
Provably Avoiding Geographic Regions for Tor’s
Onion Services

Arushi Arora1, Raj Karra1, Dave Levin2, and Christina Garman1

1 Purdue University
{arora105, karra0, clg}@purdue.edu

2 University of Maryland
dml@cs.umd.edu

Abstract. Tor, a peer-to-peer anonymous communication system, is
one of the most effective tools in providing free and open communication
online. Many of the attacks on Tor’s anonymity occur when an adver-
sary can intercept a user’s traffic; it is thus useful to limit how much of a
user’s traffic can enter potentially adversarial networks. Recent work has
demonstrated that careful circuit creation can allow users to provably
avoid geographic regions that a user expects to be adversarial. These
prior systems leverage the fact that a user has complete control over the
circuits they create. Unfortunately, that work does not apply to onion
services (formerly known as “hidden services”), in which no one entity
knows the full circuit between user and hidden service.
In this work, we present the design, implementation, and evaluation
of DeTorOS , the first provable geographic avoidance system for onion
services. We demonstrate how recent work to build and deploy pro-
grammable middleboxes onto the Tor network allows us to take exist-
ing techniques like these and deploy them in scenarios that were not
possible before. DeTorOS is immediately deployable as it is built using
programmable middleboxes, meaning it does not require either the Tor
protocol or its source code to be modified.
This work also raises a number of interesting questions about extensions
of provable geographical routing to other scenarios and threat models,
as well as reinforces how the notion of programmable middleboxes can
allow for the deployment of both existing and new techniques in novel
ways in anonymity networks.

Keywords: Programmable anonymity networks · Tor · Onion Services
· Privacy.

1 Introduction

The ability to achieve freedom of speech anonymously and access resources pri-
vately has now become an important part of our society. Tor, one of the most
popular and widely used anonymous communication networks today, is used by
people across the globe who wish to share or access systems without revealing
their identity. In addition, Tor’s onion services let users host content anony-
mously (i.e. without disclosing the host server’s IP). This is critically important



2 A. Arora et al.

not just in the face of internet censorship and hosting of services like anonymous
dropboxes for whistleblower submissions, but also for regular users who might
want to protect their privacy online.

Tor is designed under the realistic assumption that no adversary has a global
view of the network [5]. However, even under this relaxed threat model, there
are still very powerful routing-capable nation-state adversaries that can manip-
ulate, inspect, and correlate traffic crossing their borders. In other words, these
attackers can censor Tor traffic and launch powerful deanonymization attacks
against Tor users (including onion service hosts). Some of the first known at-
tacks on onion services include timing analysis, service location attacks, and
distance attacks, which expose the location of a server hosting an onion ser-
vice [12,20]. Further, circuit fingerprinting attacks [14] attempt to recognize the
circuits involved in communicating with an onion service and then perform a
website fingerprinting attack [27] on the identified circuits to deanonymize the
target service with high accuracy.

While, for Tor clients, some work has sought to deal with such attackers by
making traffic appear innocuous to them, others have proposed avoiding these
attackers altogether [13, 15, 17]. Although the Tor protocol provides a way to
allow users to specify certain countries to avoid, this avoidance is not certain [21].
For instance, one study found that circuits excluding US Tor nodes only bypassed
the US 12% of the time [17].

These efforts have led to techniques that allow users to specify forbidden
geographic regions, and to construct circuits that provably bypass these regions.
After a round-trip of communication, the idea is to return a proof verifying
that packets could not have traversed the forbidden region. This proof combines
proof of some of the places where the packet did go, combined with the fact that
information cannot travel faster than the speed of light as an “alibi,” thereby
showing where the packet could not have gone.

Unfortunately, no prior work has managed to extend these provable avoidance
techniques to onion services. In general, extending such architectures to onion
services seems to inherently be a hard problem given the design of the interaction
between clients and an onion service. As shown in Figure 1, there is a 6-hop
circuit between a client and an onion service, of which both the parties know
only their side of the respective 3-hop circuit. Since both parties involved are
unaware of the other side’s respective circuit to ensure anonymity, it is a challenge
for either side to gain assurances of the other half without a loss of anonymity.

Our proposed approach, which we call DeTorOS , allows an onion service host
as well as their respective users to verify whether their traffic successfully evaded
certain regions. We are able to extend this functionality to onion services by
leveraging recent advances that introduce programmability to Tor (and other
similar anonymity systems), which allows a user to upload and execute code on
willing Tor relays [22]. This paradigm allows us to do something that was not
possible before: build DeTorOS as a (trusted) function which can compute on
data from both parties in a confidential manner. Our design also has the bene-
fit of being immediately deployable. Because DeTorOS leverages programmable



Provably Avoiding Geographic Regions for Tor’s Onion Services 3

Fig. 1. Whereas a user knows every hop in the circuit they create, circuits to onion
services are created collaboratively, and thus no one entity knows the full circuit. This
makes provable avoidance difficult to achieve.

anonymity networks, no changes are required to the underlying Tor source code
or protocol. We also show that, under reasonable assumptions, it protects the
anonymity of both the onion services and their users.

Contributions. Our contributions in this work are as follows. We aim to
improve the usability of Tor’s onion services for its host as well as its respec-
tive users. We achieve this by providing the first realization for provable geo-
graphic avoidance for onion services that is immediately deployable and requires
no changes to the underlying Tor code. We present the design, implementation,
and evaluation of DeTorOS , a set of techniques that aim to provably guarantee
avoidance for onion services. While we leverage existing techniques to provide
provable avoidance, we are the first to demonstrate how this can be done for
onion services.

Roadmap. The organization of this paper is as follows. In Section 2, we provide
a brief discussion on related work and background knowledge of the core ideas
in the paper, as well as discuss the threat model for our architecture. Next, we
discuss the design of DeTorOS in Section 3 and its security analysis in Section
4. We evaluate our work in Section 5. We discuss the implications of our design
and pave a path for future directions in Section 6, discuss ethical considerations
in Section 7, and conclude in Section 8.

2 Background and Related Work

Tor. Tor is a peer-to-peer overlay network based on onion routing that allows
its users to browse the internet anonymously. This low-latency TCP-based com-



4 A. Arora et al.

munication service lets a client, who runs an Onion Proxy (OP), build a circuit
(3-hop by default) consisting of volunteer Tor relays called an Onion Router
(OR)- guard (connects the source), middle, and exit (connects the destination)
nodes. See Figure 1a. The idea is to then encrypt the client’s message (that
needs to be sent to the destination) first with the unique symmetric key shared
with the exit node followed by middle and guard node. This triple-encrypted
ciphertext is then passed to the guard node, which decrypts (“peels off”) it us-
ing the same shared symmetric key. The middle and exit nodes then “peel off”
their respective layers until the message reaches the destination. This technique,
therefore, maintains the confidentiality of the message, obscuring it from anyone
trying to intercept it between two ORs. The Tor protocol by default prioritizes
high-bandwidth relays for circuit construction and selects them from different
subnets. The client constructs these circuits preemptively and is aware of all the
chosen relays, whereas the ORs are only aware of their immediate successor or
predecessor in the circuit. The OP is responsible for multiplexing TCP streams
across circuits. Many such streams can share the same circuit. Tor protocol
chooses ORs (almost) uniformly at random to construct its circuits.

Onion Services. An onion service allows its host to share information across
the internet while maintaining its anonymity i.e. without revealing the identity
or location of the host server. To establish an onion service, its host Alice first
generates a public key pair and selects Tor relays to be its introduction points
(IPs). Alice then publicizes her service (signing it with her private key) and
forms a circuit to her IPs. Bob, who wants to visit Alice’s service, does so via
Tor. To establish a connection to the onion service, first, he would select an onion
router (OR), which is a Tor relay, to be his rendezvous point (RP). Bob then
sends a cookie to the RP and builds a circuit to Alice’s IP sending it a message
encrypted with Alice’s public key and starting a DH (Diffie Hellman) handshake.
This message, which contains Bob’s cookie, and information about himself and
RP, is forwarded to Alice who can then connect with Bob anonymously by
building a circuit to RP. In this case, Alice would send the second half of the DH
handshake, cookie, and hash of the session key. This establishes the anonymous
stream between Alice and Bob. See Figure 1b.

Bento. Bento [22] introduces programmability to anonymity networks (Tor as
of now) by allowing users to execute tiny code snippets (called functions) on Tor
relays thus improving a user’s anonymity and performance and Tor’s usability.
This architecture runs on top of Tor and is immediately deployable. These in-
network middleboxes can support numerous jobs like load-balancing, sending
cover traffic, sharding files, and browsing the web with just a few lines of code.
Bento also introduces a middlebox node policy that specifies resources and tasks
that a Bento server can provide to its users. This ensures that Tor relays enacting
as Bento servers are protected from the functions they run. Similarly, this system
considers that some Tor relays support trusted execution environments (TEEs)
which therefore prevent a third-party Bento server to introspect on any user
function or its relevant data, as well as enforce correctness of execution for the
function [8].



Provably Avoiding Geographic Regions for Tor’s Onion Services 5

Provable Geographical Avoidance. Powerful nation-state adversaries can
influence Tor routing into and out of their borders [26]. This allows them to
censor and deanonymize traffic through correlation attacks [10,16]. Li et al. [17]
introduced DeTor, a technique for constructing Tor circuits that provably avoids
geographic regions of the user’s choosing, based on Alibi routing [15]. Kohl et
al. [13] and Ryan et al. [25] overcame some of DeTor’s limitations by extending
to asymmetric paths and providing more accurate node locations, which was
later further refined by Ryan et al. [25]. At a high level, all of these make use
of the same basic proof structure: clients prove where the traffic did go (based
on the locations of the relays on the circuit), and combine that with latency
information to infer where the traffic could not have gone (based on the fact
that information cannot travel faster than the speed of light).

These proofs are calculated as

min
f∈F

[R(s, f) +R(f, a)] +R(a, t) ≥

3

2c
·
(
min
f∈F

[2 ·D(s, f) + 2 ·D(f, a)] + 2 ·D(a, t)

) (1)

where D(x, y) is the great circle distance between hosts located at x and y;
R(x, y) denotes the RTT between x and y; F represents a forbidden region and
f ∈ F refers to a forbidden geographic coordinate; a is a relay that is not in F ;
s and t represent a source and destination node respectively.

DeTor provides proof for two modes of avoidance [17]. Never-once, which
desires to fight fingerprinting [14] and censorship attacks [19] by verifying that
a packet, passing through a Tor circuit, never transited a particular geographic
region, even once. And Never-twice, which aims to resist deanonymization at-
tacks [3, 9, 10, 18], wherein an adversary needs to witness a packet twice: at
the entry leg (from client to entry node) and the exit leg (from exit to des-
tination). This technique confirms that an adversary does not appear on two
non-contiguous portions of the Tor circuit.

2.1 Threat Model

Our network-level threat model is similar to Tor’s. We consider our attacker
to be a powerful nation-state adversary. Such a routing-capable adversary is
unable to have a global view of the Tor traffic, but can observe, control and
censor traffic in their respective local geographic regions. They may be able to
achieve this by advertising themselves as Tor relays. In addition, this adversary
is not restricted to a specific region or nation and may be able to collude with
other (non-neighboring) countries.

Bento involves executing functions on a third-party machine (the Bento

server). Following the original Bento design, we assume that the host node itself
could be malicious, meaning that it can both try to tamper with or gain infor-
mation about the avoidance computation and its inputs and outputs, as well
as try to manipulate the inputs to alter the results. We assume that some of



6 A. Arora et al.

these servers will have secure TEEs, such as Intel SGX3, prohibiting the host
machine to access the executing function and its relevant data, as well as en-
suring correctness of execution. As thus far all known TEE vulnerabilities have
been patched by their respective vendors, we therefore assume that these TEEs
are not fundamentally flawed, and that such an environment can indeed provide
a secure enclave and is safe for running code, denying a malicious attacker/host
the ability to introspect the executing function. We discuss the implications of
the use of TEEs further in Section 6, but note that in this work we do not rely
on any additional assumptions from the TEE, and inherit (and can make use
of) Bento’s support for remote attestation [1,11], which allows a client to verify
that the Bento server is truly running inside an enclave and that the current
TCB version as been patched against all known vulnerabilities.

The DeTorOS architecture itself employs an honest-but-curious model for the
client and server. We therefore assume that both the client and the onion service
are faithful to the DeTorOS protocol even though they attempt to learn what
information they can.

3 DeTorOS Design

DeTorOS extends the DeTor proofs and computations [17] to onion services.
This work introduced the idea of never-once proofs, which involved calculating
Dmin(x1, . . . , xn): the shortest possible great-circle (geographic) distance along
a circuit x1 → · · · → xn, and converting this into the shortest possible traversal
time by dividing it by 2c/3 (the fastest speed at which information travels on
the Internet). They also introduced never-twice proofs, which involve computing
geographic ellipses denoting where in the world the packets could have traversed
over each leg of the circuit, and then determining whether the entry and exit
leg ellipses intersect. If they did not intersect, then never-twice avoidance was
successful (see [17] for more details on the exact calculations). Performing these
computations requires knowing the precise locations of each hop on the circuit.
While this is straightforward for traditional Tor circuits as the client chooses
these nodes, when working with onion services, the client cannot know the en-
tire combined circuit (namely the onion service’s half of the circuit is hidden
from them), making this a hard problem. This section presents the solution for
this problem, that is, the design for the DeTorOS never-once and never-twice
functions.

3.1 DeTorOS Overview

The central idea behind DeTorOS is to use a semi-trusted Bento function that
sits between the client and onion service to which both can upload their half-
knowledge of the circuit, and that can then perform the computations and de-
termine whether the circuit achieved never-once or never-twice avoidance. Crit-
ically, although the function reveals whether or not avoidance was achieved, it

3 We note that, as discussed in [22], the Bento architecture is not bound to SGX and
can work with any TEE that supports similar functionality [2].



Provably Avoiding Geographic Regions for Tor’s Onion Services 7

does not reveal either side’s inputs (much like secure multiparty computation).
The overall design is presented in Figure 2.

We break this design down into two different sub-functions, one for never-
once avoidance and one for never-twice avoidance, though the core protocol is the
same for both. A client, Alice, first either identifies a Bento node that is running
the DeTorOS function or else uploads it to a chosen node. Before running the
DeTorOS protocol, both Alice and Bob first perform a TLS handshake with the
DeTorOS function to establish a secure channel against a malious node operator
(see Section 3.4), and, optionally, ask the Bento server to attest to the correctness
of its code base. This provides them with strong guarantees of the correctness
and confidentiality of their subsequent proofs of avoidance. Alice would then
run the desired DeTorOS protocol (presented in detail in Sections 3.2 and 3.3) as
part of connection establishment with Bob’s onion service before communicating
with it further4.

Computation models. We also introduce two different models of computa-
tion: the Bento-side computation model and the local computation model. In the
Bento-side computation model, the client and OS simply upload all necessary
circuit information to the DeTorOS function, which then performs the computa-
tions and returns the result. In the local computation model, the client and OS
perform the bulk of the avoidance proof locally and then upload only their results
to the DeTorOS function, which then computes the final result. We discuss each
of these models further in the respective never-once and never-twice sections.
These different models trade off trust in the DeTorOS function and Bento server
for increased computation for the client and OS.

3.2 DeTorOS Never-Once function

The main objective of the never-once avoidance technique is to gain assurance
that a packet or its response could not have passed a user-specified forbidden
region F during a round-trip transmission. The idea is to first obtain the end-
to-end round-trip time Re2e of packets traversed through the selected Tor relays
(entry (e), middle (m), and exit (x)). We also take into consideration the case
where the packets could have gone through the forbidden region, calculating the
shortest possible time necessary to go through each circuit and the forbidden
region Rmin as

Rmin =
3

2c
·min


2 ·Dmin(s, F, e,m, x, t)

2 ·Dmin(s, e, F,m, x, t)

2 ·Dmin(s, e,m, F, x, t)

2 ·Dmin(s, e,m, x, F, t)

(2)

where δ acts as an extra buffer against irregular delays. We then check if

(1 + δ) ·Re2e < Rmin (3)

4 Assuming Bob’s OS supports the DeTorOS protocol. In our current honest-but-
curious model, we can provide no guarantees if the OS refuses to participate.



8 A. Arora et al.

is satisfied, which, therefore, proves that the packets could not have possibly
transmitted through F . Otherwise, one cannot decipher if the packets traversed
the F or simply suffered a delay. We now present our never-once design for
onion services and how it incorporates these computations, referencing the steps
in Figure 2.

The DeTorOS never-once function, when loaded and executed by a client on
a Bento server, first accepts both client- and onion service-side circuits. In other
words, a client Alice, who wishes to communicate with Bob’s onion service, would
first send her entry and middle nodes and the RP to the DeTorOS function that
she has uploaded to a Bento server, along with her desired forbidden regions.
Simultaneously, Bob would also send his part of the circuit, comprising of his
entry, middle, and exit nodes to the DeTorOS function (Step 1 ). The DeTorOS

function then performs the aforementioned never-once computations for the for-
bidden region as specified by the client (Step 2 ). The function then attests to
whether Alice’s communication with Bob would avoid the forbidden region as
specified by her (Step 3 ). Alice would then receive an attestation of avoidance.
Alice and Bob communicate normally after a successful attestation (Step 4 ).
This realizes our Bento-side computation model.

Optionally, Alice and Bob may also choose to perform the never-once com-
putations locally (the local computation model), and then only upload the result
of this in Step 2. This trades off trust in the DeTorOS function and Bento server
(as neither party needs to send their circuit information now) for increased com-
putation (as they must now do the calculations on their own).

3.3 DeTorOS Never-Twice function

The main objective of the never-twice avoidance technique is to gain assurance
that a packet or its response could not have passed a user-specified forbidden
country C on both the entry (Ce) and exit legs (Cx) of the Tor circuit. To prove
this case, one needs to verify that the entry (focal point s and e and radius
3
c · (Re2e − Rm)−D(x, t), where Rm = 3

c ·D(e,m, x)) and exit leg (focal point
x and t and radius 3

c · (Re2e −Rm)−D(s, e)) ellipses do not intersect, thereby,
denying the possibility for the same country to have been traversed twice. If
these entry and exit leg ellipses intersect then one must additionally verify the
following condition to prove that same countries were not traversed twice.

∀F ∈ Ce∩Cx : (1+δ)·Re2e <
3

c
·(Dmin(s, F, e)+D(e,m, x)+Dmin(x, F, t)) (4)

Similar to never-once, we accomplish never-twice avoidance for onion services
by building it as a function that is uploaded to a Bento server. The DeTorOS

never-twice function first accepts both the entry legs of the client- and onion
service-side circuits (Step 1 ). The DeTorOS function then computes the set of
countries that Alice and Bob’s entry legs could have gone through (Step 2 ), and
then returns the intersection of the two sets (Step 3 ). Alice then receives the
intersection. If this intersection is empty, Alice and Bob communicate normally



Provably Avoiding Geographic Regions for Tor’s Onion Services 9

Fig. 2. The DeTorOS Protocol for never-once and never-twice avoidance. Both parties
send their circuit information to a Bento server which is running the DeTorOS function.
The server then computes the desired avoidance proof and sends it to the client. If
successful, the client then begins communicating with the onion service.

(Step 4 ), otherwise Alice can choose to run never-once for the countries in the
intersection to gain additional information.

In the case of the local computation model, the client and onion service each
compute the set of countries that the entry legs of their circuits go through and
upload these sets to the function (Step 2 ), which then computes the intersection.

3.4 Ensuring Correctness of Input Data

As we do assume the Bento operator (i.e., the host Tor node and other network-
ing infrastructure) itself can be malicious, we must also ensure that the correct
data and circuit information is able to reach our DeTorOS function, and that a
corrupt operator cannot substitute it for their own data and thus corrupt the en-
clave calculations. We can achieve this by simply having the client and OS both
establish a TLS connection with the DeTorOS function (running in the protected
enclave5) prior to passing in the circuit information, thus allowing them to pass
all data directly to the enclave and DeTorOS through this secure channel. This
can be done as part of the initial (pre-computation) setup process, in addition
to the optional attestation process which ensures both client and OS that the
Bento node is patched and up-to-date. This additional communication does not
alter or affect anything with the underlying Tor protocol, as all information is
just passed as data through established Tor circuits to the Bento node.

4 Security Analysis

In this section, we discuss the security implications of our proposal and argue
that it inherits strong guarantees of correctness, confidentiality, and integrity
from its design.

Bento-side computation model. The client and onion service send their cir-
cuits to the DeTorOS function running on a Bento server. By the Bento design,

5 That has been provisioned with a TLS certificate as part of the Bento setup.



10 A. Arora et al.

the DeTorOS function is executed within a TEE, and the server is, therefore,
unable to learn the circuit information provided (or even the result of the cal-
culation). And as the client only receives the result of the calculation, neither
the onion service nor the client learn anything new about each other beyond
the computation output. In other words, the client and the onion service do not
compromise their anonymity by participating in DeTorOS (beyond the obvious
and unavoidable fact that in never-once the client learns that the onion service
cannot be in the forbidden region).

It is worth noting that a curious client could try to use this fact to attempt
to locate an onion service. Through numerous never-once queries with different
forbidden regions, a client can attempt to learn which regions an onion service
might be near based on what regions it cannot avoid. To thwart such an attack,
one could envision extending the never-once function in such a way that it is
able to let an onion service know if a single client has made numerous never-once
queries about it; the onion service could then choose not to participate in future
never-once queries to protect its privacy. We leave such an extension for future
work at this time, but discuss potential solutions in more depth in Section 6.

Local computation model. In our second scenario, much of the sensitive
computation is done on the client and onion service respectively, which allows
all involved parties to never need to export their circuit information to anyone.
For never-once avoidance, the client and the onion service calculate never-once
on their own circuits and send only the result of this computation (a boolean
which denotes whether avoidance was achieved or not) to the Bento server.
Thus even if the Bento server was not using a TEE, it only learns the boolean
values and the result of the AND. This decreases the level of trust required in
the DeTorOS function, but comes at a cost of increased computation for both
parties involved. In never-twice avoidance, even though much of the computation
is done client-side on the respective circuits, we still rely on the Bento server to
compute the intersection of the countries and return the result. Thus we again
lean on the fact that our DeTorOS function will be running in a TEE, protecting
the confidentiality of any data.

Integrity and correctness. The final important properties that we must
guarantee are integrity of the data and correctness of the avoidance computation.
We again rely heavily on the guarantees provided to us by the programmable
Bento architecture. Because DeTorOS is running within a TEE on a Bento node,
data (such as circuit and relay information) is protected from any tampering
by the middlebox operator. This model also allows both the client and onion
service to be assured of the correctness of the computation on the given data, as
the DeTorOS function must be correctly executed. Additionally, we must ensure
the correctness of the inputs to the avoidance computation. As both the client
and OS have established a TLS connection that terminates inside the enclave
where the DeTorOS function is running, this provides a secure channel for both
to transfer information to DeTorOS while preventing tampering by the node
operator.



Provably Avoiding Geographic Regions for Tor’s Onion Services 11

5 Evaluation

In this section, we present the evaluation of DeTorOS for both never-once and
never-twice avoidance. We aim to show that these techniques are feasible for 6-
hop circuits, that is, that even with these provable avoidance techniques in place,
a client still is able to (easily) find a circuit to connect to the onion service. For
both never-once and never-twice avoidance, we use the same experimental setup
and dataset as Li et al. [17], i.e., choosing our source-destination pairs from the
Ting set of 50 relays and utilizing their latency measurements [4], but we do
so for circuits with 6 hops to replicate the connection to a Tor onion service.
Because adding three extra hops to a circuit exponentially increases the number
of possible circuits to test6, we elect to randomly sample one million circuits
per source-destination pair (where each end of these pairs resides in a different
country) rather than evaluating every possible circuit. We assume that Bento

nodes have roughly the same geographic distribution as regular Tor relays.

5.1 Never-Once

We evaluate how successful DeTorOS is at avoiding various regions around the
world, using a δ of 0.5 (recall that δ is a user configurable value 0 ≤ δ ≤ 1 where
the higher the δ, the fewer potential compliant circuits will exist because of the
higher burden of proof of avoidance). We do so by considering eight countries
that are either very prominent for being on common routes, have many Tor
relays, or are known to practice censorship, and comparing their success rates
for the source-destination pair. Note that except for China, Japan, and North
Korea, our results (i.e. success/failure) are proportional to [17], even if the overall
success rates are slightly lower due to the 6-hop architecture.

We present our success rates in Figure 3. Each bar represents, for one of
the aforementioned forbidden regions, the fraction of source-destination pairs
that: successfully avoid the forbidden region over at least one circuit (green);
terminate in the forbidden region and thus cannot achieve provable avoidance
(black); and circuits that fail provable avoidance with real RTTs (although they
theoretically avoid the forbidden region) (red).

Overall, our success rates are slightly lower than for DeTor’s original evalua-
tion over three-hop circuits. This is to be expected though. In the onion service
setting, we are traversing six hops, and adding more hops in the circuit increases
the chances that it will cross a forbidden region. Additionally, because of the
extra time it takes for a packet to cross the six hop circuit, we are less certain
of a circuit’s ability to avoid the forbidden region. The fact that we are able
to achieve even modest success rates for many forbidden regions is surprisingly
positive. It is also worth noting that as we randomly sampled circuits to achieve
a feasible experimental setup, this dataset is a small fraction of the actual Tor

6 Since there are 50 possible Tor relays in the dataset and we choose 6 without re-
placement, this gives us over 36 billion circuits, which was infeasible to evaluate for
never-once.



12 A. Arora et al.

Fig. 3. Success of DeTorOS at never-once avoidance of various forbidden regions. Each
bar represents the avoidance rate of the given country for the one million sampled
source-destination pairs.

relays that are deployed today. Because the overall Tor network is denser and
has a larger diversity of hosts, we anticipate that DeTorOS will actually perform
much better in practice.

We also note that the Ting dataset is modeled based on the real configuration
of the Tor network (albeit a slightly older configuration). This, of course, means
that a large portion of this dataset has relays that reside in locations like the
United States and Europe. As a result of this, it is difficult to, for example, find
circuits that avoid the United States. However, it is worth noting that of the
circuits where the entry and exit node are not in the United States, DeTorOS

avoids the United States around 50% of the time, which is quite encouraging.

5.2 Never-Twice

We evaluate how successful DeTorOS is at never-twice avoidance by generating
candidate circuits for our one million previously sampled source-destination pairs
from the Ting dataset [4] where both the source and destination are in different
countries, as never-twice is impossible when the source and destination nodes
are in the same country.

We then sample 1000 circuits from each source-destination pair and see if
they can provide a proof of never-twice avoidance. Doing this showed that 72.4%
of our sampled source-destination pairs have a successful proof of never-twice
avoidance. While this number is very encouraging, it too is lower than in DeTor’s
original three-hop experiments (which achieved about 98% success rates for a
similar never-twice avoidance experiment). This, too, is expected; with the extra
three nodes added to a circuit, if the ellipses’ of a circuit’s entry and exit legs go
through at least one common country, the added round trip time due to various



Provably Avoiding Geographic Regions for Tor’s Onion Services 13

network factors increases the difficulty of providing a proof of avoidance. We also
hypothesize that we would have better performance if deployed on the live Tor
network as the set of clients and destinations are exponentially greater than the
combinations within the dataset.

5.3 Performance

We finish our evaluation by briefly discussing the performance of DeTorOS and
its potential impacts on latency.

The use of DeTorOS will add additional connection establishment latency for
a user who wishes to run it before they connect to an onion service. To test this,
we ran our DeTorOS function ten times on a Bento node running in the US,
using randomly generated circuits with actual Tor relays, with a client located
in the US and an OS located in Germany. On average, it took 64.85 seconds for
our function to compute the never-once avoidance proof. While this time is not
insignificant, as our function must take various network timing measurements for
six Tor relays and then also compute the avoidance proof, we note that a user will
only need to run this once for a specific circuit/OS pair (and that it often takes
this long to access an onion service itself even without these computations).
Besides the additional computational overhead incurred by using DeTorOS to
verify never-once or never-twice for both the onion service and the client, there
is next to no additional latency involved. In fact, as observed in [17], because
circuits with a lower round trip time are more likely to be DeTorOS compliant,
there is likely less latency than if the client were to use a Tor generated circuit
to connect to the onion service.

A potential source of additional performance overhead (and hence latency)
is the use of Bento (and hence conclaves and SGX) to realize DeTorOS . We note
that the overhead induced by this should be nominal on DeTorOS itself. SGX runs
computations at essentially native speed, which means that it has little effect
on the performance of DeTorOS computations. The largest overhead incurred
for this model is context switching, and a comprehensive analysis of conclaves
and SGX overhead in [7] demonstrated that this overhead was reasonable for
even a CDN-like latency sensitive application7. As such, we believe that such
minimal overhead should not be impactful or add to the overall latency induced
by DeTorOS .

6 Discussion and Future Work

Provable geographic avoidance for onion services was once thought to be im-
possible, since no one entity was able to safely know and evaluate every hop
on the path. We have demonstrated that through the application of secure,

7 Given this, we do not repeat similar experiments here and instead refer the interested
reader to [7] and [22] for more information.



14 A. Arora et al.

programmable middleboxes, provable avoidance is possible and surprisingly ef-
fective. We believe this opens up several interesting and immediate avenues for
future work.

First, our current protocol only operates under the honest-but-curious model,
assuming that the onion service correctly reports its path to the DeTorOS func-
tion and does not lie to the client or try to actively subvert the protocol in some
way. While in practice there are likely large numbers of honest onion services
that are deployed to benefit users and will follow such a protocol, and we believe
it is valuable to demonstrate that geographical avoidance is possible at all with
onion services, we also desire our geographical avoidance protocol to work in the
face of active adversarial involvement. While this could be trivially addressed by
also requiring a TEE on the onion service side that could directly communicate
with the Bento function, this is a strong assumption that we would like to avoid.
Without the use of TEEs, this seems like a challenging problem to address, and
one that might involve inherent changes to the underlying DeTorOS protocol and
computations.

Second, we inherit the use of TEEs from the design of Bento and rely on
them to ensure the privacy and correctness of the computations. While we have
seen a number of attacks on TEEs thus far, we have also seen TEE vendors
provide patches and updates for all such attacks, and remote attestation mecha-
nisms allow for users to gain assurance that a computer is fully patched against
all known vulnerabilities. However, we still briefly discuss the impacts of a TEE
compromise on DeTorOS . Since we rely on the TEE for both correctness and
confidentiality, a breach would likely harm both of these properties, resulting in
the potential leakage of circuit information to the node operator and a weakening
of the correctness guarantees of the computations. This is where the difference
in the Bento-side versus local computation model can be beneficial, as the in-
formation leakage can be minimized with local computation (though we still
lose strong correctness guarantees on the returned result). As such, an interest-
ing avenue of future work would be to explore mechanisms, such as multi-party
computation, that would allow us to still leverage the idea of programmable
anonymity networks, without relying on the need for TEEs.

Third, as we discussed briefly in Section 4, our current protocol does not
protect an onion service from a malicious client that wishes to try to deanonymize
it through repeated queries about avoidance of distinct geographic regions. We
envision that one simple way to mitigate this would be to extend the DeTorOS

function to track the number of times a user invokes it with regards to a specific
onion service, and either rate-limit queries or notify the onion service of repeated
queries, allowing it to decide whether to participate in the protocol or now.
One way to achieve this rate-limiting in a privacy-preserving manner would be
through issuing k-show anonymous credentials [6,24]. A client wishing to visit an
onion service would then first obtain an anonymous credential (which refreshes
every day) from the issuer (which could be a Bento server). The client would
then show this anonymous token every time she wants to execute DeTorOS . This
limits the client’s access to the onion service since the client can execute DeTorOS



Provably Avoiding Geographic Regions for Tor’s Onion Services 15

only k times per day. However, as the DeTorOS function is user-controlled, the
onion service itself would also need to, through the Bento attestation process or
other mechanism, ensure itself that the deployed function it is interacting with
contains these protections. Another interesting piece of future work would be to
investigate if there are other avenues to thwart such an attack.

Fourth, while the results of both never-once and never-twice for DeTorOS are
promising, it is critical to come up with ways to reduce the additional latency
added by adding the three extra hops required to connect to a hidden service. It
is also imperative to find new ways to speed up the calculations that DeTorOS

(and the original detor paper [17]) use in order to reduce the computational
overhead required.

Finally, taking a step back, Bento’s programmable middleboxes made prov-
able avoidance possible by outsourcing a sensitive computation to a mutually
trusted third party. We wonder: what other services could be run in a simi-
lar fashion? Perhaps it is possible to build disaggregated services on top of a
programmable anonymity network by disseminating pieces of code across the
network, so that even if one part of it is compromised other parts can replicate
and recover. Perhaps it is possible to randomize where any computation in the
network occurs, so that the onion service is hidden even from the user who is
running it. Our hope is that this work spurs such considerations, and to assist
in future work we have made our code publicly available8.

7 Ethical Considerations

All of the data in our experiments comprised only our own traffic: not any actual
users’ data. Our never-once performance evaluation was performed on the actual
Tor network. However, this only involved collecting latency times for various
nodes and circuits on the network, and data was gathered in a rate-limited
fashion to ensure that our experiments would not impact the performance of the
Tor network. Also, we deployed both our own Tor node and Bento node, which
was limited to only our own traffic so as not to affect the larger Tor network.

8 Conclusion

In this work we present DeTorOS , the first technique that is able to provide
provable geographic avoidance for onion services. We achieve this by leveraging
recent advances in programmable anonymity networks, which allow the user and
onion service to jointly compute on their circuits, without leaking information
to the other party. While we implement this work primarily with the Bento

architecture, we believe the overall design of DeTorOS can be used with any
architecture that supports such programmability in anonymity networks [23].
We showed that our design and implementation is able to achieve never-once and
never-twice avoidance at rates that are encouraging. We also discuss a number
of avenues of future work that this first deployment opens up.

8 https://bento.cs.umd.edu

https://bento.cs.umd.edu


16 A. Arora et al.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. Arushi Arora and
Christina Garman’s work was partially supported by NSF grant CNS-1816422.
Dave Levin’s work was partially supported by NSF grant CNS-1943240.

References

1. Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative tech-
nology for CPU based attestation and sealing. In International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP), 2013.

2. ARM security technology: Building a secure system using TrustZone technology.
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/

PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.
3. Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Torben: A practical side-

channel attack for deanonymizing tor communication. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security, pages
597–602, 2015.

4. Frank Cangialosi, Dave Levin, and Neil Spring. Ting: Measuring and exploiting
latencies between all tor nodes. In Proceedings of the 2015 Internet Measurement
Conference, pages 289–302, 2015.

5. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, 2004.

6. Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous cre-
dentials. Cryptology ePrint Archive, 2013.

7. Stephen Herwig, Christina Garman, and Dave Levin. Achieving keyless cdns with
conclaves. In USENIX Security Symposium, 2020.

8. Intel. L1 Terminal Fault, 2018. https://software.intel.com/content/www/

us/en/develop/articles/software-security-guidance/advisory-guidance/

l1-terminal-fault.html.
9. Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann. The

sniper attack: Anonymously deanonymizing and disabling the tor network. Tech-
nical report, Office of Naval Research Arlington VA, 2014.

10. Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users
get routed: Traffic correlation on tor by realistic adversaries. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages
337–348, 2013.

11. Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.
Intel Software Guard Extensions: EPID Provisioning and Attestation Services,
2016.

12. Ishan Karunanayake, Nadeem Ahmed, Robert Malaney, Rafiqul Islam, and San-
jay Jha. Anonymity with tor: A survey on tor attacks. arXiv preprint
arXiv:2009.13018, 2020.

13. Katharina Kohls, Kai Jansen, David Rupprecht, Thorsten Holz, and Christina
Pöpper. On the challenges of geographical avoidance for tor. In Network and
Distributed System Security Symposium (NDSS), 2019.

14. Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
Circuit fingerprinting attacks: Passive deanonymization of tor hidden services. In
USENIX Security Symposium, 2015.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1-terminal-fault.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/advisory-guidance/l1-terminal-fault.html


Provably Avoiding Geographic Regions for Tor’s Onion Services 17

15. Dave Levin, Youndo Lee, Luke Valenta, Zhihao Li, Victoria Lai, Cristian
Lumezanu, Neil Spring, and Bobby Bhattacharjee. Alibi routing. ACM SIGCOMM
Computer Communication Review, 2015.

16. Philip Levis. The collateral damage of internet censorship by dns injection. ACM
SIGCOMM CCR, 42(3):10–1145, 2012.

17. Zhihao Li, Stephen Herwig, and Dave Levin. Detor: Provably avoiding geographic
regions in tor. In USENIX Security Symposium, 2017.

18. Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: Strong flow
correlation attacks on tor using deep learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 1962–
1976, 2018.

19. Hovership Nebuchadnezzar. The collateral damage of internet censorship by dns
injection. ACM SIGCOMM CCR, 42(3):10–1145, 2012.

20. Lasse Overlier and Paul Syverson. Locating hidden servers. In IEEE Symposium
on Security and Privacy, 2006.

21. The Tor Project. Tor Manual, 2022. https://2019.www.torproject.org/docs/

tor-manual.html.en.
22. Michael Reininger, Arushi Arora, Stephen Herwig, Nicholas Francino, Jayson

Hurst, Christina Garman, and Dave Levin. Bento: Safely bringing network function
virtualization to tor. In ACM SIGCOMM, 2021.

23. Florentin Rochet, Olivier Bonaventure, and Olivier Pereira. Flexible anonymous
network. arXiv preprint arXiv:1906.11520, 2019.

24. Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. zk-creds:
Flexible anonymous credentials from zksnarks and existing identity infrastructure.
Cryptology ePrint Archive, 2022.

25. Matthew J Ryan, Morshed Chowdhury, Frank Jiang, and Robin Doss. Avoiding
geographic regions in tor. In 2020 IEEE 19th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), 2020.

26. Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. Rout-
ing around decoys. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 85–96, 2012.

27. Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. Effec-
tive attacks and provable defenses for website fingerprinting. In USENIX Security
Symposium, 2014.

https://2019.www.torproject.org/docs/tor-manual.html.en
https://2019.www.torproject.org/docs/tor-manual.html.en

	Provably Avoiding Geographic Regions for Tor's Onion Services

