis, we precisely quantify the gap in network
capacity due to the use of random-access scheduling as op-
posed to optimal scheduling, and design novel random-access
strategies which achieve this limit. A key intuition which is
an outcome of our work is that random-access scheduling is
generally more competitive when packet sizes for each link
is chosen in proportion to the link-capacity. Motivated by this
intuition, we conjecture that random-access with proportional
packet-sizes isα-competitive w.r.t.any other random-access
strategy, for some constantα > 0. Settling this conjecture is
an interesting open problem. Another significant avenue for
future research is the capacity analysis of 802.11 and related
protocols which employ exponential back-off, RTS-CTS based
collision avoidance schemes, and other sophisticated features.
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