
ARTIFACT
EVALUATED

PASSED

Achieving Keyless CDNs with Conclaves

Stephen Herwig
University of Maryland

Christina Garman
Purdue University

Dave Levin
University of Maryland

Abstract

Content Delivery Networks (CDNs) serve a large and in-
creasing portion of today’s web content. Beyond caching,
CDNs provide their customers with a variety of services, in-
cluding protection against DDoS and targeted attacks. As the
web shifts from HTTP to HTTPS, CDNs continue to provide
such services by also assuming control of their customers’
private keys, thereby breaking a fundamental security princi-
ple: private keys must only be known by their owner.

We present the design and implementation of Phoenix, the
first truly “keyless CDN”. Phoenix uses secure enclaves (in
particular Intel SGX) to host web content, store sensitive key
material, apply web application firewalls, and more on oth-
erwise untrusted machines. To support scalability and multi-
tenancy, Phoenix is built around a new architectural primitive
which we call conclaves: containers of enclaves. Conclaves
make it straightforward to deploy multi-process, scalable,
legacy applications. We also develop a filesystem to extend
the enclave’s security guarantees to untrusted storage. In its
strongest configuration, Phoenix reduces the knowledge of
the edge server to that of a traditional on-path HTTPS adver-
sary. We evaluate the performance of Phoenix with a series
of micro- and macro-benchmarks.

1 Introduction

Content delivery networks (CDNs), like Akamai [1] and
Cloudflare [2], play a critical role in making today’s web
fast, resilient, and secure. CDNs deploy servers around the
world, on which they host their customers’ websites. Be-
cause the web’s performance is largely determined by la-
tency [3], many websites rely on the fact that CDNs have
proximal servers to nearly all users on the web to ensure low-
distance and therefore low-latency connections.

While CDNs have grown more popular, so too has the
movement towards an HTTPS-everywhere web. The major-
ity of all websites are offered via HTTPS, and with the ad-
vent of free HTTPS certificate issuance [4], this number has
grown increasingly quickly [5].

Unfortunately, HTTPS and CDNs are, in some sense,
pathologically incompatible. To accept TLS connections,
CDN servers store their customers’ secret keys—in many
cases, the CDN actually generates the keys on behalf of their
customers [6, 7]. As a result, CDNs are imbued with a huge
amount of trust: they could impersonate, eavesdrop on, or

tamper with all of their customers, including virtually all of
the world’s major banks, online shops, and many government
sites.

The messy relationship between HTTPS and CDNs is
made all the more challenging by the fact that CDNs today
do far more than merely host the bulk of the web’s content.
They also use web application firewalls (WAFs) to analyze
clients’ requests for evidence of targeted attacks like SQL
injection or cross-site scripting, and filter them before up-
loading to their customers [8]. CDN customers benefit from
this service because it scrubs attack traffic far from their own
networks. And yet, running a WAF on a CDN requires the
CDN to have access to the website’s unencrypted traffic.

There have been recent advances to address aspects of this
problem, most notably Cloudflare’s Keyless SSL [9], which
is a protocol that allows CDN customers to maintain sole
ownership of their private keys. However, even with Key-
less SSL, the CDN learns all session keys, yielding little ad-
ditional assurance against eavesdropping or impersonation.
The ideal solution would allow for all requisite processing
and functionality to be performed on encrypted data, so that
the CDN operator is neither responsible for holding the keys
nor able to see any of the data through it. However, even
the state of the art in this area [10–16] is much too ineffi-
cient to be utilized at the scale and performance that would
be expected of a CDN.

In this paper, we introduce the design and implementa-
tion of Phoenix, the first truly “Keyless CDN”. Phoenix uses
trusted execution environments (TEEs, in particular Intel
SGX enclaves) to perform all of the quintessential tasks of to-
day’s CDNs—hosting web servers, applying web application
firewalls, performing certificate management, and more—all
on otherwise untrusted machines.

Critical to the performance of any CDN is the ability to
support multiple concurrent web servers and multiple ten-
ants (customers). Unfortunately, no existing software in-
frastructures built off of SGX have been able to support
multi-process, multi-tenant applications. We introduce a new
general-purpose architectural primitive we call conclaves:
containers of enclaves. Conclaves facilitate the deployment,
configuration, and dynamic scaling-up and -down of sophis-
ticated legacy (unmodified) applications.

Contributions We make the following contributions:
• We present the first truly “keyless CDN,” which we call

Phoenix. Phoenix performs all of the quintessential tasks

of today’s CDNs, without requiring CDNs to gain access
to sensitive key material, and without having to change
legacy web applications.

• To realize our design, we introduce a new architectural
primitive called conclaves, which creates a microkernel
out of secure enclaves. Conclaves offer the abstraction
of a “container of enclaves,” thereby making it straight-
forward to deploy multi-process, scalable, legacy applica-
tions within a dynamic number of enclaves.

• We present a detailed design and implementation of
Phoenix, and evaluate it on Intel SGX hardware. Our re-
sults indicate that conclaves scale to support multi-tenant
deployments with modest overhead (∼2–3× for many con-
figurations).

Roadmap We describe the essential features of today’s
CDNs and distill a set of goals and threat models in §2. We
review related work in §3. We present the design of con-
claves and of Phoenix in §4, and their implementation in §5.
We present our evaluation in §6 and conclude in §7.

2 Problem and Goals

We distill down the fundamental features of today’s CDNs,
discuss the inherent security challenges, and formulate the
goals and threat models that guide the rest of this paper.

2.1 Content Delivery Networks

CDNs are third-party services that host their customers’ web-
sites (and other data). Virtually all of the most popular
websites (and a very long tail of unpopular websites) use
one or more CDNs to help reliably host their content [6].
Historically, CDNs have been thought of as a massive web
cache [17], but today’s CDNs play a critical role in achieving
the performance and security that the web relies on [8].

We identify four key roles that fundamentally define to-
day’s CDNs, and their enabling technologies:

Low latency to clients: The primary driving feature of
CDNs is their ability to offer low page-load times for clients
visiting their customers’ websites.

How they achieve this: CDNs achieve low latencies via a
massive, global network of multi-tenant edge servers. Edge
servers act primarily as reverse proxy web servers for the
CDN’s customers: to handle client requests, edge servers re-
trieve content from the customers’ origin servers, and cache
it so they can deliver it locally. CDNs direct client requests
to the edge servers in a way that balances load across the
servers, and that minimizes client latency—often by locating
the “closest” server to the client. There are many sophisti-
cated means of routing clients to nearby servers, involving IP
geolocation, IP anycast, and DNS load balancing—but these
specific mechanisms are outside the scope of this paper.

Edge-network services like CDNs therefore derive much
of their utility from the fact that they have servers close
to most clients. To this end, CDNs deploy their own data
centers, and deploy servers within other organizations’ net-
works, such as college campuses, ISPs, or companies. In-
deed, today’s CDNs have so many points of presence (PoPs)
that they often are within the same network as the clients vis-
iting their sites. To support such proximity without an inor-
dinate number of machines, CDNs rely on the ability to host
multiple tenants (customers) on their web servers at a time.

Manage customers’ keys: As the web moves towards
HTTPS-everywhere [5], customers increasingly rely on
CDNs to store their HTTPS certificates and the correspond-
ing secret keys, so that they can accept TLS connections
while maintaining low latency to clients.

How they achieve this: CDNs manage their customers’ keys
in a variety of ways: sometimes by having their customers
upload their secret keys, but typically by simply generat-
ing keys and obtaining certificates on their customers’ be-
half [6, 7]. Many CDNs combine multiple customers onto
single “cruiseliner certificates” under the same key pair—
these customers are not allowed to access their own private
keys, as that would allow them to impersonate any other cus-
tomer’s website on the same cruiseliner certificate [6]. A re-
cent protocol, Keyless SSL [9], has been proposed to address
this; we describe this in more detail in §3.

Absorb DDoS traffic: CDNs protect their customers by
filtering DDoS traffic, keeping it from reaching their cus-
tomers’ networks.

How they achieve this: CDNs leverage economies of scale
to obtain an incredible amount of bandwidth and computing
resources. Their customers’ networks block most inbound
traffic, except from the CDN. Thus, attackers must overcome
these huge resources in order to impact a customer’s website.

Filter targeted attacks: An often overlooked but critical
feature [8] of today’s CDNs is the ability to filter out (non-
DDoS) attack traffic, such as SQL injection and cross-site
scripting attacks.

How they achieve this: Unlike with DDoS traffic, the primary
challenge behind protecting against targeted attacks is detect-
ing them. CDNs achieve this by running web-application
firewalls (WAFs), such as ModSecurity [18]. WAFs ana-
lyze the plaintext HTTP messages, and compare the mes-
sages against a set of rules (often expressed as regular expres-
sions [19]) that indicate an attack. Edge servers only permit
benign data to pass through to the customer’s origin server.

2.2 Security Implications of CDNs

Simultaneously fulfilling these four roles—low latency, key
management, absorbing large attacks, and blocking small
attacks—inherently requires processing client requests on

edge servers. In the presence of HTTPS, however, this pro-
cessing requires edge servers to have at least each TLS con-
nection’s session key, if not also each customer’s private key.

It is therefore little surprise that CDNs have amassed the
vast majority of private keys on the web [6, 7]. This has
significant implications on the trust model of the PKI and the
web writ large: today’s CDNs could arbitrarily impersonate
any of their customers—and recall that virtually all of the
most popular websites use one or more CDNs [6].

Even if one were to assume a trustworthy CDN, the need to
store sensitive key materials on edge servers introduces sig-
nificant challenges. CDNs have historically relied on a com-
bination of their own physical deployments and deployment
within third-party networks, such as college campuses. To
protect their customers’ keys, some CDNs refuse to deploy
HTTPS content anywhere but at the data centers they have
full physical control over [8]. However, as the web moves
towards HTTPS-everywhere, this means that such CDNs can
no longer make as much use out of third-party networks. In
short, without additional protections for private and session
keys on edge servers, the move towards HTTPS-everywhere
represents an existential threat to edge-network services.

2.3 Our Goals

At a high level, our goal is to maintain all of the core proper-
ties of a CDN—low latency, key management, and resilience
to DDoS and targeted attacks—without having to expose cus-
tomers’ keys or a client’s sensitive information, and without
requiring massive code changes from their customers. We
distill our overarching goal down to five specifics:

1. Protect private keys: Support HTTPS, but without ex-
posing the private keys corresponding to the certificate’s
public key to any edge server.

2. Protect session keys: Once a connection is established,
do not expose the ephemeral session keys (nor the sensi-
tive material for session resumption) to any edge server.

3. Secure web-application firewalls: Support edge-
server-side WAFs, but without leaking plaintext mes-
sages to the server.

4. Support multi-tenancy: Be able to host multiple cus-
tomers on a single machine (or even the same web
server process), but with strong isolation between them.

5. Support legacy customer applications: Support all of
the same web architectures of today, with minimal mod-
ifications to or impact on customer code.

These goals are a departure from today’s CDNs, which
store all of their customers’ keys (at least the session keys),
and operate on the plaintext of the client’s data. Achieving
these goals stands to improve websites’ security, users’ pri-
vacy, and also the flexibility in how edge-network services
can be deployed.

2.4 Threat Models

An edge server is by definition a man-in-the-middle between
the client and the origin server. Given such a privileged po-
sition, there is a wide range of potential threats. We define
two threat models, the main distinction being who owns and
operates the physical edge server, i.e., the level of control
the CDN assumes over its hardware deployment. In both
models we assume access to a trusted execution environment
with the following features: isolation, trusted code execu-
tion, the ability to make calls into/out of the trusted envi-
ronment, attestation, and cryptographic “sealing” of the data.
This ensures strict isolation between customers’ data, as well
as strong protection for their keys, even in the event of node
compromise, so long as the TEE remains secure. We will de-
fine these terms and expand upon the necessary TEE features
in Section 3.2.

Honest but curious In the honest-but-curious model, the
entity hosting the web server runs the software and protocols
as specified, but tries to infer customer keys, client data, or
cookies by observing traffic to and from the machine, and
by inspecting any information leaked to the host operating
system. This model applies when, for instance, the customer
considers the CDN trustworthy and the CDN hosts its own
hardware, but the customer is concerned about a rogue em-
ployee or administrator. Additionally, CDNs may adopt this
threat model when hosting their own hardware so as to limit
the exposure of their customers’ data in the event of a soft-
ware bug in the untrusted OS. Our goal would be to reduce
an honest-but-curious attacker to have no more information
than any on-path attacker (which HTTPS protects against).

Byzantine faulty behavior In this more extreme threat
model, the entity hosting the hardware can deviate arbitrar-
ily from the protocol, alter any software running in an un-
trusted environment on that hardware, and passively monitor
traffic, and actively interact with the web servers. Nonethe-
less, we assume attackers cannot violate basic assumptions of
cryptography or trusted hardware, which we review next. A
website may wish to adopt this model for CDNs whom they
do not trust. Likewise, CDNs may assume this threat model
when using edge-network servers that they do not personally
host or have physical control over [8].

3 Prior Work

Here, we review relevant background and prior work in terms
of how they have achieved the goals outlined in §2.3. There
have been a variety of approaches that achieve a subset of
our goals, but to the best of our knowledge, we are the first
to achieve them all. See Table 1 for a comparison.

Protects Protects Secure Supports Supports Additional
System private keys session keys WAFs multi-tenancy legacy apps deployment
Traditional CDNs l l None
HTTP Solutions [17, 20] m Javascript
TLS Solutions [9, 21] l l l Origin-side server
Crypto Solutions [14–16, 22, 23] l l l l Client & server mods
TaLoS [24] l l l Trusted hardware
SGX libOSes [25–28] l l l l Trusted hardware
TEEs and Middleboxes [29–35] l l m l Trusted hardware
Phoenix Conclave l l l l l Trusted hardware

Table 1: Prior work, grouped broadly by categories. To the best of our knowledge, the Phoenix Conclave is the first secure
CDN to support multiple tenants and to provide secure web application firewalls without having to divulge customers’ secret
keys. l denotes full support for a feature and m denotes partial support.

3.1 TEE-less Solutions

HTTP Solutions Several systems have proposed that the
origin server digitally sign their data [17, 20] or embed cryp-
tographic hashes directly into HTML [36, 37], which clients
can then verify. Such approaches ensure provenance, fresh-
ness, and integrity of web assets served by a proxy—without
requiring the proxy to store the origin server’s private key.
However, they do not provide for confidentiality, nor do they
allow for CDN services such as media transcoding and web
application firewalls. Moreover, they place the origin on the
critical path, thereby increasing latency and making them
more susceptible to attack.

TLS Solutions Other approaches allow origin servers to re-
tain ownership of their private keys by changing the server-
side implementation of TLS. SSL Splitting [21] leverages
the fact that a TLS stream comprises data records and au-
thentication records (MACs), and develops a new protocol
in which the origin sends the authentication records and the
proxy merges them with the data records to form the com-
plete TLS stream. In essence, this implements the above
HTTP solutions in TLS, and thus suffers from the same lim-
itations of requiring the origin server to be on the fast path.

Cloudflare’s Keyless SSL [9] takes advantage of the fact
that TLS only uses the website’s private key in a single step of
the TLS handshake. Like SSL Splitting, Keyless SSL keeps
the master private key off of, and unknown to, the proxy, but
unlike SSL Splitting, Keyless SSL does not provide for con-
tent provider endorsement of the content the proxy serves.
Neither SSL Splitting nor Keyless SSL provides for the pro-
tection of the session keys from the CDN provider.

Another line of work modifies TLS to allow for the inter-
ception of traffic by middleboxes [10–12]. This is contrary to
our desire to support legacy applications; it is not clear how
these solutions would be integrated with tools such as WAFs.

Cryptographic Solutions One seemingly straightforward
approach to solving this problem would appear to be fully ho-
momorphic encryption (FHE) or functional encryption [22,
23, 38]. FHE allows one to perform arbitrary computations

on encrypted data, without knowing any of the keys. How-
ever, even current state-of-the-art homomorphic encryption
is much too slow for the performance that is required of a
CDN and additionally would violate our goal of supporting
legacy applications.

Various approaches [13–16] apply searchable encryption
schemes to achieve functionality like deep packet inspection
(DPI) while still maintaining the privacy of data. In gen-
eral, these approaches require changes of some sort to the
endpoint(s), suffer from performance overheads, and do not
achieve the rich and varied CDN features we require.

3.2 Intel SGX (and Other TEEs)

Trusted execution environments (TEEs) provide hardware
protections for running small trusted portions of code with
guarantees of confidentiality and integrity. Applications can
be guaranteed that code executed within the TEE was run
correctly and that any secrets generated during execution will
remain safely within it as well.

A wide range of TEEs are available today, with varying
functionalities. We focus on Intel’s Software Guard Exten-
sions (SGX) environment, but note that any TEE with similar
functionality discussed here and §2.4 would also be usable.

SGX Overview Intel’s SGX provides a new mechanism
for trusted hardware and software as an extension to the x86
instruction set [39, 40]. A program called an enclave runs at
high privilege in isolation on the processor in order to provide
trusted code execution, while an untrusted application can
make calls into the enclave. While these enclaves can be
statically disassembled (so the code running in the enclave is
not private), once an enclave is running, its internal state is
opaque to any observer (even one with physical access), as
are any secrets generated.

Enclaves must be measured and signed by their creator and
cannot run without this signature, and the enclave state is
checked against this measurement before running. An en-
clave can also cryptographically attest to its current state, in
order to prove that it correctly executed code [41, 42]. An-
other feature is the ability to cryptographically seal data to

be used across multiple invocations of an enclave [42, 43].
SGX also provides such features as trusted time and mono-
tonic counters [44, 45]. However, an enclave currently has
no access to networking functionality itself, so it must rely
on the untrusted application for all network interactions. In
fact, enclaves are prohibited from making any system calls,
so these must be proxied through the untrusted OS as well.

Running Legacy Applications on SGX Various works use
SGX as a mechanism for achieving shielded execution of un-
modified legacy applications. These works generally differ in
how much of the application’s code runs within the enclave.

At one extreme, TaLoS [24] simply ports the LibreSSL
library to SGX so that the application terminates TLS con-
nections in an enclave; the rest of the application remains
outside the enclave, unchanged. This approach protects the
private keys and session keys, but does not address our goals
of multi-tenancy or WAFs.

At the other extreme, SCONE [26] moves the entire C li-
brary into the enclave. Haven [25] and Graphene [27] carry
this approach further by implementing kernel functionality in
an enclave by means of a library operating system (libOS). li-
bOSes refactor a traditional OS kernel into a user-land library
that loads a program. The program’s C library is modified to
redirect system calls to the libOS, which in turn either ser-
vices the calls internally or calls into the untrusted OS when
the host’s resources are needed. Aurora [28] extends the li-
bOS from the SGX enclave to System Management Mode
(SMM) by running device drivers in SMM memory.

CDN applications involve multiple processes, and of these
works, only Graphene supports forking and executing new
processes within enclaves. However, Graphene’s support for
shared state among multiple enclaves, such as a read-write
file system and shared memory, is limited. We discuss these
limitations in §4 and our extensions to Graphene in §5.

Other work [46] provides frameworks for developing new
software that takes advantage of SGX, whereas our interest
is in supporting legacy applications.

TEEs and Middleboxes A recent series of works have ex-
plored securing middleboxes by using TEEs, to provide DPI
and intrusion detection [29, 30], as well as network function
virtualization [31–35]. None of these systems handles the
complete range of functionality required by CDNs, nor do
they support multi-tenancy, to the best of our knowledge.

The most relevant works combining TEEs and middle-
boxes are Harpocrates [47] and STYX [48]. Harpocrates
builds basic CDN functionality using a TEE and alludes
to performing Keyless SSL-like functionality using trusted
hardware but does not provide any details. In addition, Har-
pocrates does not seek to protect any derived key material
and instead focuses solely on protecting the long term pri-
vate key. STYX improves Keyless SSL by protecting private
and session keys, but does not address secure WAFs or other
CDN-type functionality.

Side-Channel Attacks on SGX We must address the recent
rise of side-channel attacks against SGX, including the spec-
ulative execution attack Foreshadow [49, 50]. This attack al-
lows for the extraction of not only the entire SGX enclave’s
memory contents but also the attestation and sealing keys.
We note that this attack would break the security guarantees
that we provide with conclaves. Intel has stated that SGX is
explicitly designed to not deal with side-channel attacks in its
current state and leaves handling this up to enclave develop-
ers [51, 52]. Regardless, Intel has released both microcode
patches and recommendations for system level code that at
the current time address Foreshadow and known related at-
tacks [50, 53, 54]. There is also ongoing research to address
both speculative execution as well as other cache-based side-
channel attacks on SGX and in general [54–57]. We consider
protections against such side-channel attacks to be outside of
the scope of this work and rely on these defenses.

4 Design

At a high level, our approach is to deploy CDNs in enclaves.
However, doing so in a manner that permits multi-tenancy
and support for legacy applications is challenging. Prior
work on SGX libOSes [25–27] make it possible to run legacy
applications within an SGX enclave, but all of them either
lack multi-process support completely, or only support mul-
tiple processes in a restricted environment. Conversely, we
aim to be able to support dynamic scaling up and down of
web servers, tenant configurations, and security postures.

To address these challenges, we introduce a new architec-
tural primitive that we call a conclave: in essence a container
of enclaves. As we will show, conclaves permit flexible de-
ployment configurations and achieve security in multi-tenant
settings. We first describe the conclave design, and then how
we compose them to build the first “keyless CDN,” Phoenix.

4.1 Conclaves Design

The conclave design extends a libOS to support shared state
abstractions among multiple processes. Recall from §3.2 that
libOSes expose traditional OS kernel services within an en-
clave, and either handle the system calls themselves or, when
necessary (e.g., to send a network packet), hand them off to
the untrusted OS. Graphene [27] supports the critical system
calls fork and exec by automatically spawning a brand new
enclave, and performing a checkpoint-and-migration (essen-
tially copying the first enclave’s memory pages into the sec-
ond). Graphene further offers some support for these sepa-
rate processes (enclaves) to communicate with one another
over pipes, and implements signals, semaphores, message
queues, and exit notifications as RPCs over these pipes. In
other words, Graphene essentially turns a traditional multi-
process application into a “distributed system” of enclaves,
along with some basic plumbing to allow them to communi-
cate with one another.

However, two important multi-process abstractions that
Graphene does not support with confidentiality and integrity
guarantees are a read-write filesystem, and shared memory.
Graphene’s sole filesystem, chrootfs, is modeled as a re-
stricted view of the host’s filesystem. Graphene does not
support shared memory at all (neither anonymous nor file-
backed).

Conclaves extend upon this prior design by leaning into
the distributed system nature of it. We implement kernel ser-
vices as kernel servers; applications act as clients, connecting
to and issuing requests to kernel services—via pipes or TLS
network connections. The kernel servers also run atop the
libOS. Our design is effectively that of a multi-server micro-
kernel system, similar to GNU Hurd [58] or Mach-US [59],
in which shared resource abstractions are implemented as a
set of enclaved daemons shared by all processes in the sys-
tem.

4.1.1 Conclave Kernel Servers

Using the NGINX web server as a guide (as software rep-
resentative of a CDN edge server), we identified five key
shared resources: files, shared memory, locks/semaphores,
cryptographic keys, and time. For flexibility in deployment
configurations, we implement four servers to manage these
resources1:

fsserver The fsserver provides a file system interface to user
applications. Much like a remote file system, the fsserver
performs strict access control to restrict access only to the
relevant enclaves. We discuss how this access control is pro-
visioned in §4.2.2. NGINX uses the file system for storing
cached and persistent web resources.

memserver The memserver provides an interface for cre-
ating, accessing, manipulating, and locking shared mem-
ory. NGINX uses shared memory for storing usage statistics,
metadata for the on-disk HTML caches, and state for TLS
session resumption.

keyserver The keyserver is an SGX enclave rendition of a
hardware-security module (HSM): the keyserver stores pri-
vate keys and performs any private key cryptographic op-
erations. Like Keyless SSL [9], this not only maintains
the confidentiality of the private key with respect to an un-
trusted host, but also isolates the key to an address space dis-
tinct from the application’s, thereby guarding against critical
memory disclosure vulnerabilities, such as Heartbleed [60].

timeserver Given that the components of a conclave must
authenticate one another, we need trusted time to guard
against attacks that trick the conclave into accepting ex-
pired certificates. Unfortunately, SGX itself does not pro-
vide trusted time. Its SDK [44] provides features [45] for re-
trieving coarse-grained, monotonic time through a protected

1Due to the common pattern of using locks with shared memory, the
memserver manages both.

clock provided by Intel’s Converged Security and Manage-
ment Engine (CSME), but not all processors support it [61].

Instead of relying on the CSME, we simply design a re-
mote, signed timestamping server. The timestamping server
runs outside of an enclave, on a remote trusted machine (e.g.,
at the CDN’s customer). The timeserver’s purpose is not
to provide fine-grained precision to the conclaved processes,
but rather to serve as an integrity check of the time those pro-
cesses receive from the untrusted host.

In §5, we detail several variants of each of these kernel
servers, covering various trade-offs between performance
and security. While we have found that these four kernel
servers suffice for NGINX—and, we believe, for a wide
range of networked applications—it is possible that other ap-
plications may need more (e.g., for specialized IPC).

4.1.2 Conclave Images

Conclaves bundle the SGX microkernel runtime and applica-
tion suite into a deployable and executable image, reminis-
cent of a traditional container image. When the conclave is
executed, the first enclave process that is executed is an init
process, which executes the kernel servers and the specified
application proper. From that point, the application can fork,
spin up new applications, and so on.

4.2 Phoenix Design

Conclaves provide a multi-process runtime for running
multi-process legacy applications within SGX enclaves.
Phoenix addresses a number of remaining questions concern-
ing how the customer and CDN operator deploy and provi-
sion the combined runtime and application suite.

The core problem Phoenix solves is that the runtime
and application need various assets—in particular, keying
material—in order to successfully and securely execute.
These assets must be delivered in a manner that is shielded
from CDN inspection or tampering. Furthermore, as one of
our goals is to not burden the customer with running addi-
tional services, we, paradoxically, must have the CDN man-
age the provisioning of these assets on behalf of the customer.
Finally, Phoenix’s design must allow for multi-tenant deploy-
ments. We address each of these in turn.

We present a high-level overview of Phoenix’s design in
Figure 1. Its design spans three principles: (1) the CDN cus-
tomer, who must run the origin server as they do today, as
well as an agent for provisioning conclaves, (2) the core CDN
servers, which make and enforce decisions of where exactly
to deploy customers’ content, and (3) the CDN edge server
itself, which receives the majority of the changes.

4.2.1 Bootstrapping Trust

We first address how the conclave, viewed as a distributed
system, establishes the trust of each member node, whether

CDN Edge

CDN Core

Graphene

NGINX engineWAF

Graphene

NGINX engineWAF

Graphene

fsserver

Graphene

keyserver

Graphene

memserver

Graphene

Provisioning server

Graphene

Provisioning agent

Provisioning agent

Customer

Graphene

NGINX EngineWAF

Content

Server
Origin Time

Conclave

1. Provision
 Conclave

4. Pull Web Content

3. Configure
Enclaves

2. Deploy
Conclave

Figure 1: Architectural design of Phoenix. Multiple enclaves
(yellow boxes) reside in a logical conclave (red boxes), per-
mitting multiple processes and multi-tenant deployments.
The CDN Edge and Core servers run on untrusted hosts.

kernel server or application process. This is a chicken-and-
egg problem of establishing a secure channel between two
nodes without first provisioning these nodes with, say, private
keys and certificates for mutual authentication.

The standard approach for establishing a secure channel in
an SGX setting is to use SGX as a root of trust and enclave
attestation as a form of authenticated identity, and to merge
this form of attestation into the establishment of the shared
channel secret. To that end, Phoenix follows closely from
the work of Knauth et al. [62], which integrates attestations
with TLS by adding the SGX quote as an X.509 certificate
extension. This has the effect of making channel establish-
ment and SGX attestation occur together, atomically, with re-
spect to the channel protocol. Certificate validation can thus
be extended to examine these new extensions.

Adding new certificate extensions, of course, is not the full
story. In this setup, the enclave generates an ephemeral key
pair. SGX quotes are, mandatorily, over the enclave image,
the enclave signer, non-measurable state, such as the enclave
mode (e.g., debug vs. production), and, optionally, any ad-
ditional data (user data) the enclave wants to associate with
itself. The trick for ensuring the atomicity of attestation and
secure channel establishment is for the enclave to specify as
user data a hash of the ephemeral public key. Since the key
pair is created within the enclave, and since only an enclave
can get a valid quote, such user data binds the key pair to the
enclave. The enclave then generates a self-signed certificate
for this ephemeral public key, which includes the aforemen-
tioned extensions for the quote and Intel Attestation Service
(IAS) verification.

In our conclave setup, the attestation is a local attestation,
and validation of the quote is based on a list of valid attesta-
tion values in the manifest. Specifically, the manifest speci-

fies a graph of which processes can establish secure channels
with one another.

4.2.2 Provisioning Server and Provisioning Agents

Having bootstrapped trust within the conclave, our next chal-
lenge is the delivery of sensitive assets to the conclave.
Phoenix has the init process spawn a process called the provi-
sioning agent that communicates remotely with a provision-
ing server operated by the CDN. The provisioning agent pe-
riodically beacons to the provisioning server, and downloads
and installs any new conclave assets.

The provisioning agent and server both run in an enclave,
and use essentially the same method for secure channel es-
tablishment as what we described for channel establishment
within the conclave. The main difference is that the quote is
generated and validated using SGX’s remote attestation pro-
tocol, rather than the local attestation protocol.

At this point, we have recursed nearly to the base case;
all that is needed for end-to-end asset encryption is for the
customer to post assets to the provisioning server.

4.2.3 Key Management

The last thing we must address is how Phoenix enables the
CDN to manage its customers’ keys. Today, CDNs manage
their customers’ keys in a handful of ways [6, 7]; customers
can generate their own keys and upload them to the CDN,
or they can delegate all key and certificate management to
the CDN. When CDNs manage their customers’ certificates,
they often put multiple customers on a single “cruise-liner
certificate” [6], under a single key pair.

Phoenix supports all of these configurations by shifting
them into the (enclaved) provisioning server. When cus-
tomers wish to upload their keys, they establish a secure
connection from their provisioning agent to the CDN’s pro-
visioning server. When the CDN manages its customers’
keys, the provisioning server generates key pairs and runs
Let’s Encrypt’s [4] ACME protocol [63]—from within the
enclave—to request the certificates. The provisioning server
can then load this data onto edge servers however it sees fit,
by connecting to provisioning agents running in enclaves on
the edge servers (see Figure 1). The end result is that, unlike
today, the CDN will never learn the secret keys. In fact, when
the CDN manages its customers’ keys, no one learns them,
as they will forever reside within one or more enclaves.

4.3 Deployment Scenarios

Phoenix’s conclave-based design permits a diverse range of
deployment options to support varying threat models like
those described in §2.4. There are two dimensions for de-
scribing edge server deployments: First, a deployment can
be single-tenant or multi-tenant, based on whether there is
one or more customers on a given edge server (physical or

virtual). Second, a given customer’s deployment can be fully-
enclaved or partially-enclaved, based on whether all or just
a specific subset of components are executed in an enclave.
The provisioning agent and server design handle these use
cases uniformly. Throughout the design of Phoenix, we have
described the single-tenant, fully-enclaved deployment. Be-
low, we discuss two other potential deployments.

Single-tenant, partially-enclaved deployments handle an
honest-but-curious attacker wherein the customer trusts the
CDN with everything but the private key. In this deploy-
ment, only the keyserver and provisioning agent reside in the
conclave. This configuration is similar to Keyless SSL, but
without requiring modifications to the application or TLS.

Multi-tenant deployments multiplex customers at one of
three places. First, the CDN operator can trivially place a
proxy server (for example, an HAProxy [64]) on the edge
server; the proxy examines the SNI field of the client re-
quest and proxies to the relevant conclave. In other words,
this strategy reduces to running single tenant, fully-enclaved
conclaves for many customers. Second, if the application is
conducive to multiplexing, then the CDN operator can run
an instance of the application in an enclave, with the applica-
tion’s configuration reflecting the customer partitions; each
customer then runs their own conclave of kernel servers. As
an example, NGINX can run multiple virtual servers; the re-
sources for each virtual server are mounted on mountpoints
within the application that point to each customer’s respec-
tive kernel servers. Finally, the kernel servers themselves can
multiplex the resources of several customers. These repre-
sent different trade-offs: more multiplexing can increase the
attack surface, but requires less resources to achieve high per-
formance (SGX can incur significant overhead in switching
between enclaves on a given CPU).

5 Implementation

We implement conclaves and Phoenix as extensions to the
open-source Graphene SGX libOS [27]. In this section, we
present details of this implementation. We have made our
code and data publicly available so that others can continue
to build off this work.2

5.1 Kernel Servers

We implement the fsserver, memserver, and keyserver as
single-threaded, single-process, event-driven servers that
communicate with the application’s Graphene instances over
a TLS-encrypted stream channel. In the case of a TCP chan-
nel, we disable Nagle’s algorithm due to the request-response
nature of the RPCs. The timeserver uses a datagram channel.
Each server is independent.

fsserver For our file server, nextfs, we extend lwext4’s [65]
userspace implementation of an ext2 filesystem into a net-

2Our code may be found at https://phoenix.cs.umd.edu.

worked server. nextfs uses an untrusted host file as the back-
ing store, similar to a block device. We develop three vari-
ants of this device to accommodate different security pos-
tures, and a fourth for comparison purposes.

• bd-std stores data blocks in plaintext, without integrity
guarantees. This serves as a baseline in our evaluation.

• bd-crypt encrypts each block using AES-256 in XTS
mode, the de facto standard for full-disk encryption [66,
67]. We base each block’s initialization vector on the
block’s ID. This, too, lacks integrity guarantees, and is
thus suitable only for an honest-but-curious attacker.

• bd-vericrypt adds integrity guarantees to bd-crypt, thus
providing authenticated encryption. It does so by main-
taining a Merkle tree over the blocks: a leaf of the tree
is an HMAC of the associated (encrypted) block, and an
internal node the HMAC of its two children. To keep the
memory needs of the enclave small, bd-vericrypt consults
a serialized representation of the tree in a separate file,
rather than use an in-memory representation. The root of
the Merkle tree exists both on the file and in enclave mem-
ory; the HMAC key exists only in enclave memory. As an
optimization for reducing reads and writes to the Merkle
tree file, bd-vericrypt maintains an in-enclave LRU-cache
of the tree nodes. bd-vericrypt is the appropriate choice in
a Byzantine threat model.

memserver We implement shared memory as filesystems
that implement a reduced set of the filesystem API3: open,
close, mmap, and advlock (advlock handles both advisory
locking and unlocking). In our shared memory filesystems,
files are called memory files, and either represent a pure,
content-less lock, or a lock with an associated shared mem-
ory segment. Memory files are non-persistent: they are cre-
ated on the first open and destroyed when no process holds a
descriptor to the file and no process has the associated mem-
ory segment mapped.

We implement three versions of shared memory. Each
stores a canonical replica of the shared memory at a known
location (either a particular server or file). Upon locking a
file, the client “downloads” the canonical replica and updates
its internal memory maps. On unlock, the client copies its
replica to the canonical.

• sm-vericrypt-basic uses an enclaved server to keep the
canonical memory files in an in-enclave red-black tree.

• sm-vericrypt implements a memory file as two untrusted
host files: a mandatory lock file, and an optional segment
file. When a client opens a memory file, the sm-vericrypt
server creates the lock file on the untrusted host, and the
Graphene client maps (MAP FILE|MAP SHARED) the lock
file into untrusted memory. The client then constructs a

3Graphene does not have a unified filesystem and memory subsystem,
and thus munmap is not currently available as a filesystem operation.

ticketlock structure over this untrusted shared memory.
Since the untrusted host may manipulate the ticketlock’s
turn value, a shadowed, trusted turn number is maintained
by the enclaved sm-vericrypt server. After the client has
acquired the lock, the client makes an RPC to the server
to verify the turn number. The server thus acts as a trusted
monitor of the untrusted monotonic counter.

If a client mmaps the memory file, the server creates the
associated segment file on the untrusted host. When the
client subsequently locks the file, the client makes a lock
RPC to server, which returns the keying and MAC tag in-
formation for the segment. The client copies the untrusted
memory segment into the enclave, and uses AES-256-
GCM to decrypt and authenticate the data. When a client
unlocks the file, the client generates a new IV, copies an
encrypted version of its in-enclave memory segment into
the untrusted segment file, and makes an unlock RPC to
the server, passing along the new IV and MAC tag.

• sm-crypt assumes the untrusted host does not tamper with
data. As such, sm-crypt uses AES-256-CTR instead of
AES-256-GCM, and does not need an enclaved server to
monitor the integrity of the ticketlock and IV.

keyserver We implement the keyserver as two components:
the keyserver proper, and an OpenSSL engine (“Engine” in
Figure 1) that the application loads as a shared library; the en-
gine proxies private key operations to the keyserver. Unlike
the fsserver and memserver clients, the key client operates at
the application layer, outside of Graphene.

OpenSSL’s engine API requires the caller (in our case,
NGINX) to provide an RSA object, which contains the se-
cret key. To avoid having to expose the key, we modified
OpenSSL to populate RSA objects with dummy keys that in-
stead serve as identifiers that the keyserver uses to look up
the real keys it stores securely.

To reduce the number of connections and avoid a depen-
dency on the memserver for lock files, our engine main-
tains the property that all keys for the same keyserver, within
the same process, share a single connection. This requires
that the engine detect forking by the application, which we
achieve by also associating process IDs with the RSA objects.

timeserver We modify the Graphene system call handlers
for getttimeofday, time, and clock gettime to option-
ally proxy application calls to a remote, trusted, timestamp
signing server. The use of such a timeserver, and the related
parameters, such as the timeserver’s public key, are specified
by the Graphene user (here, the content provider), and hard-
coded into Graphene’s configuration. As a freshness guaran-
tee, each request includes a new, random nonce, generated by
the Graphene system call handlers. The timeserver, in turn,
returns an RSA signature over a message consisting of the
current time concatenated with this nonce.

Our timeserver approach resembles Google’s roughtime
protocol [68]; future work would fully port the roughtime

protocol to Graphene to reduce the need for a trusted time-
server by instead tolerating some fraction of misbehaving
servers. Note, however, that, in the SGX setting, both our ap-
proach and roughtime are best efforts; an untrusted host that
identifies the traffic between the Graphene client and time-
server could, for instance, “slow down” time by delaying the
responses.

5.2 Graphene Modifications

We have modified Graphene to add missing functionality and
increase performance.

Exitless System Calls For potential performance gains,
we merge Graphene’s exitless system call patch [69]. The
patch is an optimization, similar to the solution proposed
elsewhere [26, 70, 71], that enables enclaves to issue sys-
tem calls without first making an expensive enclave exit and
associated context switch to the untrusted host process.

For every SGX thread, the exitless implementation spawns
an untrusted (outside of the enclave) RPC thread that issues
system calls on behalf of the SGX thread. The RPC and SGX
threads share a FIFO ring buffer for communicating system
call arguments and results. To issue a system call, the SGX
thread enqueues the system call request, and waits on a spin-
lock for the RPC thread’s response. To conserve CPU re-
sources, SGX threads only spin on the spinlock a set number
of times (by default, 4096 spins) before falling back to sleep-
ing on a futex (the futex call is a normal ocall).

BearSSL We integrate the BearSSL library [72] into
Graphene to provide the TLS connections between the
Graphene clients and kernel servers, and to verify the time-
server’s response. The library is well-suited to a kernel envi-
ronment, as it avoids dynamic memory allocations, and has
minimal dependencies on the underlying C library. For per-
formance, we use BearSSL’s implementations based on x86’s
AES-NI, PCL MUL, and SSE extensions, which helped to
expose stack mis-alignment bugs in Graphene.

File Locking System Calls Graphene does not currently
support file locking. As our memservers required this fea-
ture, we added an advlock (advisory lock) file system op-
eration; applications invoke the operation through a reduced
set of locking/unlocking flags to the fcntl system call.

5.3 NGINX Modifications

Shared Memory Patch NGINX uses shared memory to
coordinate state among the worker processes that service
HTTP(S) requests. On most systems, it uses mmap to cre-
ate shared, anonymous mappings. NGINX encapsulates each
mapping as a named zone. For allocating in shared memory,
NGINX overlays a slab pool over the zone’s shared memory.

To coordinate concurrent allocations and frees on the pool,
as well as modifications to the user data structures allocated

NGINX worker memserver keyserverfsserver

lock
unlock

RSA sign

open
stat

TLS handshake

open cached file and get size

read headers from cached file

pread
(in 32KiB chunks)

receive HTTP request

close cached file close

check if file exists in cache metadata

read body from cached file

update cache metadata

craft and send HTTP headers

craft and send HTTP body

cleanup

seek

read
seek

seek

pread

lock
unlock

seek

read
seek

seek

Figure 2: An NGINX worker servicing an HTTPS request
for cached content, and the resultant kernel server RPCs.

from the pool, each pool has an associated mutex. On sys-
tems with atomic operations, the mutex is implemented as a
spinlock over a word of the shared memory, optionally falling
back to a POSIX semaphore for long, blocking lock opera-
tions. On systems without atomic operations, the mutex is
implemented as a lock file.

To have NGINX follow the semantics of our shared mem-
ory design, we create a small patch (∼300 lines) that changes
the creation of shared memory and the associated mutex. In
particular, we implement shared memory by having mmap

map a path obtained by concatenating the filesystem root
with the zone name. To force the use of a lock file, we disable
atomics. NGINX’s lock file path is the name of the zone con-
catenated with a prefix that may be specified in the NGINX
configuration file (nginx.conf), thus allowing us to easily
have the lock file be the very same file that is mapped.

Request Lifecycle When NGINX operates as a caching
server, it runs four processes by default: (1) a master process
that initializes the server and responds to software signals,
(2) a configurable number of worker processes that service
HTTPS requests, (3) a cache manager, and (4) a cache loader.

Figure 2 shows the lifecycle of an NGINX worker pro-
cess serving an HTTPS request, and the resultant RPCs to
the enclaved kernel servers. Note that each request requires
two critical sections involving the metadata. Also, NGINX
reads the cached content using the pread system call, which
Graphene’s virtual file system (VFS) layer implements as a
sequence of seeks and a read to the underlying filesystem.

6 Evaluation

We evaluate the performance of NGINX 1.14.1 running
within a Phoenix Conclave. We seek to understand (1) the
performance costs of the various aspects of the conclave de-
sign and implementation, (2) how performance scales with

multi-tenancy, and (3) the performance impact of a WAF.
We perform our tests on the Intel NUC Skull Canyon

NUC6i7KYK Kit with 6th generation Intel Core i7-6770HQ
Processor (2.6 GHz) and 32 GiB of RAM. The processor
consists of four hyperthreaded cores and has a 6 MiB cache.

We use ApacheBench to repeatedly fetch a file 10,000
times over non-persistent HTTPS connections (each request
involves a new TCP and TLS handshake) from among 128
concurrent clients.4 We run ApacheBench on a second NUC
device connected to the conclave’s NUC via a Gigabit Ether-
net switch. For the benchmarks, the origin server is another
instance of NGINX running on the conclave’s NUC.

We examine three conclave configurations: (1) Linux-
keyless: NGINX running on normal Linux and using a key-
server, (2) Graphene-crypt: NGINX running on Graphene
and using a bd-crypt fsserver, sm-crypt for shared mem-
ory, and the keyserver, and (3) Graphene-vericrypt: NGINX
running on Graphene and using a bd-vericrypt fsserver, sm-
vericrypt for shared memory, and a keyserver. These corre-
spond to a Keyless SSL analog, a conclave deployment for
data confidentiality, and a conclave deployment for both data
confidentiality and integrity, respectively. We compare these
conclaves to the status quo of NGINX running on standard
Linux (simply denoted as Linux). We omit using the time-
server.

For each benchmark that uses the nextfs fileserver, we use
a 128 MiB disk image. As a baseline, we configure NGINX
to use a small shared memory zone of 16 KiB to hold the web
cache metadata (enough for 125 cache keys). §6.2 presents
a sensitivity analysis on the size of the shared memory zone.

6.1 Standard ocalls vs. exitless

To determine the optimal ocall method for our application,
we first compare the performance of standard vs. exitless ver-
sions of Graphene-crypt. We present HTTPS throughput and
latency results for each version as part of Figure 3.

Surprisingly, the exitless version performs worse across
the board. Although both perform similarly with a single
NGINX worker, the standard ocall version exhibits expected
performance gains as new workers are added, whereas exit-
less generally worsens with additional workers. In a conclave
environment, increased contention on the kernel servers, as
well as contention among the SGX and RPC-queue threads,
magnify the RPC latency overheads, which in turn causes ex-
itless to exit the spinlock and make a futex ocall.

Based on these results, we use standard ocalls in all in-
stances of Graphene (both on the Graphene-hosted NGINX
processes, and the kernel servers) for the remainder of the
macro-benchmarks.5

4That is, the command ab -n 10000 -c 128
5§6.5 shows that exitless performs better than standard ocalls for low-

latency calls, but degrades for high-latency calls.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 KiB 10 KiB 100 KiB

Workers
1 2 4 8

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

s
ts

/s
e
c

)

Linux
Linux-keyless
Graphene-crypt
Graphene-crypt Exitless
Graphene-vericrypt

 0

 500

 1000

 1500

 2000

 2500

 3000

1 KiB 10 KiB 100 KiB

T
im

e
 p

e
r

re
q

u
e

s
t

(m
s

)

Downloaded file size

Figure 3: Throughput and latency for single-tenant configu-
rations. The legend indicates the number of NGINX worker
processes. We include the standard deviation of the latencies
as error bars.

Segment Size 16 KiB 100 KiB 1 MiB 10 MiB
Cache Keys 125 781 8,000 80,000

Throughput 437.76 320.36 133.25 9.71
Latency 292.40 399.54 960.58 13,184.09

Table 2: Effect of increasing the size of NGINX’s shared
memory segment for cache metadata. We use Graphene-
crypt with one NGINX worker, and fetch a 1 KiB file.
Throughput is the mean requests served per second; latency
is the client-perceived latency (ms).

6.2 Single-Tenant

Figure 3 shows request latency and throughput results for the
four configurations. Due to the RSA private key operation
in the TLS handshake, Linux becomes CPU-bound at four
workers (our test machine has four physical cores) and satu-
rates the Ethernet link for tests with a 100 KiB payload and
more than one NGINX worker. Linux-keyless shows that
the concurrency of the keyserver levels off with two workers,
and thus that the two NGINX worker configuration of Linux-
keyless is an upper-bound on the performance we can hope to
achieve with the other conclave configurations. Linux with
two or more workers beats all conclave configurations.

Table 2 shows a sensitivity analysis on the shared mem-
ory zone size for NGINX’s cache metadata, using Graphene-
crypt. Performance diminishes disproportionately faster than
the increases in memory sizes, and request latency exceeds
1 sec past 1 MiB.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 6

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e
s

ts
/s

e
c

)

Linux (shared NGINX)
Graphene-crypt (shared NGINX)

8 10 14 18

Graphene-crypt (shared nothing)

8 16
32

48

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 6

T
im

e
 p

e
r

re
q

u
e

s
t

(m
s

)

Number of tenants

8

10

14

18

8

16

32

48

Figure 4: Multitenancy scaling. Throughputs are the aggre-
gate throughput across all customers, and latencies are the
mean latencies across customers. Above the bars, we indi-
cate the number of enclaves in each configuration.

6.3 Scaling to Multi-tenants

We evaluate two approaches to multi-tenancy: (1) shared
nothing, in which each customer runs their own conclave,
including an enclaved instance of NGINX, and (2) shared
NGINX, where each customer runs their own enclaved ker-
nel servers, but share an enclaved version of NGINX:
the NGINX configuration file multiplexes the customer re-
sources. Specifically, the NGINX configuration file defines a
virtual server for each customer; each virtual server’s cache
directory, shared memory zone for the cache metadata, and
TLS private key point to separate instances of the fsserver,
memserver, and keyserver, respectively. We compare these
approaches to the status quo of running a single NGINX in-
stance with a virtual server for each customer. We run each
NGINX instance with four worker processes (in the shared
nothing case, this means each tenant receives four work-
ers processes; in the shared NGINX and Linux case, the
tenants are multiplexed on four total workers). We direct
ApacheBench tests concurrently against each tenant.

Figure 4 compares the mean latency and aggregate
throughput of these three deployments, scaling the number of
tenants from one up to six. After an initial dip at two tenants,
Linux is able to increase throughput with modest increases
to request latency; shared NGINX Graphene-crypt maintains
a more-or-less constant overall throughput at the cost of in-
creasing latencies, while the shared nothing configuration is
unable to maintain throughput past two tenants.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

ModSec-Off 10
0

10
1

10
2

10
3

10
4

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e
s

ts
/s

e
c

)

Linux Graphene-crypt

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

ModSec-Off 10
0

10
1

10
2

10
3

10
4

T
im

e
 p

e
r

re
q

u
e

s
t

(m
s

)

Number of ModSecurity rules

Figure 5: Effect of ModSecurity rule count on NGINX per-
formance. NGINX runs with a single worker, and we fetch a
1 KiB file.

For the conclave deployments, we also measure the num-
ber of SGX paging events using the kprobe-based technique
from Weichbrodt et al. [73, 74]. For both the shared-nothing
and shared-NGINX deployments of Graphene-crypt, these
events remain under 10,000 up to four tenants; at six tenants,
the shared NGINX deployment incurs on average 10,507
SGX paging events, whereas shared nothing incurs a stagger-
ing 4.35 million as the working sets of 48 enclaved processes
contend for the limited 93 MiB of EPC memory.

6.4 Web Application Firewall

Finally, we evaluate the cost of running the ModSecurity web
application firewall (WAF) in tandem with NGINX. Each of
our ModSecurity rules examines the request’s query string
for a unique, blacklisted substring. We increase the number
of rules and observe the effect on the server’s HTTPS request
throughput and latency in Figure 5 for normal Linux and
Graphene-crypt, both running as standalone, non-caching,
servers. We see that just enabling ModSecurity results in a
5% decrease in throughput for Linux, and 16% decrease for
Graphene-crypt. At 1000 rules, the relative costs for Linux
and Graphene-crypt converge, as the throughput of each is
2/3 of that when ModSecurity is off, and latency is 1.5×
slower. At 10,000 rules these relative costs increase substan-
tially, to just 14% of the throughput and 7× the latency com-
pared to when ModSecurity is disabled.

10
0

10
1

10
2

10
3

10
4

0 1 KiB 10 KiB 100 KiB 1 MiB

R
P

C
 l

a
te

n
c

y
 (

µ
s

)

Download payload size

Non-SGX

SGX

3.0x 3.2x
4.1x

4.1x

3.9x

Exitless

1.5x 1.5x

2.8x

3.8x

4.1x

Figure 6: RPC latency versus payload size. The numbers
above the bars are overheads compared to non-SGX.

6.5 Micro-benchmarks

We now evaluate the various subcomponents of a Phoenix
conclave to provide a more fine-grained explanation of our
performance results. For each micro-benchmark, we com-
pare the performance of the component running in three en-
vironments: outside an enclave (non-SGX), inside an enclave
with normal system calls (SGX), and inside an enclave with
exitless system calls (exitless). Each micro-benchmark tool
runs on the same machine as the component we are testing.

6.5.1 Remote Procedure Calls

To understand the cost of the RPC mechanism used by the
kernel servers, absent from any additional server or client-
specific processing, we design an experiment 6 where a client
issues an RPC to download a payload 100,000 times, and
compute the mean time for the RPC to complete. We vary
the payload size from 0-bytes to 1 MiB.

Figure 6 shows that, in general, SGX incurs a much higher
latency overhead than exitless but that this gap narrows as the
payload size increases, and that at 1 MiB payloads, exitless
actually performs worse than normal ocalls.

Higher payload sizes result in greater latencies for the un-
derlying system call; if this latency exceeds the spinlock du-
ration, the spinlock falls back to sleeping on the futex, effec-
tively having spun in vain. For payload sizes of 0 through
100 KiB, exitless falls back to the futex less than 30 times
for both the server and client; in contrast, for the 1 MiB case,
nearly every RPC uses the futex (on average, 91,285 times
for the server, and 97,881 for the client).

6.5.2 Kernel Servers

fsserver We use fio [75] to measure the performance of
sequential reads to a 16 MiB file hosted on a nextfs server,
over 10 seconds; each read transfers 4096 bytes of data. fio

6For an apples-to-apples comparison between SGX and non-SGX envi-
ronments, we benchmark at the application layer. This differs slightly from
conclaves, where the kernel servers are also implemented at the application
level, but the fsserver and memserver clients are subsystems of Graphene.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

bd-std

C
D

F Non-SGX

SGX

Exitless

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

bd-crypt

C
D

F

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000

bd-vericrypt

C
D

F

Sequential read latency (µs)

Figure 7: CDFs of read operation latency (μs) for a 10-
second test that repeatedly reads 4096-bytes from a nextfs
server, for each block device implementation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

Non-SGX SGX Exitless

T
h

ro
u

g
h

p
u

t
(M

iB
/s

)

bd-std
bd-crypt

bd-vericrypt

Figure 8: Total throughput for a 10-second test that repeat-
edly reads 4096-bytes from a nextfs server, for each block
device implementation.

runs inside an enclave, uses exitless system calls, and invokes
read operations from a single thread.

Figure 7 shows the read latencies for each variant of the
filesystem. Compared to bd-std, bd-crypt adds relatively
small overheads, whereas bd-vericrypt shows nearly an or-
der of magnitude slow down due to the Merkle tree lookups,
dependent on the size of the tree’s in-enclave LRU cache.

Figure 8 shows the associated throughput. For compari-
son, the enclaved versions of bd-crypt and bd-vericrypt have
20× and 97× less throughput, respectively, than Linux’s
standard ext4 filesystem (954 MiB/s, on our test machine).

memserver Figure 9 shows the mean time for a process to
evaluate a critical section (a lock and unlock operation pair)
over shared memory provided by the memserver, based on
10,000 runs. We also vary the size of the memory segment to
observe its effect on the run time.

We make two observations. First, since mmap allocates in
page sizes (4096-bytes), the measurements for a 1 KiB and

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 KiB 10 KiB 100 KiB 1 MiB 10 MiB

Non-SGX SGX Exitless

M
e

a
n

 c
ri

ti
c

a
l

s
e

c
ti

o
n

e
x

e
c

u
ti

o
n

 t
im

e
 (

µ
s

)

Shared memory size

sm-vericrypt-basic
sm-vericrypt
sm-crypt

Figure 9: Mean wall clock time (μs) to process a critical sec-
tion.

OpenSSL keyserver
non-SGX non-SGX SGX exitless

860.92 933.42 965.32 932.60
(1.08×) (1.12×) (1.08×)

Table 3: Mean wall clock time (μs) to compute an RSA-2048
signature using default OpenSSL (left) and the keyserver.
The last row is overhead compared to OpenSSL.

10 KiB shared memory region are nearly identical; other-
wise, the execution times scale linearly in accordance with
the memory size. Second, starting at 100 KiB, the sm-
vericrypt and sm-crypt implementations, which represent the
canonical memory replica as an encrypted host file, show an
order-of-magnitude improvement over sm-vericrypt-basic,
which uses EPC memory to store the canonical replica and
transfers the replica over interprocess communication.

keyserver To evaluate the keyserver’s performance, we
use the openssl speed command to measure the time to
compute an RSA-2048 signature. For all tests, the openssl

speed command runs outside of an enclave, and measures
the number of signatures achieved in 10 seconds.

We present the results in Table 3. The keyserver itself uses
OpenSSL’s default RSA implementation; compared to the
RPC micro-benchmarks in Figure 6, we again see that the
raw time overheads are consistent with the RPC latencies.

timeserver We evaluate the timeserver by measuring the
elapsed time to invoke gettimeofday one million times in a
tight loop, and then compute the mean for a single invocation.

In Table 4, we list the mean time for an invocation of
gettimeofday in Linux (non-SGX), and in Graphene, us-
ing both the host time and the timeserver. Note that non-SGX
calls to gettimeofday are nearly free due to vDSO.7

The difference between the exitless and normal ocalls is
roughly the round-trip cost of exiting and returning to an en-
clave; this is consistent with prior work [70, 71, 73] that puts
this cost at 8000 cycles (3.077 μs on our test machine). The
timeserver cost is dominated by the signature computation;
exitless calls to the timeserver actually hurt performance, as,

7A system call implementation that uses a shared memory mapping be-
tween the kernel and application, rather than a user-to-kernel context switch.

host time timeserver
non-SGX SGX exitless SGX exitless

0.026 3.467 0.757 1,175.622 1,375.607
(133×) (29×) (45,216×) (52,908×)

Table 4: Mean wall clock time (μs) to execute
gettimeofday. Left: retrieving time from host; Right: re-
trieving from (unenclaved) timeserver. The SGX and exitless
designations refer to the application’s environment. The last
row is overhead compared to non-SGX.

due to the signature latency, the Graphene client fails to re-
ceive a response during the spinlock, and falls back to the
more expensive futex sleep operation for every RPC.

7 Conclusion

We have presented Phoenix, the first “keyless CDN” that sup-
ports the quintessential features of today’s CDNs. To sup-
port multi-process, multi-tenant, legacy applications, we in-
troduced a new architectural primitive that we call conclaves
(containers of enclaves). With an implementation and evalu-
ation on Intel SGX hardware, we showed that conclaves scale
to support multi-tenant deployments with modest overhead.

Optimizations and Recommendations While Phoenix is
able to achieve surprisingly good performance, further po-
tential optimizations remain, including of SGX. The multi-
tenancy results in Figure 4 show that EPC size limits become
a constraint in environments with multiple enclaved applica-
tions. Conclaves alleviate this to some extent, as the kernel
servers may be run on devices separate from the application,
but splitting the application itself (e.g., the NGINX workers)
across machines is less tractable. Future versions of SGX
should therefore investigate ways of increasing the EPC size.
The cache size sensitivity results in Table 2 show that dis-
tributed shared memory is a challenging performance prob-
lem. Future versions of SGX should investigate features for
mapping EPC pages among multiple enclaves.

While prior work has treated exitless calls as a panacea,
§6.5 shows that they should be a per-system call policy to
reflect the application’s workload.

Of course, Phoenix is by no means a drop-in replacement
for today’s CDNs, who have specially optimized web servers
and support a much wider range of features, such as video
transcoding and image optimization. Rather, our results
should be viewed as a proof of concept and a glimmer of
hope: it is not necessary for CDNs to have direct access to
their customers’ keys to achieve performance or apply WAFs.
We view Phoenix—and especially conclaves—as a first step
towards this vision. To assist in future efforts, we have made
our code and data publicly available at:

https://phoenix.cs.umd.edu

Acknowledgments

We thank the Graphene creators and maintainers, especially
Chia-Che Tsai, Dmitrii Kuvaiskii, and Michał Kowalczyk,
for their help in understanding Graphene’s internals and de-
bugging numerous issues. We also thank Bruce Maggs, Nick
Sullivan, and the anonymous reviewers and artifact evalua-
tors for their helpful feedback. This work was supported in
part by NSF grants CNS-1816422, CNS-1816802, and CNS-
1901325.

References

[1] Akamai. https://www.akamai.com/.

[2] Cloudflare. https://www.cloudflare.com/.

[3] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan
Chandrasekaran, P. Brighten Godfrey, Gregory Laugh-
lin, Bruce Maggs, and Ankit Singla. Why is the Internet
so slow?! In Passive and Active Network Measurement
Workshop (PAM), 2017.

[4] Let’s Encrypt. https://letsencrypt.org/.

[5] Adrienne Porter Felt, Richard Barnes, April King,
Chris Palmer, Chris Bentzel, and Parisa Tabriz. Mea-
suring HTTPS adoption on the Web. In USENIX Secu-
rity Symposium, 2017.

[6] Frank Cangialosi, Taejoong Chung, David Choffnes,
Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. Measurement and analysis of pri-
vate key sharing in the HTTPS ecosystem. In ACM
Conference on Computer and Communications Secu-
rity (CCS), 2016.

[7] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao
Wan, and Jianping Wu. When HTTPS meets CDN: A
case of authentication in delegated service. In IEEE
Symposium on Security and Privacy, 2014.

[8] David Gillman, Yin Lin, Bruce Maggs, and Ramesh K.
Sitaraman. Protecting websites from attack with secure
delivery networks. IEEE Computer, 48(4), April 2015.

[9] Nick Sullivan. Keyless SSL: The Nitty Gritty
Technical Details. Cloudflare Blog, September
2014. https://blog.cloudflare.com/keyless-

ssl-the-nitty-gritty-technical-details/.

[10] David Naylor, Kyle Schomp, Matteo Varvello, Ilias
Leontiadis, Jeremy Blackburn, Diego Lopez, Kon-
stantina Papagiannaki, Pablo Rodriguez Rodriguez, and
Peter Steenkiste. Multi-context TLS (mcTLS): En-
abling secure in-network functionality in TLS. In ACM
SIGCOMM, 2015.

[11] David Naylor, Richard Li, Christos Gkantsidis, Thomas
Karagiannis, and Peter Steenkiste. And then there were
more: Secure communication for more than two par-
ties. In ACM Conference on emerging Networking EX-
periments and Technologies (CoNEXT), 2017.

[12] Hyunwoo Lee, Zach Smith, Junghwan Lim, and
Gyeongjae Choi. maTLS: How to make TLS
middlebox-aware? In Network and Distributed System
Security Symposium (NDSS), 2019.

[13] Nicolas Desmoulins, Pierre-Alain Fouque, Cristina
Onete, and Olivier Sanders. Pattern matching on en-
crypted streams. In International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), 2018.

[14] Justine Sherry, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Blindbox: Deep packet inspection
over encrypted traffic. In ACM SIGCOMM, 2015.

[15] Sébastien Canard, Aı̈da Diop, Nizar Kheir, Marie Pain-
davoine, and Mohamed Sabt. BlindIDS: Market-
compliant and privacy-friendly intrusion detection sys-
tem over encrypted traffic. In ACM Asia Conference
on Computer & Communications Security (ASIACCS),
2017.

[16] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia
Ratnasamy, and Zhi Liu. Embark: Securely outsourc-
ing middleboxes to the cloud. In Symposium on Net-
worked Systems Design and Implementation (NSDI),
2016.

[17] Yossi Gilad, Amir Herzberg, Michael Sudkovitch, and
Michael Goberman. CDN-on-demand: An affordable
DDoS defense via untrusted clouds. In Network and
Distributed System Security Symposium (NDSS), 2016.

[18] ModSecurity: Open Source Web Application Firewall.
https://modsecurity.org/.

[19] OWASP: The Open Web Application Security Project.
https://www.owasp.org.

[20] Amit A. Levy, Henry Corrigan-Gibbs, and Dan Boneh.
Stickler: Defending against malicious content distribu-
tion networks in an unmodified browser. In IEEE Sym-
posium on Security and Privacy, 2016.

[21] Chris Lesniewski-Laas and M. Frans Kaashoek. SSL
splitting: Securely serving data from untrusted caches.
In USENIX Annual Technical Conference, 2003.

[22] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In ACM Symposium on Theory of Com-
puting (STOC), 2009.

[23] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana
Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryp-
tion for all circuits. SIAM Journal on Computing, 45(3),
2016.

[24] Pierre-Louis Aublin, Florian Kelbert, Dan OKeeffe,
Divya Muthukumaran, Christian Priebe, Joshua Lind,
Robert Krahn, Christof Fetzer, David M. Eyers, and Pe-
ter R. Pietzuch. TaLoS : Secure and transparent TLS
termination inside SGX enclaves. Technical Report,
2017.

[25] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
Haven. In Symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[26] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’Keeffe, Mark L Still-
well, David Goltzsche, Dave Eyers, Rüdiger Kapitza,
Peter Pietzuch, and Christof Fetzer. SCONE: Secure
Linux containers with Intel SGX. In Symposium on
Operating Systems Design and Implementation (OSDI),
2016.

[27] Chia-Che Tsai, Donald E. Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodified
applications on SGX. In USENIX Annual Technical
Conference, 2017.

[28] Hongliang Liang, Mingyu Li, Qiong Zhang, Yue Yu,
Lin Jiang, and Yixiu Chen. Aurora: Providing trusted
system services for enclaves on an untrusted system.
arXiv preprint arXiv:1802.03530, 2018.

[29] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and
Dongsu Han. SGX-Box: Enabling visibility on en-
crypted traffic using a secure middlebox module. In
Proceedings of the First Asia-Pacific Workshop on Net-
working, 2017.

[30] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij.
Snort intrusion detection system with Intel Software
Guard Extension (Intel SGX). CoRR, 2018.

[31] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Safebricks: Shielding network func-
tions in the cloud. In Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[32] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer.
Shieldbox: Secure middleboxes using shielded execu-
tion. In Symposium on SDR Research (SOSR), 2018.

[33] David Goltzsche, Signe Rüsch, Manuel Nieke,
Sébastien Vaucher, Nico Weichbrodt, Valerio Schi-
avoni, Pierre-Louis Aublin, Paolo Cosa, Christof Fet-
zer, Pascal Felber, et al. Endbox: scalable middlebox
functions using client-side trusted execution. 2018.

[34] Huayi Duan, Xingliang Yuan, and Cong Wang. Light-
box: SGX-assisted secure network functions at near-
native speed. CoRR, abs/1706.06261, 2017.

[35] Ketan Bhardwaj, Ming-Wei Shih, Ada Gavrilovska,
Taesoo Kim, and Chengyu Song. SPX: Preserving end-
to-end security for edge computing. arXiv preprint
arXiv:1809.09038, 2018.

[36] Devdatta Akhawe, Frederik Braun, François Marier,
and Joel Weinberger. Subresource integrity, 2016.
https://www.w3.org/TR/SRI/.

[37] Mike West. Content security policy level 3, 2018.
https://www.w3.org/TR/CSP3/.

[38] Craig Gentry. Computing arbitrary functions of en-
crypted data. Communications of the ACM, 53(3),
2010.

[39] Intel Software Guard Extensions (Intel SGX). https:
//software.intel.com/en-us/sgx.

[40] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and
software model for isolated execution. In International
Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), 2013.

[41] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie
Brickell, and Frank Mckeen. Intel Software Guard
Extensions: EPID Provisioning and Attestation Ser-
vices. Available from https://software.intel.

com/sites/default/files/managed/ac/40/

2016%20WW10%20sgx%20provisioning%20and%

20attesatation%20final.pdf, 2016.

[42] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for CPU based Attesta-
tion and Sealing. In International Workshop on Hard-
ware and Architectural Support for Security and Pri-
vacy (HASP), 2013.

[43] Alexander B. Introduction to Intel SGX Sealing.
Available at https://software.intel.com/en-

us/blogs/2016/05/04/introduction-to-

intel-sgx-sealing, 2016.

[44] Intel Corporation. Intel Software Guard Ex-
tensions SDK for Linux OS. Available from
https://01.org/sites/default/files/

documentation/intel_sgx_sdk_developer_

reference_for_linux_os_pdf.pdf, 2016.

[45] Shanwei Cen and Bo Zhang. Trusted Time and Mono-
tonic Counters with Intel Software Guard Extensions
Platform Services. Technical report, Intel Corporation,
2017.

[46] Jethro Gideon Beekman. Improving cloud security us-
ing secure enclaves. PhD thesis, UC Berkeley, 2016.

[47] Rufaida Ahmed, Zirak Zaheer, Richard Li, and Robert
Ricci. Harpocrates: Giving out your secrets and keep-
ing them too. In IEEE/ACM Symposium on Edge Com-
puting (SEC), 2018.

[48] Changzheng Wei, Jian Li, Weigang Li, Ping Yu, and
Haibing Guan. Styx: a trusted and accelerated hierar-
chical SSL key management and distribution system for
cloud based CDN application. In ACM Symposium on
Cloud Computing (SoCC), 2017.

[49] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution. In
USENIX Security Symposium, 2018.

[50] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Raoul Strackx, Thomas F Wenisch, and Yuval
Yarom. Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution. Tech-
nical report, 2018.

[51] Intel SGX and Side-Channels. https://software.

intel.com/en-us/articles/intel-sgx-and-

side-channels.

[52] Intel Software Guard Extensions (Intel SGX) Devel-
opers Guide. https://software.intel.com/en-

us/download/intel-software-guard-

extensions-intel-sgx-developer-guide.

[53] L1 Terminal Fault. https://software.intel.

com/security-software-guidance/software-

guidance/l1-terminal-fault.

[54] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, and Daniel Gruss. A sys-
tematic evaluation of transient execution attacks and de-
fenses. arXiv preprint arXiv:1811.05441, 2018.

[55] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher Fletcher, and Josep Torrellas. In-
visispec: Making speculative execution invisible in the

cache hierarchy. In IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2018.

[56] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark
Silberstein, and Christof Fetzer. Varys: Protecting
SGX enclaves from practical side-channel attacks. In
USENIX Annual Technical Conference, 2018.

[57] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Mar-
cus Peinado. T-SGX: Eradicating controlled-channel
attacks against enclave programs. In Network and Dis-
tributed System Security Symposium (NDSS), 2017.

[58] Free Software Foundation. GNU Hurd. http://www.
gnu.org/software/hurd/hurd.html.

[59] J. Mark Stevenson and Daniel P. Julin. Mach-US:
UNIX on generic OS object servers. In USENIX Tech-
nical Conference, 1995.

[60] Available from MITRE, CVE-ID CVE-2014-0160,
2014. CVE-2014-0160 (Heartbleed bug).

[61] Lars Lühr. ayeks’ SGX Hardware github repository.
https://github.com/ayeks/SGX-hardware.

[62] Thomas Knauth, Michael Steiner, Somnath
Chakrabarti, Li Lei, Cedric Xing, and Mona Vij.
Integrating remote attestation with transport layer
security. CoRR, abs/1801.05863, 2018.

[63] R. Barnes et al. Automatic certificate management en-
vironment (ACME). daft-ietf-acme-acme-18, Decem-
ber 2018.

[64] HAProxy: The Reliable, High Performance TCP/HTTP
Load Balancer. https://www.haproxy.org/.

[65] Grzegorz Kostka. lwext4. https://github.com/

gkostka/lwext4.

[66] The XTS-AES Tweakable Block Cipher. IEEE Std
1619-2007, 2008.

[67] Morris J. Dworkin. Recommendation for Block Cipher
Modes of Operation: The XTS-AES Mode for Confi-
dentiality on Storage Devices. NIST Special Publica-
tion 800-38E, 2010.

[68] Roughtime protocol. https://roughtime.

googlesource.com/roughtime/+/HEAD/

PROTOCOL.md.

[69] Dmitrii Kuvaiskii. Graphene-SGX Exitless. https://
github.com/dimakuv/graphene/tree/exitless.

[70] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: ExitLess OS services for SGX
enclaves. In European Conference on Computer Sys-
tems (EuroSys), 2017.

[71] Ofir Weisse, Valeria Bertacco, and Todd Austin. Re-
gaining lost cycles with HotCalls: A fast interface for
SGX secure enclaves. In International Symposium on
Computer Architecture (ISCA), 2017.

[72] BearSSL: A Smaller SSL/TLS Library. https://

bearssl.org/.

[73] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger
Kapitza. sgx-perf: A performance analysis tool for Intel
SGX enclaves. In ACM/IFIP International Middleware
Conference (Middleware), 2018.

[74] Intel Corporation. Linux SGX Kernel Driver. https:
//github.com/intel/linux-sgx-driver.

[75] Jens Axboe. Fio 3.13. git:git.kernel.dk/fio.

git.

