
This paper is included in the Proceedings of the
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the
31st USENIX Security Symposium is

sponsored by USENIX.

GET /out: Automated Discovery of Application-Layer
Censorship Evasion Strategies

Michael Harrity, Kevin Bock, Frederick Sell, and Dave Levin, University of Maryland
https://www.usenix.org/conference/usenixsecurity22/presentation/harrity

GET /out: Automated Discovery of
Application-Layer Censorship Evasion Strategies

Michael Harrity Kevin Bock Frederick Sell Dave Levin
University of Maryland

Abstract
The censorship arms race has recently gone through a trans-
formation, thanks to recent efforts showing that new ways
to evade censorship can be discovered in an automated fash-
ion. However, all of these prior automated efforts operate by
manipulating TCP/IP headers; while impressive, deploying
these have proven challenging, as header modifications often
require greater privileges than are available to censorship cir-
cumvention apps. In that line of work, the application layer
has gone largely unexplored. This is not without reason: the
space of application messages is much larger and far less
structured than TCP/IP headers.

In this paper, we present the first techniques to automate
the discovery of new censorship evasion techniques purely in
the application layer. We present a general solution and apply
it specifically to HTTP and DNS censorship in China, India,
and Kazakhstan. Our automated techniques discovered a total
of 77 unique evasion strategies for HTTP and 9 for DNS, all
of which require only application-layer modifications, making
them easier to incorporate into apps and deploy. We analyze
these strategies and shed new light into the inner workings
of the censors. We find that the success of application-layer
strategies can depend heavily on the type and version of the
destination server. Surprisingly, a large class of our evasion
strategies exploit instances in which censors are more RFC-
compliant than popular application servers. We have made
our code publicly available.

1 Introduction

Internet censorship by nation-state actors affects billions of
users worldwide. While there are many forms of censorship—
including blocking all transnational connections [1] and mis-
information campaigns [22]—the most pervasive form of
censorship comes in the form of in-network firewalls that
monitor traffic for certain keywords or domain names and in-
ject packets to tear-down connections (via TCP RSTs [47,59])
or misdirect clients (via spoofed DNS responses [6]).

For decades, an arms race has been waged between cen-
soring nation-states and the researchers and activists seek-
ing to enable a more free and open Internet. Recently, this
arms race has led to powerful new mechanisms that automate
the discovery of censorship circumvention strategies. In par-
ticular, Alembic [52], Geneva [14], and SYMTCP [60] use
varying techniques to find ways to manipulate TCP and IP
headers in ways that confuse a censor but maintain end-to-
end correctness between client and server. These techniques
have arguably transformed the censorship arms race, allow-
ing researchers to rapidly discover new evasion strategies,
sometimes in a matter of hours [12].

Although powerful, by focusing only on TCP and IP head-
ers, these tools suffer from several limitations:

Difficulty of deployment. As a practical matter, manipulat-
ing TCP and IP headers requires administrative privileges
on most platforms. Some platforms limit such access (most
mobile platforms do not have options for raw IP sockets), and
some tools are reluctant to seek root privileges in the first
place (notably, Tor [23]). Ideally, censorship evasion could
take place by manipulating only application-layer data, which
could take place in unprivileged usermode.

Lack of UDP support. Each of these prior tools only sup-
ported TCP-based applications. While this is extremely
useful—spanning HTTP, HTTPS, and even DNS over TCP—
it misses out on arguably the most important and common
protocol: DNS (over UDP). Without reliable and uncensored
DNS, users and applications would have to know IP addresses
of the services they wish to connect to, which is untenable.
However, UDP is such a simple protocol that manipulating
UDP headers alone is unlikely to lead to viable censorship
evasion strategies. Again, it would be ideal to explore how to
alter application-layer data to evade censorship.

Surprisingly, despite advances in fuzzing techniques in other
domains, techniques to automate the discovery of censorship
evasion strategies in the application space remain relatively
unexplored. At the time we started this project, we were un-
aware of any application-layer fuzzers that could generalize

USENIX Association 31st USENIX Security Symposium 465

to multiple protocols and be modified to train against nation-
state censorship infrastructure.

To address this, we present what we believe to be the first
work that automatically discovers application-layer censor-
ship evasion strategies. We build from an existing censorship
evasion tool,Geneva [14], and extend it with application-layer
fuzzing, and new fitness functions. The fuzzing engine we
have built is not our primary contribution; indeed, it is a rela-
tively standard fuzzer. What is surprising, however, is that, to
the best of our knowledge, fuzzers have not been applied to
censors at all.

Why study censorship of unencrypted protocols?
HTTPS adoption is on the rise for most of the web [25], and
browsers have started to request HTTPS by default [17].
Likewise, with development of encrypted DNS transports,
such as DNS-over-TLS (DoT), DNS-over-HTTPS (DoH),
and DNS-over-QUIC (DoQ), why study “vanilla” DNS?
Despite the availability of more secure alternatives, unen-
crypted protocols are still heavily used around the world.
Unencrypted DNS dominates; encrypted DNS alternatives
are not yet widely adopted anywhere [37]. HTTP traffic is
also still unfortunately prevalent in censored regimes. As of
the time of this writing, HTTP traffic comprises nearly 20%
of all traffic out of China to Cloudflare [21]. Worse yet, many
censored websites still do not support HTTPS. We issued
HTTPS requests to all the domains in Citizenlab’s censorship
test lists [19] and found that 18% of them did not support
HTTPS, and 52% of the domains on their China-specific
list did not load over HTTPS. Lastly, censors have grown
increasingly hostile to new privacy advances in HTTPS,
blocking TLS 1.3’s ESNI [15], and launching HTTPS
man-in-the-middle attacks [53, 54, 64]. Taken together, we
believe HTTP and DNS will be prevalent in censored regimes
for the foreseeable future. Our work shows that HTTP and
DNS censorship can be evaded in easily deployable ways.

Contributions We make the following contributions:

• We take the first steps toward automating the discovery of
application-layer censorship evasion strategies. These are
easier to deploy than their headers-only counterparts.

• We use our fuzzer to perform a widescale empirical study
in several countries (China, India, and Kazakhstan), two
protocols (HTTP and DNS), and many different versions
of server software.

• We discover and report on 77 unique circumvention strate-
gies for HTTP and 9 for DNS. We describe many of these
strategies in detail, and provide the full list in the appendix.

• We perform a thorough analysis of these strategies to
gain new insights into how censorship is implemented in
different places and how evasion strategies generalize at
the application layer.

To enable the community to build on our results, we have
made our code publicly available at:

https://geneva.cs.umd.edu

Roadmap The rest of this paper is structured as follows:
§2 presents background and related work. §3 describes the
design of our fuzzer, and the specific application to DNS
and HTTP. §4 describes our experimental methodology. §5
presents our results from training over HTTP and §6 presents
our results from training over DNS. We discuss these results,
and what we can learn about censors in §7, and address ethical
considerations in §8. Finally, §9 concludes.

2 Background and Related Work

In this section, we review nation-state network censors and
provide an overview of prior work on fuzzing and past ap-
proaches to automate censorship evasion.

Nation-state censorship In this work, we focus on nation-
state Internet censorship, which seeks to control which des-
tinations and what content those in the nation can access
on the Internet. Censorship infrastructures are made up of
middleboxes, which rely on Deep Packet Inspection (DPI) to
parse packet payloads to look for keywords or domains they
wish to censor. Nation-state censors perform censorship in
myriad ways: researchers have identified censors that inject
TCP RSTs to tear down connections [4, 14, 20, 44, 47, 59, 63],
spoof DNS responses with incorrect answers to thwart address
lookup [6,7], send HTTP content for a block page [14,67], or
even drop traffic altogether [13].

As it is most relevant to this work, we draw special atten-
tion here to the mechanisms used to censor HTTP and DNS
by nation-states. Censors commonly filter HTTP traffic in
one of two ways: either by examining the requested domain
(via the Host header), or by searching for forbidden keywords
in the request string itself [13, 14, 67]. Censors in India and
Kazakhstan examine the Host header, while the Great Fire-
wall of China (GFW) uses both techniques. All three of these
countries perform HTTP censorship differently. Airtel’s ISP
in India injects a block page to the user, the GFW injects
RST+ACK packets to tear down the connection, and the Kaza-
khstani censor drops the offending traffic (and subsequent
traffic) from the client. To censor DNS, censors commonly
inject responses that contain an incorrect IP address. As of the
time of this writing, China has deployed three independent
DNS censorship systems running in parallel, each with their
own fingerprints and block-lists [8]. Although some DNS and
HTTP servers are censored by IP-blocking, we focus in this
work on the active censorship performed at the application
level.

All the nation-state censors we study in this paper only
examine client requests: they do not parse server responses

466 31st USENIX Security Symposium USENIX Association

https://geneva.cs.umd.edu

for forbidden content. Although there have been instances in
the past of censors parsing server responses for censorship,
this does not apply to the censors we study [67].

Another commonality amongst the nation-state censors
we study in this work is that they fail open, meaning if they
are unable to parse or censor a request, it will be allowed
through. In the future, censors could theoretically switch to a
fail-closed system, but prior work has noted that this could be
costly and cause significant collateral damage [13].

One distinguishing factor between nation-state censorship
and other middlebox deployments is the use of residual censor-
ship, a punitive form of censorship used by some nation-states
(such as China). With residual censorship, for a short period
of time after a user makes a forbidden request, follow-up
requests—even innocuous ones—will continue to be cen-
sored [11]. As we will see in §3, residual censorship can
complicate censorship evasion.

Automatically Circumventing Censors Researchers have
developed a myriad of techniques to evade censorship, such
as tunneling traffic [33, 34, 42, 57, 62, 68], masking the true
destination of traffic [23, 24, 35, 41, 65, 66], disguising traffic
as another protocol [51, 58, 61], interfering with a censor’s
ability to track or parse traffic [44, 47, 59, 67], or avoiding the
censoring country altogether [46, 48].

A recent area of work has explored mechanisms to automat-
ically discover ways to evade censorship [14, 52, 60]. These
approaches identify ways to modify the packet stream in such
a way that the connection and request remain valid, but the
censor is unable to correctly tear down the connection. Such
automated approaches enable researchers to respond more
quickly to new censorship events [12, 13, 15] or to scale the
number of middleboxes under study [10]. For this work, due
to the number of DNS resolvers, HTTP servers, and censor-
ing countries, we use an automated approach for discovering
application layer strategies.

We are familiar with three existing approaches to automat-
ing censorship evasion: Geneva [14], SYMTCP [60], and
Alembic [52]. Although each of these systems takes a different
approach, the high level goal is the same: to find a sequence
of packets that cause the censor to be unable to tear-down a
connection (while preserving the connection itself). Geneva
uses a genetic algorithm, and treats censors and destinations
as black boxes, not unlike a fuzz tester. Alembic and SYMTCP
require access to the source code to perform symbolic exe-
cution of the server’s implementations of TCP/IP. Requiring
source code is reasonable when focusing on TCP/IP-based
evasion strategies, as low-level network protocol implementa-
tions are unlikely to change frequently or vary significantly
amongst different servers. However, application-layer code
can change often and vary widely across servers. Thus, for
this work, we chose to extend Geneva’s black-box approach;
we detail our design in §3.

Application Fuzzing Fuzz testers [45] mutate inputs non-
deterministically in an effort to evaluate the correctness, se-
curity, and coverage of programs. Most relevant to our work
is the space of grammar-based fuzzers, which define a gram-
mar for inputs to the target protocol, and differential-based
fuzzers, which send fuzzed inputs to multiple systems to iden-
tify any differences in behaviors. Grammar-based fuzzers
(including those based on genetic algorithms) have been used
successfully against many targets [5], including web appli-
cations [55] and other popular protocols [39]. The Peach
Fuzzer is a grammar-based protocol fuzzer that allows a user
to specify an input grammar, but only its Community Edition
is available since Gitlab purchased it in 2020 [38]. WFuzz is
another powerful fuzzer for HTTP web servers, but it has no
support for other protocols or extending its grammar [49].

Our work differs from these fuzzers in two important ways.
First, our work has a different goal from traditional fuzzers:
instead of searching for modified inputs that elicit incorrect
behavior from the application, our work must find a modified
input that elicits correct behavior from the application but
incorrect behavior from the eavesdropping censor. Second,
our goal is not just to find any output that evades a censor,
but rather to identify a modification that can be made to an
existing user query to enable the user to bypass the censor.
Whereas fuzz testers traditionally generate inputs, our ap-
proach generates what amounts to small pieces of code (built
from Geneva’s manipulation primitives) that are in turn ap-
plied to inputs (user traffic). Therefore, we search over the
space of packet-manipulation actions, not over the input space
(packets) itself.

Most similar to this work is a concurrent work T-REQS [43],
a grammar-based differential HTTP fuzzer used for discover-
ing HTTP Request Smuggling attacks. HTTP Request Smug-
gling is the process of modifying an HTTP request such that
a firewall or proxy fails to identify a second, hidden request.
Although HTTP Request Smuggling is similar in spirit to
censorship evasion, the goals are slightly different: with cen-
sorship evasion, our goal is not to sneak a second request
past a censor, but to get the original request through. T-REQS
created a detailed context-free grammar for the HTTP specifi-
cation, and randomly mutated inputs to discover differences
in how popular HTTP proxies and servers handle content.
With modification, T-REQS (or other grammar-based fuzzers)
could likely also be applied to censorship evasion.

3 Fuzzer Design

In this section, we detail the design and implementation of our
fuzzer to automatically discover censorship circumvention
strategies for HTTP requests and DNS queries.

Prior approaches to automating censorship evasion tech-
niques have taken a fuzzing approach (Geneva [14]) or a sym-
bolic execution approach (SYMTCP [60] and Alembic [52])
to identify successful modifications to network packets. Our

USENIX Association 31st USENIX Security Symposium 467

GET␣<PATH>␣HTTP/1.1\r\n

Host:␣example.com\r\n\r\n

Param Value AnchorParam Value
/path?foo=bar&foo2=bar2#anchor

Method Path Components HTTP Version Delimiter

End of HeaderName Value: Domain

Path End Param Delimiter Anchor Delimiter
Path

HTTP
Header

Request
Line

Figure 1: Structure of an HTTP request for example.com.
Note that “ ” denotes where whitespace is required by the
RFC, typically 1 space. Typically, HTTP Requests contain
multiple headers separated by a \r\n.

goal is to work for a wide range of server vendors and versions.
As a result, we will not always have access to the source code
for every application layer server we need to train with (such
as Google’s public DNS resolver). Therefore, we take the
fuzzing approach, and specifically extend Geneva’s genetic
algorithm to the application layer space.

A brief review of Geneva Geneva [14] builds censorship
evasion strategies out of small, individual manipulation prim-
itives (called actions) that can modify a packet. Geneva’s
actions mirror those that can take place on an IP network (du-
plicate, tamper, fragment, drop, and send). Each action takes
parameter values, which Geneva chooses either at random or
from packet captures of previous strategies. Geneva composes
actions into action trees: duplicate and fragment have two
children (the two copies or two halves of the packet), tamper
has one child (the modified packet), and send and drop have
no children. The action tree represents a packet-manipulation
“program,” and is executed via an in-order traversal of the
tree. Each action tree has an associated trigger to describe
which packets it should be applied to. While the individual
manipulation actions are simple, Bock et al. [14] showed that
composing them can be expressive enough to transform any
set of packets into virtually any other set of packets. However,
they focused almost exclusively on TCP/IP headers.

Geneva’s genetic algorithm evaluates each strategy against
a live censor by applying the strategy to a request for a forbid-
den resource. It assigns a numeric fitness value based on its
success, overhead, and complexity in obtaining the forbidden
resource. Geneva’s genetic algorithm uses the fitness values
to decide which strategies should survive to the proceeding
generations and propagate.

Extending Geneva to application-layer requests We ob-
serve that in abstract, manipulating individual packets is tan-
tamount to manipulating smaller components of a broader
request. To translate this approach to the application-layer
space, we identify the constituent units of the broader re-
quests for HTTP and DNS. Though HTTP starts with a few
constant fields (Method, Path, Version), the majority of an
HTTP request is made up of a variable number of smaller

13 37 <> 00 01 00 00 00 00 00 00

0 0000 0 0 0 0 000 0000

Query ID Bit Flags Query Count

Length Effective 2nd
Level Domain

Opcode

Param Delimiter

QR

Answer Count NS Count Add. Records

Length TLD End Type (A) Class

Bit Flags

Response
Code

AA

Authoritative
Answer

TC
Truncated

RD

Recursion
Desired

RA
Recursion

Avail.

Z
Reserved

Question
Record

07 example 03 com 00 00 01 00 01

DNS
Header

Figure 2: Structure of a DNS request for example.com.
Note that the Bit Flags field (detailed in the lower box) is two
bytes wide. Although DNS requests typically only contain
one Question Record, the RFC [50] allows for multiple DNS
Questions to be included with no separator between them.

HTTP headers. DNS requests, too, are comprised of constant
fields, followed by a variable number of DNS question records.
Therefore, we will allow our manipulations to access the con-
stant fields and chain together modifications that affect the
variable fields (HTTP Headers and DNS Question records, re-
spectively). We note that even beyond the scope of this paper,
other popular application layer protocols follow this pattern;
for example, TLS packets usually have many TLS Messages
and TLS Extensions.

3.1 Grammars
Next, we define a grammar that allows us to parse and modify
these requests.

HTTP Grammar We specifically scope this work to HTTP
Version 1 (HTTP/1.0 and HTTP/1.1). The HTTP protocol
grammar is specified by RFCs 2616, 7230, 7231, 7232, 7233,
7234, 7235, and 3986 [9, 26–32]. An HTTP Request starts
with the HTTP Method (sometimes called a “verb”), which
defines the type of request, followed by a single space. Next, a
request contains the request path, which specifies the resource
location the HTTP request is for, as well as any HTTP pa-
rameters and values for the request. The path generally starts
with a /, and if HTTP parameters are included, a ? denotes
the end of the path and the start of the query parameters. RFC
3986 specifies that in certain circumstances, other characters
may mark the start of the path, but these are restricted to spe-
cific circumstances [9]. Multiple parameters may be specified
within the request line by delimiting them with a &. After the
path, a single space separates the HTTP version, and HTTP
headers comprise the remainder of the request. The end of the
starting line containing the method, path, and version is ended
with a \r\n. Each line within the HTTP header is delimited
with a \r\n, and the end of all the headers is marked with an
empty line followed by a \r\n. This will look like a header
followed by \r\n\r\n, signifying all following data is the
message body. Using this grammar, our system will parse the
given HTTP request to extract the constant fields (Method,

468 31st USENIX Security Symposium USENIX Association

Path, Version), and variable headers into a list. See Figure 1
for an example HTTP request.

DNS Grammar In this work, we focus specifically on nor-
mal DNS Requests, so extensions or other DNS technologies
(such as DNSSEC or running DNS over other protocols) are
out of scope. The structure of DNS queries are defined by
RFC 1035 [50]. DNS Queries are comprised of a set of
fixed constant fields, followed by a variable number of DNS
Question Records which specify the domains to lookup. By
convention, DNS Queries usually only have 1 DNS Question
(and as we will see in Section 6, many DNS servers will only
respond to queries with 1 DNS Question), but the RFC still
permits multiple Question Records in a request. See Figure 2
for the fields in a DNS Query.

3.2 Manipulations
Now that we can parse HTTP and DNS requests, our goal
will be to design simple manipulation primitives that can be
composed together such that for a given application, a strat-
egy can transform any request into any other request. There-
fore, our actions must be able to add, remove, or manipulate
any constituent components of the request. We will define
duplicate and drop to add or remove components from a
request, but most importantly, we must be able to modify one
of these components. Unfortunately, application-layer data is
significantly less structured than packet headers, and HTTP
headers in particular are primarily composed of raw, unstruc-
tured text. We require a new set of actions that will allow us
to modify unstructured text.

Inserting New Bytes We define a new modification primi-
tive to insert new bytes into a given header or question record:

insert(<VALUE>, <WHERE>, <COMPONENT>, <NUM>)

The action takes four parameters, which control what bytes are
inserted, where within the existing text they should be inserted
(start, middle, end, random), which component should be
affected, if applicable (such as HTTP header name or value),
and the number of times the bytes should be inserted. As the
genetic algorithm runs, these parameters can be mutated and
learned through the process of evolution.

Replacing Bytes We define a second modification primitive
to allow our system to replace existing bytes within a given
header or question record:

replace(<VALUE>, <COMPONENT>, <NUM>)

The action takes three parameters, what bytes should replace
the existing text, which component should be affected, if appli-
cable (such as HTTP header name or value), and the number
of times the bytes should be placed in that location. This ac-
tion also incorporates the ability to delete the component, by
replacing it with a value of an empty string. As the genetic

algorithm runs, these parameters can be mutated and learned
through the process of evolution.

Changing String Case We define this action to take in a
string and change the case of all alphabetical characters in the
header name and value.

changecase(<CASE>)

This action takes one parameter, which is what case all letters
should be changed to. It can change all characters to lower or
upper case, or randomly assign each letter to be upper or lower
case, irrespective of its current case. Nothing will happen to
non-alphabetical characters.

3.3 Evaluating Evasion Strategies
In this work, we do not modify Geneva’s underlying genetic
algorithm, but we do modify how it evaluates each candidate
strategy. We evaluate strategies directly against real-world
censors by using them to modify a request for forbidden
resources, sending the resulting request across a censor to a
destination server, and checking that the request did not trigger
censorship and successfully obtained the forbidden content.
Each time we train the genetic algorithm, we initialize it with
a clean slate with no access to prior results or knowledge of
the censorship system. Our system executes each training run
for a pre-specified number of generations or until population
convergence occurs. After our modified Geneva automatically
discovers new evasion strategies, we follow up with manual
post-hoc analysis to understand why and in what conditions
the strategies work.

We note that our system is tolerant to transient network
failures. Some transient failures are self-correcting: for ex-
ample, during training a transient failure of the censorship
system itself could cause a strategy to be mistaken as success-
ful. In subsequent generations however, the strategy would
(correctly) fail, receive a negative fitness, and not propagate to
future generations, and this is handled under the hood within
Geneva’s existing genetic algorithm [14].

HTTP Evaluation To evaluate HTTP strategies, our system
makes a request that either contains a forbidden Host header,
or a forbidden keyword in the request string. To train for
HTTP strategies, we run our system from vantage points we
control within a censored country and make a request to a
server we control outside the censored country. This allows
us to control the server type and version.

Our design must account for the effects of residual censor-
ship. In China, for 90 seconds after the censor tears down a
forbidden request, any follow-up request to the same three-
tuple (server IP, server port, and client IP) will result in censor-
ship, even if that request is benign. Fortunately, China’s HTTP
censorship is active on every destination port. Therefore, we
use a different destination port within a large range of ports
for every strategy, and forward all of these ports to a single

USENIX Association 31st USENIX Security Symposium 469

port the server runs on. With this design, we are able to train
quickly without suffering the effects of residual censorship.

DNS Evaluation To evaluate DNS strategies, our system
applies each strategy to a DNS request that contains a DNS
Question Record for a forbidden domain.

Recall that the Great Firewall of China runs three separate
DNS censorship systems, and any subset of them can respond
to a forbidden query. The GFW does not drop the offending
query packet, so in addition to the DNS injectors, the intended
destination of the request will also receive it and respond. As a
consequence, if a client within China makes a forbidden DNS
query to a reachable DNS server outside of China, the client
could get anywhere from 0 to 4 DNS responses (up to three
from the injectors, optionally followed by the real uncensored
response). Since any strategy could affect the response or any
of the censors or the destination server itself, it is difficult to
identify whether a given DNS response constitutes censorship
without issuing a follow-up query to the IP address in the
response, which is slow.

To avoid this problem, we run training for DNS outside of
China. To evaluate a strategy, our system applies the strategy
to a query for a forbidden domain (such as google.sm). First,
the resulting modified query is sent to an uncensored DNS
server, such as an open resolver, like Google’s 8.8.8.8. If
the strategy successfully gets a response from the DNS server,
we know the query is valid, and the strategy receives a higher
fitness value. Next, we send the same modified query into
China to a machine under our control that is not running
any DNS server at all. In this case, if the query gets any DNS
responses, we know these responses originated from the Great
Firewall (and punishes the strategy’s fitness value).

Importantly, as with HTTP (and applications from prior
work), we give a lower fitness value to a strategy that breaks
the underlying request than if the resulting request was still
valid but experienced censorship. This encourages the genetic
algorithm to explore the space of strategies that preserve the
validity of the original request, but can impact the censor.

3.4 Evasion Proxy for Ease of Use

To make our strategies useful for real users, we developed a
standalone “proxy” application, which applies a given strat-
egy to live traffic. This proxy application accepts the original
strategy syntax, so any of the strategies presented herein can
be copied and used, with no further set up. We tested this
proxy by browsing with it through our vantage point in In-
dia to multiple forbidden websites, and validate that these
strategies can be used on real user traffic. We make this proxy
available with our publicly released code.

DNS Resolver Org. Resolver Address
Cloudflare 1.1.1.1
Google 8.8.8.8
Quad9 9.9.9.9
OpenDNS 208.67.222.222
CleanBrowsing 185.228.168.168
ComodoSecure 8.26.56.26
DNS.Watch 84.200.69.80
Verisign 64.6.64.6

Table 1: DNS Open Resolvers we conduct experiments with.
All of these open resolvers are accessible from within China.

4 Experiment Methodology

In this section, we describe our experiment methodology for
training our system. As we will see, many application-layer
strategies only work with specific destination servers; there-
fore, we need to repeatedly train to different popular servers
for DNS and HTTP.

HTTP Servers On September 3rd 2020, we downloaded a
list of the most popular HTTP servers currently in use from
W3Techs [2] and BuiltWith [3]. According to both resources,
Apache1 was the most popular (with 36.5% and 35% esti-
mated market share from each respective resource) and Ngn-
inx2 was the second most popular (with 32.5% and 34% share
respectively). W3Techs identified Cloudflare’s hosting as the
third most popular (15.7%), and both identified Microsoft IIS
as the next most popular (7.9% and 13% respectively). For
this work, we choose to focus on the servers with the maximal
market share: Apache and Nginx. Deployments of Apache
and Nginx span many versions; we selected the four most
popular versions for each, according to W3Techs [2], specifi-
cally 2.4.6, 2.4.18, 2.4.29, and 2.4.43 for Apache and 1.13.4,
1.14.1, 1.16.1, and 1.19.0 for Nginx.

DNS Resolvers Most DNS traffic is handled by large re-
solvers; in 2019, DNS Observatory studied over 1 trillion
DNS transactions and found that over 60% of them were
handled by just 1,000 nameservers and flowed to authorita-
tive servers run by less than 10 organizations [36]. For this
reason, we choose to train directly with the most popular
open resolvers. We tested if these resolvers are affected by
IP-blocking censorship by making innocuous DNS lookups
from our vantage point within China, and found that none are
affected and all are reachable. See Table 1 for a full list of the
resolvers against which we test.

Vantage Points We obtained vantage points in China (Bei-
jing), India (Bangalore), and Kazakhstan (Almaty) to use in
our experiments. We also set up servers we controlled in un-

1https://www.apache.org
2https://www.nginx.com

470 31st USENIX Security Symposium USENIX Association

https://www.apache.org
https://www.nginx.com

censored countries in Europe (Ireland), Japan (Tokyo), and
the United States (at our university) to conduct experiments.

To train our system in these countries, our system triggers
censorship depending on the country and type of censorship.
For HTTP, in India and Kazakhstan, we sent an HTTP request
with a forbidden domain in the Host header (youporn.com).
Recall that China censors HTTP both by censoring keywords
in the HTTP parameter list and by examining the Host header,
so we train in China against both types of censorship (specif-
ically, using the forbidden word ultrasurf as an HTTP
parameter and youporn.com in the Host header). For DNS,
we send a DNS query containing a question for a domain
forbidden by China between two hosts we control across the
censor. Recall that the landscape of DNS censorship is more
complex in China than with HTTP, with three parallel DNS
censorship injectors. We specifically choose to train with
only those domains that are affected by all three censorship
systems, such as google.sm.

Like all censorship research, our results are limited by the
censorship we can access and test with; still, we believe that
testing against three different censors for HTTP and DNS is
sufficient breadth to demonstrate the generalizability of this
technique.

HTTP Experiment Methodology We ran our experiments
over the span of seventeen months, starting in December 2020.
We evaluated against a diverse set of censorship types: India,
Kazakhstan, China-Host, and China-keyword. For all four
types of censors, and for all eight types/versions of HTTP
servers, we conducted 5 training runs (160 in total). Each
training run executed with a population pool of 500 individu-
als for 50 generations.

For each HTTP server, for training runs with Host
header based censorship, we configure the server with a
VirtualHost to require the Host header; this prevents a strat-
egy from “succeeding” by simply removing, or mangling the
forbidden value from the request. For keyword-based censor-
ship training, the fitness function requires that the forbidden
keyword is present in the outbound request. Note also that
we limited our system to only actions at the application layer
space, so TCP segmentation is not permitted, and the fitness
function cannot make additional requests.

To avoid residual censorship in China, we ensured that no
two strategies used the same destination port within a 90-
second window. In particular, we allocated 15,000 contiguous
ports, assigned each port to one strategy, and used iptables

on the server to redirect all of these ports to a single port
that hosted the server. Since residual censorship lasts for 90
seconds, we evaluated fewer than 167 strategies per second
(15,000/90) so as not to exhaust our ports.

We evaluate each strategy serially, with no sleep in between.
On average, the fitness function for HTTP evaluates 1-2 strate-
gies per second and each HTTP request is initially 40 bytes.
For example, an initial HTTP request (before it is modified
by a strategy) in India is:

GET / HTTP/1.1\r\n

Host: youporn.com\r\n\r\n

We also tested if this technique is applicable to servers outside
our control by training to 12 censored domains over HTTP
(6 in KZ, 6 in IN); we show the successful results of these
experiments in §5.3.

DNS Experiment Methodology For DNS, we chose to
train against all three of China’s DNS Injectors simultane-
ously, so the resulting strategies could be applied to any for-
bidden domains. We can do this by using a domain that ap-
pears on all three injectors’ block-lists. We reached out to
Anonymous et al.—who originally discovered that the GFW’s
DNS infrastructure was powered by three injectors—and the
authors provided a list of domains that appeared on each injec-
tors’ block-lists [8]. By choosing which domain name we used
to trigger censorship, we can tailor our training to specific
DNS injectors. For this work, we chose to use google.sm,
which appears on the block-lists for all three injectors.

For each of the 8 DNS resolvers we train with, we conduct
5 training runs. We use the same hyperparameters for training
as with HTTP: each training run is executed with a population
pool of 500 individuals over 50 generations.

Since DNS runs on UDP, the fitness function can evalu-
ate the strategies much more quickly—about 20 strategies
per second—and each request is initially 27 bytes. The total
network load for DNS training to an open resolver is approxi-
mately 11kbps, and lasts than less approximately 20 minutes
per training run; these network loads should be negligible for
resolvers of this size. Fortunately, residual censorship is not a
concern for DNS in China, allowing us to train more quickly.

Post-Hoc Analysis After each training run for DNS and
HTTP, we perform manual analysis to investigate the strate-
gies our system discovers and perform manual experiments
to understand why each strategy works. We also follow prece-
dent from prior Geneva work: after each training run, we dis-
able any fields or actions that dominated the search space to
encourage strategy diversity. For example, if the first training
run discovers that any changes to a specific field always evade
censorship and those strategies quickly dominate, we remove
that field from the proceeding training runs to encourage the
algorithm to discover new strategies.

Strategy Success Rates After we completed all the training
runs, we re-tested every discovered strategy against every
other server version in each country. We tested every DNS
strategy 1,000 times and HTTP strategy 100 times. We did not
observe any differences in the success rates of our strategies
from when they were initially collected to this success rate
testing.

Manual Verification To confirm that the strategies we dis-
covered work the way we expect, we performed several addi-
tional manual verification steps. First, we manually ran every

USENIX Association 31st USENIX Security Symposium 471

strategy presented in this paper against every server type and
confirmed we receive the correct server response page. For a
more rigorous check for a subset of our servers, we also com-
pared server responses to unmodified requests and requests
modified by our strategies and confirmed they were byte-wise
identical. Finally, as mentioned in §3.4, we manually tested a
sample of strategies in India with a real web browser using
our proxy server and validated that we could browse blocked
websites successfully. We emphasize that these manual steps
were done strictly for verification and understanding; our mod-
ified Geneva discovered the strategies in a fully automated
fashion.

5 HTTP Results

In this section, we will detail our results from training our
system against various forms of HTTP censorship around
the world. Specifically, we train against Host- and Keyword-
based censorship in China, and Host-based censorship in India
and Kazakhstan. For a strategy to succeed, it must modify
a request sufficiently to evade censorship, while still being
accepted by the destination server.

5.1 Summary Results

We only report on strategies for which at least one HTTP
server we tested correctly responded. For each successful
strategy, there are often many ways to craft successful variants
of that strategy that functionally do the same thing. Thus, to
give a more conservative count of the number of strategies we
discover, we only report on strategies that work for a unique
reason.

In total, we identify 77 unique HTTP strategies. We manu-
ally performed experiments to understand how they work and
determine their success rate against each country and HTTP
server. The strategies’ success around the world varies, but
we were able to find multiple strategies against every censor
we trained against. We found the most successful strategies
against Airtel’s censorship in India: of the 77 strategies we
discovered, an 56 of them bypassed the Indian censor. A to-
tal of 29 strategies bypass the Kazakhstani censor. In China,
we found a total of 22 evasion strategies that evaded path-
based censorship, and 27 strategies that evaded the host-based
censorship.

As we will see, the number of strategies we discover against
each censor does not necessarily imply that the censor is
non-compliant with the RFCs. On the contrary, our results
suggest that the more RFC-compliant a censor is, the more
opportunities there are for evasion.

Due to space constraints, we cannot discuss every strategy
we discovered. Instead, in this section, we will describe each
strategy family and give examples of where and why they
work. We list all 77 unique HTTP strategies in Tables 2 and 4.

5.2 Evasion Strategies
Version Mangling The first strategy we discuss is surpris-
ingly simple: corrupting the HTTP version. The resulting
request would seem to be in violation of the RFC, as RFC
7230 (Section 2.6), specifies that servers should respond with
an error page if they receive an unknown version. However,
the RFC also admits that a server may respond anyway "if it is
known or suspected that the client incorrectly implements the
HTTP specification and is incapable of correctly processing
later response versions". We find that several server versions
(Apache 2.4.6 and 2.4.18) choose to be maximally permissive
and ignore malformed versions, responding normally. We also
find that the tested versions of Nginx will respond normally
if the version is corrupted by inserting a % character (%25).

This strategy evades censorship for both types of HTTP
censorship in China, which is surprising: the HTTP version
appears after the path that contains the forbidden keyword.
This suggests that the censor validates the HTTP Version or
will only perform DPI on the packet if the Version has an
expected value. Version mangling also defeats censorship in
India.

Kazakhstan, on the other hand, will censor a request with a
corrupted version unless enough bytes are inserted into the
field to lengthen it to 1,434 bytes long. At this point, the
censor ignores the request, and we can evade successfully. We
do not believe the Kazakhstani censor is doing any validation
of the version; instead, we believe it is more likely that the
censor has a limit to the number of bytes it will buffer before
processing it.

Four Element Request Line The HTTP RFCs specify that
the request line should be split on whitespace between the
three request line parameters. We discovered a class of strat-
egy that inserts a space into the middle of a field within the
path or the version, in such a way that the important aspects
of the path and HTTP parameters can still be understood. We
believe this strategy works for the same reason that HTTP ver-
sion mangling does. When a censor’s DPI splits the request
line, the third component is no longer a well-formed HTTP
version. These strategies are also in violation of the RFC, but
are still understood by versions of Apache.

The reason these strategies work is the initial path is being
interpreted as the real path, HTTP server logs confirmed this,
whereas the whitespace is creating a new request line element
that might be interpreted as the version. We found these strate-
gies worked in China and India, but not in Kazakhstan, which
is consistent with our results from HTTP Version mangling.

Changing Case In HTTP requests, there are some com-
ponents that the RFCs specify should be case-sensitive, in-
cluding the method (RFC7230 Section-3.1.1) and version
(RFC7230 Section-2.6), while others that should be case-
insensitive, like header names (RFC7230 Section-3.2). We
discovered strategies that change the case of the method, ver-
sion, or of the Host header name itself (such as to host). All

472 31st USENIX Security Symposium USENIX Association

GET / HTTP/1.1\r\n

Host: youporn.com\r\n\r\n
Extra Space Injected

Forbidden Header Unmodified

🇨🇳

(a) Request Line Whitespace: Inserting an
extra space between the Method and Path
evades Host-based censorship in China. The
censor assumes that there will only be one
whitespace character in that location, but
the RFC [31] permits more.

GET ///.../// HTTP/1.1\r\n

Host: youporn.com\r\n\r\n
1,409 '/' Injected

Forbidden Header Unmodified

🇮🇳

(b) Induced Segmentation: Evades Airtel’s
censorship in India by forcing the request to
be segmented across two TCP packets. The
entire request, with headers, is larger than
the Ethernet MTU, but India’s censorship
does not properly handle segmentation.

GET /?ultrasurf HTTP/1.1\r\n

AAA...:AAAAAAAA...AAA\r\n

Host: youporn.com\r\n
Forbidden Header Unmodified

B:BBB...\r\n\r\n

Request Line Unmodified

64-byte Name 1,207 Values

129-byte Header

🇨🇳

(c) Sandwich Strategy: Evades keyword-
and Host header-based censorship in China.
This breaks the parsing in such a way that
the censor cannot process the host header,
which is needed for path reconstruction.

Figure 3: Examples of three HTTP strategies we discover. Each of these strategies defeats censorship for a different censor or
mechanism (Header-based in China, in India, and Keyword-based in China).

of these work in India, but do not work in China or Kaza-
khstan. These strategies tell us that the Airtel censor is too
strict in how it processes HTTP requests.

Request Line Whitespace RFC 7230 specifies that a single
space should delimit between the Method, Path, and Version
fields, but that servers should ignore extraneous whitespace be-
fore the method and after the version, and treat any contiguous
blocks of whitespace as a single space [31, Section 3.5]. The
RFC classifies “whitespace” as space (URL-encoded: %20),
horizontal tab (%09), vertical tab (%0B), form feed (%0C), or
bare carriage return (%0D). It also states that servers should
treat newlines (%0A) as a \r\n, or the intended line delimiter.

These rules permit a wide variety of ways to modify a re-
quest line without altering syntax, and we found a total of 33
unique strategies that take advantage of inserting some form
of whitespace within the request line. Some of these strategies
are simple: in China, we can insert a single additional space
after the HTTP Method and evade Host-based censorship
(though this does not work for keyword-based censorship).
We present an example in Figure 3(a) . Other strategies in this
family are more complicated: in Kazakhstan, if a strategy in-
serts 1,434 whitespace characters after any item in the request
line, it will evade the censor. We find that the strategy can
get away with inserting only one whitespace character if it
inserts it before the method. The Indian censor we tested was
the most brittle with respect to whitespace. We discover other
strategies in this class that work by inserting certain patterns
of additional whitespace between the HTTP version and the
\r\n. For example, appending a \n\t to the Version is not
sufficient to evade the Indian censor, but \n\t\n\t, (or any
number of spaces), will evade.

Although not all of our servers under test correctly re-
sponded to all of these strategies, most of them did, and
whitespace-inserting strategies remain the strategy class that
is most broadly successful across server and censor types.

Host Header Whitespace Similar to inserting whitespace
around the request line, we also discovered 21 strategies that
involve inserting certain amounts of specific whitespace char-

acters around the Host header. RFC 7230 defines the correct
format for headers as:

<NAME>:<OPT WSPACE><VALUE><OPT WSPACE>

where <OPT WSPACE> is optional whitespace, consisting only
of spaces and horizontal tabs (RFC 7230, section 3.2) [31].
Strategies in this class insert additional whitespace into the
optional whitespace locations or even around the header name
itself.

In China, inserting whitespace before the header name
(which is not RFC compliant), successfully evades Host-based
censorship, but not path-based censorship. This suggests the
GFW fails to parse headers that begin with whitespace, but it
can still parse and identify forbidden keywords in the path. In
India, we find that if a strategy inserts a whitespace character
before or after the Host header name, or a single newline char-
acter around the Host header value, it will evade the censor.

In Kazakhstan, we found similar rules for which strategies
work and why. We find that inserting one space after the
header value or anywhere around the name evades. Using tabs
or newlines instead of spaces works only slightly changes the
requirements: inserting one tab anywhere around the header
name or value or a newline anywhere except the end of the
header, evades censorship.

Induced Segmentation One simple-seeming strategy we
discovered in India works by simply inserting more data any-
where in the request to make it at least 1,449 bytes long. We
present an example in Figure 3(b) . What is special about
this number of bytes? With an HTTP request at least 1,449
bytes long, the added bytes for IP (20 bytes), and TCP headers
(32 bytes, including the timestamp option) total 52, bringing
the request size up to 1501 bytes. Since this is exactly one
byte past the Ethernet MTU (1500 bytes) [40], we conclude
that this strategy works by inducing segmentation. Prior work
has found that the Indian censor can be evaded by simple
segmentation, which supports this hypothesis [13].

We observe a similar strategy in Kazakhstan, but slightly
more complexity is required. Instead of inducing segmenta-

USENIX Association 31st USENIX Security Symposium 473

tion anywhere in the request, our system discovered that if a
strategy induces segmentation specifically at the byte index
between the Host header name and value, it will evade censor-
ship. It accomplishes this by inserting enough bytes such that
the 1,449th byte is the last byte before the host header value,
and the final two bytes before the host header value must both
be spaces. We do not understand why two spaces are required
for this strategy to work. These strategies are perfectly RFC-
compliant, and every server we tested responded correctly. We
found no evidence that this type of strategy has any effect on
China’s censors, however many of these strategies still evade
in China due to other unrelated reasons, such as whitespace
insertion or long header names.

Path Confusion Another family of strategies we discovered
involves adding characters, parameters, or anchors to the path
that are ignored by the server, but processed by the censor.
For example, the strategy that inserts a single ? before the
start of the path evades in India and China (for both header
and keyword censorship). Technically, ? is only allowed to
start a path if the path is empty, but we find that every Apache
version we tested still correctly processed the path and the
request. Another strategy in this family works by inserting
a new very long HTTP parameter (at least 1,003 bytes long)
before the forbidden keyword; this only works in China.

Host Header Shield The next strategy we discuss evades
China’s keyword and host-based censorship. Recall that in-
serting a single space after the HTTP Method is sufficient to
evade China’s Host-based censorship, but does not evade its
keyword censorship. Our system found that by also inserting
a new header before the host header with a header name that
is at least 64 bytes long, it could evade both keyword and Host
censorship simultaneously. This only works if whitespace is
inserted before the HTTP Method or between the Method and
Path, not anywhere else in the request line.

Why does this strategy work? It seems strange that adding
a space before the path is required to evade Host-based cen-
sorship, and adding a long header before the Host header is
required to evade keyword-based censorship (although we
note this is sufficient on its own to evade header censorship).
Our results suggest that a 64+ byte header name prevents
the GFW from reading any further headers, which explains
why the longer header is enough to defeat header censorship.
We believe that the added space in the request line forces
the GFW to look for the Host header before it processes the
path. If the strategy does not include the modified header,
or includes it after the Host header, the GFW inspects the
path correctly, but if we interfere with this search for the Host
header, the GFW fails to check the contents of the path.

Sandwich Strategy The last type of strategy we will analyze
creates a sandwich of headers around the Host header, and
we find that if these headers are crafted in the correct way,
we can bypass keyword and header censorship in China and
India. We present an example in Figure 3(c) .

In China, we find the following constraints:

• The first header that appears in the packet must have at
least 64 characters in the header name.

• Enough data must be transferred in the headers such that
some header’s value starts at least 1280 bytes away from
the start of the headers (first character of header value is
at least the 1281st byte after the request line)

• The last header must be at least 129 bytes total (including
ending \r\n and the separator ":")

• The Host header cannot be the first or last header.

This type of strategy works in both header- and path-based
censorship, though we note it is technically overkill to defeat
header-based, as a single long (64+ byte) header is enough.
We also found that many sandwich strategies work in India,
but only because the header size induces segmentation.

5.3 External Validation
To demonstrate that this approach works without control of the
destination server, we trained our system against 12 censored
domains (6 in Kazakhstan and 6 in India). We downloaded Cit-
izenLab’s censorship test lists for India and Kazakhstan [18],
and tested all the domains to identify which were censored,
and then chose 6 randomly for each country. We do not know
the type or version of these servers.

Our system successfully identified evasion strategies for
every domain we tested. Across these twelve experiments, we
discovered 13 unique strategies, 7 of which do not work on
any of the other HTTP servers we tested. These experiments
demonstrate the generalizability of this technique to new ap-
plication servers, and underscore the importance of having an
automated solution in this space.

Method Mangling Here, we showcase a surprising class of
strategies we discovered during this validation phase. This
strategy works by simply corrupting the HTTP method and
replacing it with another string. Note that this is absolutely
not RFC-compliant; RFC 7231 (Section 4) specifically men-
tions that any non-conforming method should be denied [32].
However, we find that some HTTP servers, when confronted
with an HTTP method they do not recognize, choose to de-
fault to an HTTP GET request and respond as normal. We
found this behavior only on a subset of HTTP servers that
hosted censored domains outside our control, and we identi-
fied that nginx 1.10.3 responds to this query. The Apache and
Nginx server versions we controlled did not respond to these
requests with invalid methods.

None of the censors we tested could censor this strategy,
including for both China’s Host-based and keyword-based
censorship. This suggests that the censors validate or require a
valid HTTP Method before processing the rest of the request.

474 31st USENIX Security Symposium USENIX Association

Apache 2.4.X Nginx 1.X.X Country

Family Strategy 6 18 29 43 13.4 14.1 16.1 19.0 CN-
H

CN-
K IN KZ

Case
Sensitivity

[HTTP:host:*]-changecase{lower}-| 3 3 3 3 3 3 3 3 - - 3 -
[HTTP:host:*]-changecase{upper}-| 3 3 3 3 3 3 3 3 - - 3 -

Four
Element
Request
Line

[HTTP:version:*]-insert{%09:middle:value:14}-| 3 3 - - - - - - 3 3 3 -
[HTTP:path:*]-insert{%09:end:value:1434}-|
[HTTP:path:*]-insert{1:start:value:507}-| 3 3 - - - - - - - 3 3 -

[HTTP:path:*]-insert{%20:end:value:1}-|
[HTTP:path:*]-insert{g:end:value:1013}-| 3 3 - - 3 3 3 3 - 3 3 -

Host Header
Shield

[HTTP:path:*]-insert{%20:start:value:1}-|
[HTTP:host:*]-duplicate(replace{/:name:64}
(replace{/?ultrasurf:value},),)-|

3 3 - - 3 3 3 3 3 3 - -

[HTTP:host:*]-duplicate(replace{a:name:64},)-| 3 3 3 3 3 3 3 3 3 - - -
[HTTP:method:*]-insert{%09:end:value}-|
[HTTP:host:*]-duplicate(replace{a:name:64},)-| 3 3 - - - - - - - - 3 3

[HTTP:method:*]-insert{%0A:start:value:1}-|
[HTTP:host:*]-duplicate(replace{%2F:name:64},)-| 3 3 - - 3 3 3 3 - - 3 3

[HTTP:method:*]-insert{%20:end:value:1}-|
[HTTP:host:*]-duplicate(replace{%2F:name:64},)-| 3 3 - - 3 3 3 3 3 3 - -

[HTTP:path:*]-insert{%20:start:value:1}-|
[HTTP:host:*]-duplicate(replace{%C2%B0:name:32},)-| 3 3 - - 3 3 3 3 3 3 - -

Host Header
Whitespace

[HTTP:host:*]-duplicate(insert{%0A:end:value:1},)-| 3 3 - - 3 3 3 3 - - 3 -
[HTTP:host:*]-duplicate(insert{%0A:random:name:1},)-| - - - - 3 3 3 3 - - 3 -
[HTTP:host:*]-duplicate(insert{%20%0A:end:name:1},)-| - - - - 3 3 3 3 - - 3 -
[HTTP:host:*]-insert{%09:end:name}-| 3 3 - - - - - - - - 3 3
[HTTP:host:*]-insert{%09:end:value:1}-| 3 3 3 3 - - - - - - - 3
[HTTP:host:*]-insert{%09:start:value:1}-| 3 3 3 3 - - - - - - - 3
***[HTTP:host:*]-insert{%0A%0A:start:value:1}-| - - - - - - - - - - 3 3
[HTTP:host:*]-insert{%0A%20:start:value:1}-| 3 3 - - - - - - - - 3 3
[HTTP:host:*]-insert{%0A:end:value:1}-| 3 3 - - 3 3 3 3 - - 3 -
[HTTP:host:*]-insert{%20%0A:start:name:1}-| - - - - 3 3 3 3 3 - 3 3
[HTTP:host:*]-insert{%20:end:name:1}-| 3 3 - - - - - - - - 3 3
[HTTP:host:*]-insert{%20:end:value:1}-| 3 3 3 3 3 3 3 3 - - - 3
***[HTTP:host:*]-insert{%20:start:name:1}-| - - - - - - - - 3 - 3 3
***[HTTP:host:*]-insert{%20:start:value:2}-| - - - - - - - - - - - -

Long
Request

[HTTP:path:*]-replace{/:value:1434}-| 3 3 3 3 3 3 3 3 - - 3 -
[HTTP:host:*]-insert{%20:start:value:1413}-| 3 3 3 3 3 3 3 3 - - 3 -
[HTTP:host:*]-insert{%20:start:value:1434}-| 3 3 3 3 3 3 3 3 - - 3 3
[HTTP:method:*]-duplicate(,replace{a:name:1407})-| 3 3 3 3 3 3 3 3 3 - 3 -
[HTTP:method:*]-insert{%09:end:value:2568}-| 3 3 - - - - - - - - 3 3
[HTTP:method:*]-insert{%0A:start:value:4336}-| - - - - 3 3 3 3 3 3 3 3
[HTTP:method:*]-insert{%20:end:value:1413}-| 3 3 - - 3 3 3 3 3 - 3 -
[HTTP:method:*]-insert{%20:end:value:1720}-| 3 3 - - 3 3 3 3 3 - 3 3
[HTTP:path:*]-duplicate(replace{a:name:1}
(insert{a:start:value:1408},),)-| 3 3 3 3 3 3 3 3 - - 3 -

[HTTP:path:*]-insert{%0D:end:value:1434}-| 3 3 - - - - - - 3 3 3 -
[HTTP:path:*]-insert{%20:end:value:1413}-| 3 3 - - 3 3 3 3 - - 3 -
[HTTP:path:*]-insert{%20:start:value:1}-|
[HTTP:path:*]-replace{3:value:511}
(insert{&:start:value},)-|

3 3 - - 3 3 3 3 3 3 - -

[HTTP:path:*]-insert{%23:end:value:1413}-| 3 3 - - 3 3 3 3 - - 3 -
[HTTP:path:*]-insert{%23:end:value:1}
(insert{%C3:end:value:470},)-| 3 3 - - 3 3 3 3 - - 3 -

[HTTP:path:*]-insert{%3F:end:value:1413}-| 3 3 3 3 3 3 3 3 - - 3 -
[HTTP:path:*]-insert{%3F:start:value:1413}-| 3 3 3 3 - - - - 3 - 3 -
[HTTP:path:*]-replace{/:value:1414}-| 3 3 3 3 3 3 3 3 - - 3 -
[HTTP:version:*]-insert{%20:end:value:1434}-| 3 3 - - 3 3 3 3 - - 3 3
[HTTP:version:*]-insert{%20:start:value:1434}-| 3 3 - - 3 3 3 3 - - 3 3
[HTTP:version:*]-insert{%25:middle:value:1434}-| 3 3 - - - - - - 3 3 3 3
[HTTP:version:*]-insert{%C2%81:end:value:773}-| 3 3 - - - - - - - - 3 3
[HTTP:version:*]-insert{%C3%8B:middle:value:717}-| 3 3 - - - - - - 3 3 3 3

Table 2: HTTP evasion strategies and where they succeed. A strategy is successful against a nation if it evades that nation’s
censor. A strategy is successful to a server if it evades in at least one country and is accepted by the server. CN-H and CN-K
stand for the China Headers and China Keyword modes respectively. "***" denotes a strategy found against a live server we did
not control; though these evade in some of our tested countries, but do not receive responses from the servers we tested. This
table is continued in the Appendix in Table 4.

USENIX Association 31st USENIX Security Symposium 475

Strategy Family Example Strategy CF OD CB CS DW Q9 V G

Elevated Count [DNSQR:qname:*]-tamper{DNS:qdcount:replace:2}-| 3 - - - - - - -
[DNSQR:qname:*]-tamper{DNS:ancount:replace:1}-| 3 3 - - - - - -

Elevated Count w/
Reserved- and Truncated-bits

[DNS:*:*]-tamper{DNS:nscount:replace:1}
(tamper{DNS:z:replace:1}
(tamper{DNS:tc:replace:1},),)-|

3 3 3 - - - - -

DNS Compression
[DNS:*:*]-tamper{DNS:qd:compress}
(tamper{DNS:qdcount:replace:2},)-| 3 - - - - - - 3

Multibyte Query Injection [DNSQR:qname:*]-duplicate(,replace{%C2%91:name:957})-| - - - 3 3 3 3 -

Multibyte Query Injection w/
Elevated Count

[DNSQR:qclass:]-tamper{DNS:ancount:replace:98}-|
[DNSQR:qtype:]-replace{%C3%95:name:262}-| 3 3 - - - - - -

Table 3: Summary of the five DNS strategy families we discover that defeat all three DNS injectors simultaneously, and which
DNS resolvers respond to them: Cloudflare (CF), OpenDNS (OD), CleanBrowsing (CB), ComodoSecure (CS), DNS.Watch
(DW), Quad9 (Q9), Verisign (V), and Google (G). Our system successfully identified strategies for every DNS resolver, and also
identified four more unique variants to these strategies that only disabled a subset of the injectors.

6 DNS Results

We trained our system against all three of China’s DNS
injectors by using a domain that is on all three blocklists
(“google.sm”) to eight different open resolvers (see Table 1).
In prior work, researchers identified that these different DNS
injectors could be differentiated based on the fields set in the
DNS responses. To avoid ambiguity, we will refer each of the
three injectors using the same terminology as Anonymous et
al. [8] and identify them by idiosyncratic fields they set in
their response headers: Injector #1 (TTL=60, AA=1, DF=0),
Injector #2 (AA=0, DF=1), and Injector #3 (AA=0, DF=0,
IPID=0).

In total, we discovered 9 unique strategy types, 5 of which
defeat all three injectors simultaneously. After our training
runs, we performed manual analysis of the strategies to under-
stand why they worked against each DNS injector. For each
of the success rates below, we test each strategy 1000 times.
See Table 3 for the full breakdown of results. Note that these
strategies only apply to unencrypted DNS, as the header fields
of encrypted DNS would not be visible to the adversary.

Elevated Count The simplest family of strategy types we
discovered works by simply increasing the values of any com-
bination of the count fields in the DNS request: qdcount
(number of questions; default 1), ancount (number of an-
swers; default 0), arcount (number of additional records; de-
fault 0), or nscount (number of name server resource records;
default 0). Table 3 shows an example strategy in which the
qdcount is set to 2, despite there being only a single query
in the request, and another example that elevates the answer
count to 1. All of these strategies are in violation of the RFC.
Surprisingly, each of the GFW’s injectors and open resolvers
respond differently depending on which field we modify.

Elevating the qdcount field evades all three GFW injec-
tors with 100% success rate, but only Cloudflare will respond
to the query. Elevating the ancount, arcount, or nscount
evade only DNS injectors 2 and 3. Cloudflare responds to
all of these queries, OpenDNS responds only to elevated

ancount and nscount, and none of the other resolvers re-
sponded to any of them.

Elevated Count with Reserved- and Truncated-bits The
next strategy we discover works by increasing the nscount
to 1 (which evades GFW injector #2 and #3), setting the
reserved z field to 1, and setting the tc (truncated) bit to
1. The combination of the truncated field and reserved field
both being set to 1 evades injector #1 with approximately
50% success rate. Therefore, if this strategy is used with a
domain blocked by injector #2 or #3, it will evade with 100%
reliability, but if the domain is also included on injector #1’s
blocklist, it will only evade with 50% reliability. Frankly, we
do not understand the cause of why this strategy works only
50% of the time against injector #1.

DNS Compression The next strategy we discover works by
performing DNS compression on the DNS query and then
increasing the qdcount field to 2. DNS compression (defined
by RFC 1035 [50]) works by splitting the DNS query across
multiple records at the separator. This strategy is related to
the Elevated Count strategies, but uses DNS compression to
increase the number of DNS Question Records in the packet
to actually be 2. Technically, since the domain is compressed
across multiple DNS question records, the request has two
DNS Question Records attached to it, even though they only
comprise one DNS Question. This strategy evades all three
DNS injectors with 100% reliability, but is only supported by
Google and Cloudflare. We note that DNS compression alone
does not evade censorship, it must be paired with the elevated
qdcount.

Multibyte Query Injection The next strategy type we dis-
cover relies on injecting new text into the requests; specif-
ically, it creates a second DNS Question Record after the
forbidden query containing a request for a domain filled with
2-byte-wide multibyte UTF-8 characters. Surprisingly, all
three of the GFW’s injectors have problems handling requests
that contain multibyte characters, but a different number of
multibyte characters is required to evade each injector. Evad-

476 31st USENIX Security Symposium USENIX Association

ing injector #1 requires at least 241 2-byte-wide multibyte
characters; evading injector #3 requires at least 482 (precisely
twice as many). Injector #2 can be evaded with a 36% success
rate with 721 2-byte-wide multibyte characters; any fewer
fails to evade. This success rate can be increased to 97% with
at least 1,334 multibyte characters.

Interestingly, not all multibyte characters work: for all
three injectors, only the characters within the range of
%C[2-F]%[80-BF] succeed, and only 2-byte-wide charac-
ters work; 3-byte-wide characters do not.

Note that none of these requests are RFC compliant. Ac-
cording to RFC 1035 (Section 2.3.4), the limit to names is
255 bytes; in all the above cases, the DNS Question Record
contains many more bytes than this. Different DNS resolvers
have different policies as to if they respond to these queries.
Quad9, Comodo, and DNS.Watch all respond to these queries
normally, while Verisign responds only to 25% of the queries
(we suspect this is due to load balancing between resolvers
that may or may not be able to handle the queries). None of
the other resolvers respond to these requests.

Multibyte Query Injection with Elevated Count Our sys-
tem also identified a combination strategy of the above multi-
byte strategy and elevated arcount. This strategy creates a
second DNS Question Record that contains 242 multibyte
characters and sets the arcount field to 1. This strategy exem-
plifies how the different injectors can be defeated individually;
by setting the arcount field, the strategy bypasses injector #2
and injector #3, and using 242 multibyte characters bypasses
injector #1. Because this strategy injects fewer characters
than the Multibyte Query Injection family, Cloudflare and
OpenDNS now respond to the query, but Quad9, Comodo, and
DNS.Watch will not respond, due to the elevated arcount.

Collectively, these results show that there is a large space of
censorship evasion strategies possible through DNS query
manipulation. The simplicity of some of these evasion strate-
gies also indicates that this space has been largely unexplored;
the fact that merely setting an incorrect qdcount works is
surprising. On the other hand, the strange complexities of
other strategies (such as requiring no less than 721 multibyte
characters to evade Injector #2) justifies our approach of using
automated tools to explore this space. Finally, taken in con-
junction with our HTTP results, we see once again that servers
that are less RFC-compliant than censoring middleboxes can
lead to evasion opportunities.

7 Discussion

How can censors defend against these attacks? Censors
could read this work and try to patch each individual issue
we identify; however, we do not think censors will be able
to easily (or cheaply) defend against all these attacks. Our
results point to a broader trend about protocol compliance in
censoring middleboxes. In order to effectively defend against

these attacks, censors must always be more permissive in
inputs they tolerate than servers on the other side of the con-
nection. In cases where the censor was significantly more
RFC-compliant (such as in India), our system had the easiest
time discovering ways to evade censorship.

Even beyond censors needing to be more permissive than
servers, to effectively censor, the censor must also maintain
at least as much state as servers on the other side of the
connection. If a server buffers more bytes than the censor
does, a client can simply make the request longer until the
forbidden keyword or header is outside the censors buffer,
as we’ve seen in China. This is good news for evaders, as
addressing this issue completely will likely require the censors
to buffer vastly more data than they do currently. These trends
hold across both HTTP and DNS.

What HTTP strategies work most often, and what do cen-
sors most commonly do wrong? The most common strat-
egy we find by far is various forms of injecting whitespace,
in both the headers and the request line. In fact, 53 of our 77
strategies work by inserting some form of whitespace, and 38
of which require no further modifications. The HTTP RFCs
have many rules about where whitespace should be allowed,
ignored, or disallowed, and we identified many cases in which
the censor processes whitespace where it should not, or fails
to process it where it should. Another common failure mode
we observed from the censor was being unable to process a
large request from a client, though each censor we studied
was affected for a different reason.

What class of strategies are most broadly applicable
across server versions and resolvers? For HTTP, we again
find that inserting whitespace in different places around the
request line or header value. The RFCs mention that cer-
tain types of whitespace should be ignored for robustness, so
strategies that inject whitespace in these locations are most
commonly versatile across server versions. We find that many
of the server versions we tested often accept too much whites-
pace for robustness’s sake, despite what the RFC says.

For DNS, we found little overlap between the queries ac-
cepted between the different resolvers. Our most broadly ap-
plicable strategies only worked on half of the resolvers we
tested, and most worked across even less. In general, lack of
generalizability for DNS strategies does not affect usability
the same way for HTTP; if a user wishes to use our strategies
to perform forbidden DNS lookups, the user can do all of
those lookups to the same resolver. Over HTTP, by contrast,
the evasion strategy must be compatible with the server on
the other end of the connection, and every site the user visits
may be using a different server version.

Is any one location in the HTTP or DNS header more
prone to having viable evasion strategies? Overall, we
found strategies for every major component of the HTTP
request: 31 strategies acted on the Host header, 16 acted on
the Method, 22 acted on the Path, and 13 acted on the Version.

USENIX Association 31st USENIX Security Symposium 477

Note that these numbers do not add to 77, as there is overlap
in strategies that act on multiple parts of the request. In DNS,
our strategies were also fairly well distributed throughout the
DNS header, and only a few fields were never co-opted by a
strategy for evasion.

How does China’s Host header censorship compare to
keyword censorship? In general, we find that almost all the
strategies that evade keyword-based censorship in China also
evade host-based censorship (17 out of 22). This interesting
finding suggests that in order to correctly censor keywords,
the GFW must be able to read the Host header, or read all the
headers without problems and find no host header. Our results
also suggest that the reverse is not true: no strategies that af-
fected only the Host header were able to evade keyword-based
censorship. We also find that more strategies can evade host-
based censorship by simply injecting whitespace, compared
to keyword censorship.

How do China’s three DNS injectors compare to one an-
other? We find differences between all three injectors that
affects how well our strategies work. Injector #1 was the
most permissive to fields being incorrect in the DNS header,
and therefore had fewer strategies work; for example, Injec-
tor #1 still correctly processed forbidden DNS queries if the
arcount, ancount, or the nscount fields were non-zero. In-
jector #2 had the most idiosyncratic responses to multibyte
UTF characters: injecting between 721 and 1,333 multibyte
characters caused Injector #2 to fail at least 33% of the time
(and the failure rate increased as the number of inserted charac-
ters increased); after 1,334 characters, Injector #2 fails 100%
of the time. Every strategy that evaded Injector #2 also evaded
Injector #3, though we discover that Injector #3 has different
limits to the number of multibyte characters it will tolerate in
the DNS Query Records (a limit of 482). Overall, our results
further emphasize that these injectors are truly separate, each
with their own block list and weaknesses.

How generalizable is this technique to the future? We be-
lieve this technique should generalize well to other protocols.
Many application-layer protocols fit the abstraction we de-
fined for this paper (with smaller, discrete components that
compose within a larger message). For example, TLS records
are comprised of fixed static fields, and dynamic TLS Mes-
sages and TLS Extensions. We leave the implementation of
this to future work.

8 Ethical Considerations

We designed our experiments to limit the potential impact to
other hosts and the risk to real users. This work does not in-
volve human subjects, and therefore falls outside the purview
of our Institutional Review Board; still, we follow best prac-
tices laid out by prior censorship studies [14, 56].

We performed all of our training exclusively from vantage
points we control, and our work does not require recruiting

users (unwitting or not [16]). Our system does not spoof IP
addresses or impersonate other machines, and our interactions
with the censors should have had no impact on any other users.
To limit the effect of our training on the network, we evaluate
strategies serially (and with a small sleep for DNS), which
limits how quickly our system can generate traffic. This is
important, as some of our training runs involve hosts outside
our control (such as with open DNS resolvers), and we believe
our impact to these hosts is minimal. For example, our DNS
training had a network load of approximately 11kbps, which
should be a negligible volume of traffic for the size of the
networks we test with. In training to hosts outside our control
with HTTP, we set up our experiments to minimize potential
harm to those hosts. We ran few experiments, spaced out in
time, with slow query limit, and limited generations. We did
not believe our fuzzing would cause a crash failure, as we had
not observed any crashes in any of our prior experiments or
in prior work that crafted strategies manually [44, 67].

Finally, we ask: does releasing this work help censors? We
believe that, on balance, this work helps evaders more. Al-
though individual bugs can be patched, the broader takeaways
of this work (such as that application-layer censorship eva-
sion can be automated or that RFC non-compliance can be
leveraged for evasion) are still applicable. There is also strong
precedent for developing automated techniques to evade cen-
sorship [14, 52, 60].

9 Conclusion

The censorship arms race has entered a fascinating new era
of automated evasion. In this paper, we extend this to the
application-layer space by presenting the first techniques to
automate discovery of new censorship evasion strategies that
require modifications only to application-layer requests. Train-
ing against China, India, and Kazakhstan, we discovered 77
unique strategies to evade HTTP censorship and 9 for DNS.
We thoroughly analyzed each of these strategies and discov-
ered that many of them are successful because censors often
adhere more to protocol requirements than application servers
do. Our tool—a modification of our prior work,Geneva [14]—
exploits this discrepancies to alter queries in ways that censors
reject but more-permissible servers accept. We believe this
represents an interesting and important new domain for cen-
sorship evasion research. To assist in these efforts, we have
made our code publicly available.

Acknowledgments We thank the anonymous reviewers and
our shepherd, Paul Pearce, for their helpful feedback. This
work was supported in part by NSF awards CNS-1901325
and CNS-1943240.

478 31st USENIX Security Symposium USENIX Association

References

[1] CAIDA IODA (Internet Outage Detection and Analysis).
https://ioda.caida.org/.

[2] Usage statistics of web servers, 2020. https://w3techs.

com/technologies/overview/web_server.

[3] Web Server Usage Distribution in the Top 1 Million Sites, 2020.
https://trends.builtwith.com/web-server.

[4] C. Agosti and G. Pellerano. SniffJoke: transparent TCP connec-
tion scrambler. https://github.com/vecna/sniffjoke,
2011.

[5] american fuzzy lop. http://lcamtuf.coredump.cx/afl/.

[6] Anonymous. The Collateral Damage of Internet Censorship by
DNS Injection. ACM SIGCOMM Computer Communication
Review (CCR), 42(3):21–27, 2012.

[7] Anonymous. Towards a Comprehensive Picture of the Great
Firewall’s DNS Censorship. In USENIX Workshop on Free
and Open Communications on the Internet (FOCI), 2014.

[8] Anonymous, A. A. Niaki, N. P. Hoang, P. Gill, and
A. Houmansadr. Triplet Censors: Demystifying Great Fire-
wall’s DNS Censorship Behavior. In USENIX Workshop on
Free and Open Communications on the Internet (FOCI), 2020.

[9] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Re-
source Identifier (URI): Generic Syntax. RFC 3986, 2005.
https://www.rfc-editor.org/rfc/rfc3986.

[10] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and
D. Levin. Weaponizing Middleboxes for TCP Reflected Am-
plification. In USENIX Annual Technical Conference, 2021.

[11] K. Bock, P. Bharadwaj, J. Singh, and D. Levin. Your Cen-
sor is My Censor: Weaponizing Censorship Infrastructure for
Availability Attacks. In USENIX Workshop on Offensive Tech-
nologies (WOOT), 2021.

[12] K. Bock, Y. Fax, K. Reese, J. Singh, and D. Levin. Detecting
and Evading Censorship-in-Depth: A Case Study of Iran’s
Protocol Whitelister. In USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2020.

[13] K. Bock, G. Hughey, L.-H. Merino, T. Arya, D. Liscinsky,
R. Pogosian, and D. Levin. Come as You Are: Helping Un-
modified Clients Bypass Censorship with Server-Side Evasion.
In ACM SIGCOMM, 2020.

[14] K. Bock, G. Hughey, X. Qiang, and D. Levin. Geneva: Evolv-
ing Censorship Evasion Strategies. In ACM Conference on
Computer and Communications Security (CCS), 2019.

[15] K. Bock, iyouport, Anonymous, L.-H. Merino, D. Fifield,
A. Houmansadr, and D. Levin. Exposing and Circumventing
China’s Censorship of ESNI. https://geneva.cs.umd.

edu/posts/china-censors-esni/esni/, 2020.

[16] S. Burnett and N. Feamster. Encore: Lightweight Measure-
ment of Web Censorship with Cross-Origin Requests. In ACM
SIGCOMM, 2015.

[17] Chromium Development Team. A safer default for naviga-
tion: HTTPS. https://blog.chromium.org/2021/03/

a-safer-default-for-navigation-https.html, 2020.

[18] CitizenLab. CitizenLab Test Lists. https://github.com/
citizenlab/test-lists, 2020.

[19] CitizenLab. URL testing lists intended for discovering
website censorship. https://github.com/citizenlab/

test-lists/, 2022.

[20] R. Clayton, S. J. Murdoch, and R. N. M. Watson. Ignoring the
Great Firewall of China. In Privacy Enhancing Technologies
Symposium (PETS), 2006.

[21] Cloudflare. Cloudflare Radar: Up to date Internet trends
and insight. https://radar.cloudflare.com/cn?date_
filter=last_30_days, 2022.

[22] Congressional Research Service. Social Media: Misin-
formation and Content Moderation Issues for Congress,
2021. https://crsreports.congress.gov/product/

pdf/R/R46662.

[23] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security Sym-
posium, 2004.

[24] D. Ellard, C. Jones, V. Manfredi, W. T. Strayer, B. Thapa, M. V.
Welie, and A. Jackson. Rebound: Decoy routing on asymmet-
ric routes via error messages. In IEEE Conference on Local
Computer Networks (LCN), 2015.

[25] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and
P. Tabriz. Measuring HTTPS Adoption on the Web. In USENIX
Security Symposium, 2017.

[26] R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616, 1999. https://datatracker.ietf.
org/doc/html/rfc2616.

[27] R. Fielding, Y. Lafon, and J. Reschke. Hypertext Transfer
Protocol (HTTP/1.1): Range Requests. RFC 7233, 2014.
https://www.rfc-editor.org/rfc/rfc7233.html.

[28] R. Fielding, M. Nottingham, and J. Reschke. Hypertext
Transfer Protocol (HTTP/1.1): Caching. RFC 7234, 2014.
https://www.rfc-editor.org/rfc/rfc7234.html.

[29] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Authentication. RFC 7235, 2014. https:

//www.rfc-editor.org/rfc/rfc7235.html.

[30] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Conditional Requests. RFC 7232, 2014. https:
//www.rfc-editor.org/rfc/rfc7232.html.

[31] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. RFC 7230, 2014.
https://www.rfc-editor.org/rfc/rfc7230.html.

[32] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231, 2014. https:
//www.rfc-editor.org/rfc/rfc7231.html.

[33] D. Fifield. Threat modeling and circumvention of Internet
censorship. In PhD thesis, 2017.

[34] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh,
R. Dingledine, and P. Porras. Evading Censorship with
Browser-Based Proxies. In Privacy Enhancing Technologies
Symposium (PETS), 2012.

USENIX Association 31st USENIX Security Symposium 479

https://ioda.caida.org/
https://w3techs.com/technologies/overview/web_server
https://w3techs.com/technologies/overview/web_server
https://trends.builtwith.com/web-server
https://github.com/vecna/sniffjoke
https://www.rfc-editor.org/rfc/rfc3986
https://geneva.cs.umd.edu/posts/china-censors-esni/esni/
https://geneva.cs.umd.edu/posts/china-censors-esni/esni/
https://blog.chromium.org/2021/03/a-safer-default-for-navigation-https.html
https://blog.chromium.org/2021/03/a-safer-default-for-navigation-https.html
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists
https://github.com/citizenlab/test-lists/
https://github.com/citizenlab/test-lists/
https://radar.cloudflare.com/cn?date_filter=last_30_days
https://radar.cloudflare.com/cn?date_filter=last_30_days
https://crsreports.congress.gov/product/pdf/R/R46662
https://crsreports.congress.gov/product/pdf/R/R46662
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://www.rfc-editor.org/rfc/rfc7233.html
https://www.rfc-editor.org/rfc/rfc7234.html
https://www.rfc-editor.org/rfc/rfc7235.html
https://www.rfc-editor.org/rfc/rfc7235.html
https://www.rfc-editor.org/rfc/rfc7232.html
https://www.rfc-editor.org/rfc/rfc7232.html
https://www.rfc-editor.org/rfc/rfc7230.html
https://www.rfc-editor.org/rfc/rfc7231.html
https://www.rfc-editor.org/rfc/rfc7231.html

[35] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson.
Blocking-resistant communication through domain fronting.
In Privacy Enhancing Technologies Symposium (PETS), 2015.

[36] P. Foremski. Tracking the DNS Stars: The DNS Observa-
tory, 2019. https://www.farsightsecurity.com/blog/
txt-record/dnsstars-20190610/.

[37] S. García, K. Hynek, D. Vekshin, T. Čejka, and A. Wasicek.
Large Scale Measurement on the Adoption of Encrypted DNS.
In Passive and Active Network Measurement Workshop (PAM),
2021.

[38] Gitlab. Gitlab Protocol Fuzzer Community Edi-
tion, 2021. https://gitlab.com/gitlab-org/

security-products/protocol-fuzzer-ce.

[39] L. Haifeng, W. Shaolei, Z. Bin, S. Bo, and T. Chaojing. Net-
work protocol security testing based on fuzz. In International
Conference on Computer Science and Network Technology
(ICCSNT), 2015.

[40] C. Hornig. A Standard for the Transmission of IP Data-
grams over Ethernet Networks. RFC 894, 1984. https:

//datatracker.ietf.org/doc/html/rfc894.

[41] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N. Borisov.
Cirripede: Circumvention Infrastructure using Router Redi-
rection with Plausible Deniability. In ACM Conference on
Computer and Communications Security (CCS), 2011.

[42] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. IP over
Voice-over-IP for censorship circumvention. In arXiv preprint
arXiv:1207.2683, 2012.

[43] B. Jabiyev, S. Sprecher, K. Onarlioglu, and E. Kirda. T-Reqs:
HTTP Request Smuggling with Differential Fuzzing. In ACM
Conference on Computer and Communications Security (CCS),
2021.

[44] S. Khattak, M. Javed, P. D. Anderson, and V. Paxson. Towards
Illuminating a Censorship Monitor’s Model to Facilitate Eva-
sion. In USENIX Workshop on Free and Open Communications
on the Internet (FOCI), 2013.

[45] G. T. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Eval-
uating Fuzz Testing. In ACM Conference on Computer and
Communications Security (CCS), 2018.

[46] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumenzanu,
N. Spring, and B. Bhattacharjee. Alibi Routing. In ACM
SIGCOMM, 2015.

[47] F. Li, A. Razaghpanah, A. M. Kakhki, A. A. Niaki, D. Choffnes,
P. Gill, and A. Mislove. lib.erate, (n): A library for exposing
(traffic-classification) rules and avoiding them efficiently. In
ACM Internet Measurement Conference (IMC), 2017.

[48] Z. Li, S. Herwig, and D. Levin. DeTor: Provably Avoiding
Geographic Regions in Tor. In USENIX Security Symposium,
2017.

[49] X. Mendez. WFuzz: The Web Fuzzer, 2020. wfuzz.io.

[50] P. Mockapetris. Domain names - implementation and speci-
fication. RFC 1035, 1987. https://datatracker.ietf.

org/doc/html/rfc1035.

[51] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg.
SkypeMorph: Protocol Obfuscation for Tor Bridges. In ACM
Conference on Computer and Communications Security (CCS),
2012.

[52] S.-J. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar,
W. Wu, M. Yannakakis, and Y. Zhang. Alembic: Automated
Model Inference for Stateful Network Functions. In Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2019.

[53] R. S. Raman, L. Evdokimov, E. Wustrow, A. Halderman, and
R. Ensafi. Kazakhstan’s HTTPS Interception. https://

censoredplanet.org/kazakhstan, 2019.

[54] R. S. Raman, L. Evdokimov, E. Wustrow, A. Halderman, and
R. Ensafi. Investigating Large Scale HTTPS Interception in
Kazakhstan. In ACM Internet Measurement Conference (IMC),
2020.

[55] S. M. Seal. Optimizing Web Application Fuzzing with Genetic
Algorithms and Language Theory. In Master of Science Thesis,
2016.

[56] B. VanderSloot, A. McDonald, W. Scott, J. A. Halderman,
and R. Ensafi. Quack: Scalable Remote Measurement of
Application-Layer Censorship. In USENIX Security Sympo-
sium, 2018.

[57] P. Vines and T. Kohno. Rook: Using Video Games as a Low-
Bandwidth Censorship Resistant Communication Platform. In
Workshop on Privacy in the Electronic Society (WPES), 2015.

[58] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and
N. Borisov. CensorSpoofer: Asymmetric communication using
IP Spoofing for Censorship-resistant Web Browsing. In ACM
Conference on Computer and Communications Security (CCS),
2012.

[59] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy.
Your State is Not Mine: A Closer Look at Evading Stateful In-
ternet Censorship. In ACM Internet Measurement Conference
(IMC), 2017.

[60] Z. Wang, S. Zhu, Y. Cao, Z. Qian, C. Song, S. V. Krishnamurthy,
K. S. Chan, and T. D. Braun. SymTCP: Eluding Stateful Deep
Packet Inspection with Automated Discrepancy Discovery. In
Network and Distributed System Security Symposium (NDSS),
2020.

[61] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister,
S. Cheung, F. Wang, and D. Boneh. StegoTorus: A Camouflage
Proxy for the Tor Anonymity System. In ACM Conference on
Computer and Communications Security (CCS), 2012.

[62] B. Wiley. Dust: A Blocking-Resistant Internet Transport Pro-
tocol. http://blanu.net/Dust.pdf.

[63] P. Winter. brdgrd (Bridge Guard). https://github.com/

NullHypothesis/brdgrd, 2012.

[64] wkrp. HTTPS MITM of various GitHub IP addresses in
China. https://github.com/net4people/bbs/issues/
27, 2020.

[65] E. Wustrow, C. M. Swanson, and J. A. Halderman. TapDance:
End-to-Middle Anticensorship without Flow Blocking. In
USENIX Annual Technical Conference, 2014.

480 31st USENIX Security Symposium USENIX Association

https://www.farsightsecurity.com/blog/txt-record/dnsstars-20190610/
https://www.farsightsecurity.com/blog/txt-record/dnsstars-20190610/
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://datatracker.ietf.org/doc/html/rfc894
https://datatracker.ietf.org/doc/html/rfc894
wfuzz.io
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://censoredplanet.org/kazakhstan
https://censoredplanet.org/kazakhstan
https://github.com/NullHypothesis/brdgrd
https://github.com/NullHypothesis/brdgrd
https://github.com/net4people/bbs/issues/27
https://github.com/net4people/bbs/issues/27

[66] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman.
Telex: Anticensorship in the Network Infrastructure. In
USENIX Security Symposium, 2011.

[67] T. K. Yadav, A. Sinha, D. Gosain, P. K. Sharma, and
S. Chakravarty. Where The Light Gets In: Analyzing Web
Censorship Mechanisms in India. In ACM Internet Measure-
ment Conference (IMC), 2018.

[68] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov. SWEET:
Serving the Web by Exploiting Email Tunnels. In Privacy
Enhancing Technologies Symposium (PETS), 2013.

A HTTP Geneva Syntax

We give a brief background of Geneva’s syntax for strategies.
Strategies are comprised of trigger/action tree pairs: the trig-
ger defines which packet component should be modified, and
the action-tree specifies how it should be modified. Action-
trees are trees composed of simple manipulation actions.

Actions Depending on the protocol (DNS or HTTP), the
principle unit of modification is different: HTTP operates
over the Headers, and DNS operations over the DNS Question
Records. Each action defines specific parameters it accepts;
below is an overview of the arguments the actions can take.

1. <value> — Any printable characters (URL-encoded).

2. <string location> — Where in a string to be inserted:
start, middle, end, or random. Start means at index 0,
middle is at index length/2, end is equal to index length,
and random is anywhere except the start or end.

3. <component> — (Only used for HTTP Geneva.) Speci-
fies which part of a header to act upon: "name", or "value".
Remember a header is broken up into two sides separated
by the semi-colon into the header name and header value.
Ex: in “Host: www.example.com”, “Host” is the header
name and “ www.example.com” is the header value (note
the space is included).

4. <number of actions> — How many times the action
should be run. For example, with the insert or replace
actions, running this action multiple times concatenates
the <value> <number of actions> number of times
before doing the action.

5. <case method> — Either random (each character is ran-
domly upper or lower case), lower (all characters are lower
case) or upper (all characters are upper case).

With these arguments in mind, below are Geneva’s modifi-
cation actions for HTTP and DNS.

1. insert{<value>:<string location>:

<component>:<number of actions>}

Insert the byte(s) specified by value into the lo-
cation of the string specified <string location>

into the specified <component> of the action target
<number of actions> times. This will insert either
once (if the fourth parameter is omitted) or a specified
number of times if the fourth parameter is given.

2. replace{<value>:<component>:

<number of actions>}

Replace the field specified by <component> with
<value>. If <number of actions> is given, replace it
with that many copies of <value> (default: one). Note:
delete can be simulated here by the random chance to
replace the "value" with nothing.

3. duplicate(,) — Makes a second action target equal to
the first. Duplicate outputs two identical action targets
and each side can be modified individually. Duplicating
a header will add a new header, not just concatenate the
string of the header name or value.

4. drop(,) — Remove the action target from the request.

5. changecase{<case method>} — Changes the case of
the entire action target (ignores non-alphabetical charac-
ters). If this is a header, this works on the header name
and value.

Action trees can be extended by adding new actions into
children (ending parenthesis) of any action. For every action
except duplicate, there will only be downstream actions in
the first half of the parenthesis.

Trigger There is one matching trigger for every action tree
and it signifies when that action tree should act on an action
target. Each trigger takes three parameters. The first element
of the trigger is the relevant protocol: DNS, DNSQR, or HTTP.
The second element signifies which field the trigger should
check for a match. For DNS, this trigger will look for certain
fields like qclass, whereas in HTTP, it uses specific header
names. The third element specifies what the target field must
be for the trigger to fire. A star “*” can be used as a wildcard.
An example of a trigger is [HTTP:Host:*] to mean a strategy
will act on any Host header it sees, or [DNSQR:qname:*] to
act on every DNS Question Record.

Strategy Syntax Action trees are combined with triggers
to create combinations like <trigger>-<action tree>-|.
It is possible to have multiple combinations in one strategy.
When this happens, each action tree will act on their own
version of their designated action target, and all the dupli-
cates will be combined in the end to recreate the request. An
example of a full strategy with two action trees is:

[HTTP:Host:*]-duplicate(

replace{NewValue:name:1},

insert{\%20:start:value:500}

(changecase{random},))-|

[HTTP:Host:*]-insert{\%0A:start:name}-|}}

USENIX Association 31st USENIX Security Symposium 481

Apache 2.4.X Nginx 1.X.X Country

Family Strategy 6 18 29 43 13.4 14.1 16.1 19.0 CN-
H

CN-
K IN KZ

Method
Mangling

***[HTTP:method:*]-duplicate(,)-| - - - - - - - - - - 3 3
***[HTTP:method:*]-replace{%3A:value:1}-| - - - - - - - - 3 3 3 3
***[HTTP:method:*]-replace{HTTP/1.1:value:1}-| - - - - - - - - 3 3 3 3

Path
Confusion

[HTTP:path:*]-duplicate(insert{3:middle:value:1004},
replace{&ultrasurf:value})-| 3 3 3 3 3 3 3 3 - 3 3 -

[HTTP:path:*]-insert{%3F:start:value:1}-| 3 3 3 3 - - - - 3 - 3 -

Request
Line
Whitespace

[HTTP:method:*]-insert{%09:end:value:1}-| 3 3 - - - - - - - - 3 3
***[HTTP:method:*]-insert{%09:start:value:1}-| - - - - - - - - - - 3 3
[HTTP:method:*]-insert{%0A:start:value:1}-| 3 3 - - 3 3 3 3 - - 3 3
[HTTP:method:*]-insert{%0B:end:value:1}-| 3 3 - - - - - - - - 3 3
[HTTP:method:*]-insert{%0D:end:value:2}-| 3 3 - - - - - - 3 3 3 3
[HTTP:path:*]-insert{%09:end:value:1}-| 3 3 - - - - - - - - 3 -
[HTTP:path:*]-insert{%09:start:value:1}-| 3 3 - - - - - - 3 - 3 -
[HTTP:path:*]-insert{%0C:start:value:1}-| 3 3 - - - - - - 3 - 3 -
[HTTP:path:*]-insert{%0D:start:value:1}-| 3 3 - - - - - - 3 3 3 -
[HTTP:path:*]-insert{%20:end:value:1}-| 3 3 - - 3 3 3 3 - - 3 -
[HTTP:path:*]-insert{%20:start:value:1}-| - - - - - - - - 3 - - -
[HTTP:version:*]-insert{%0A%09%0A%09:end:value:1}-| - - - - 3 3 3 3 - - 3 3
[HTTP:version:*]-insert{%0A%09:end:value:1}-| - - - - 3 3 3 3 - - - 3
[HTTP:version:*]-insert{%0A%20%0A%20:end:value:1}-| - - - - 3 3 3 3 - - 3 3
[HTTP:version:*]-insert{%20%0A%09:end:value:1}-| - - - - 3 3 3 3 - - 3 3
[HTTP:version:*]-insert{%20:end:value:1}-| 3 3 - - 3 3 3 3 - - 3 -

Sandwich
Strategy

[HTTP:host:*]-duplicate(replace{%C3%97:name:596},
insert{%20:end:name:786})-| 3 3 - - - - - - 3 3 3 3

[HTTP:host:*]-replace{%5E:name:926}
(duplicate(duplicate(,replace{host:name:1}
(insert{%20:start:value:3238},)),),)-|

3 3 3 3 3 3 3 3 3 3 - 3

[HTTP:host:*]-replace{%C3%97:name:1358}
(duplicate(duplicate(,replace{host:name:1}
(insert{%20:end:value},)),),)-|

3 3 - - 3 3 3 3 3 3 3 3

[HTTP:host:*]-replace{%C3%97:name:1371}
(duplicate(duplicate(,replace{host:name:1}),),)-| 3 3 - - 3 3 3 3 3 3 3 -

[HTTP:host:*]-insert{%20:end:value:4081}
(duplicate(duplicate(,replace{a:name:1}),
insert{%09:start:name:3238}),)-|

3 3 3 3 3 3 3 3 - 3 - 3

[HTTP:host:*]-insert{%20:end:value:4081}
(duplicate(duplicate(insert{%09:start:name:3238},),
replace{a:name:1}),)-|

3 3 - - 3 3 3 3 - 3 - 3

[HTTP:host:*]-replace{PUT:name:423}
(duplicate(duplicate(,replace{host:name}),),)-| 3 3 3 3 3 3 3 3 3 3 3 -

Version
Mangling

[HTTP:version:*]-duplicate-| 3 3 - - - - - - - - 3 -
[HTTP:version:*]-replace{OPTIONS:value:1}-| 3 3 - - - - - - 3 3 3 -

Table 4: Continuation of Table 2. A strategy is successful against a nation if it evades that nation’s censor. A strategy is successful
to a server if it evades in at least one country and is accepted by the server. CN-H and CN-K stand for the China Headers and
China Keyword modes respectively. "***" denotes a strategy found against a live server we did not control; though these evade
in some of our tested countries, but do not receive responses from the servers we tested.

482 31st USENIX Security Symposium USENIX Association

	Introduction
	Background and Related Work
	Fuzzer Design
	Grammars
	Manipulations
	Evaluating Evasion Strategies
	Evasion Proxy for Ease of Use

	Experiment Methodology
	HTTP Results
	Summary Results
	Evasion Strategies
	External Validation

	DNS Results
	Discussion
	Ethical Considerations
	Conclusion
	HTTP Geneva Syntax

