
Motivating Participation in Internet Routing Overlays

Dave Levin, Randolph Baden, Cristian Lumezanu, Neil Spring, Bobby Bhattacharjee
Department of Computer Science

University of Maryland, College Park, MD 20742
{dml,randofu,lume,nspring,bobby}@cs.umd.edu

ABSTRACT
PeerWise is an Internet routing overlay that reduces end-to-end la-
tencies by allowing peers to forward through a relay instead of con-
necting directly to their destinations. Fundamental to PeerWise is
the notion of peering agreements between two peers, wherein they
agree to forward for one another. In this paper, we consider the
problem of motivating users to establish and maintain peerings in
a completely decentralized, scalable manner. We show that routing
overlays present unique challenges and goals. For instance, since
participants can always “fall back” on standard Internet routing, we
must encourage users to stay in the system and maintain long-lived
peering agreements. To address these challenges, we propose two
mechanisms: First, we use Service Level Agreements (SLAs) to
expressively negotiate peers’ demands and the recourses they will
take when SLAs are violated. Second, we propose a mechanism
to address SLA violations that differs from the standard notion of
punishment via service degradation. Our simulation results demon-
strate that our mechanism causes peers to avoid SLA violators in
favor of long-lived peerings. Lastly, we discuss potential, emergent
behaviors in a selfish routing overlay.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; H.5.3 [Information Interfaces and Presen-
tation]: Group and Organization Interfaces—Collaborative com-
puting; J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Design, Economics, Performance

Keywords
Incentives, Internet routing overlays, Service-level agreements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetEcon’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-179-8/08/08 ...$5.00.

1. INTRODUCTION
Routing overlays [1, 11, 7, 9] allow users to forward traffic through

other users to influence the path their packets take through the In-
ternet. With such influence, users can achieve greater resilience to
network outages and decrease end-to-end latencies.

As more users participate in a routing overlay, more paths be-
come available, and hence the utility of the overlay increases. We
therefore propose as a goal of routing overlays to motivate partic-
ipation: encourage users to join the routing overlay and actively
forward for others for as long as possible. Until recently, routing
overlays have been relegated to small deployments controlled by a
single administrator; RON [1] for instance creates a fully connected
mesh in which all nodes measure latencies to all other nodes, limit-
ing a feasible deployment to only a few dozen nodes. PeerWise [9]
makes scalability possible in these systems by using network coor-
dinates [5] to reduce the number of peers users must contact to find
shorter-latency paths to their destinations.

The feasibility of a large-scale, decentralized routing overlay
raises problems of ensuring cooperative participation in the pres-
ence of selfish users. We expect users to selfishly attempt to max-
imize the benefit—latency reduction and bandwidth—they receive
from the system while minimizing their cost—the amount of traf-
fic they forward for others. Selfish users complicate participation
because they compete with one another for latency-reducing peers,
and will not forward for one another if they do not receive some-
thing in return. As a system scales to a large number of users,
maintaining global state becomes infeasible. Corbo et al. use local
decisions to form economically-driven peerings to model AS topol-
ogy [4]; we apply a similar philosophy in routing overlays to model
user interactions and provide economic incentives for users to join.

The goals of this work are to motivate users to establish and
maintain mutually beneficial peerings, and to do so in a completely
decentralized, scalable manner. Our first contribution in this work
is in demonstrating that routing overlays present unique challenges
in providing incentives for selfish users to participate (§2). For
instance, as compared to a system like BitTorrent [3], time plays a
significant role in user demands; BitTorrent peers want as much as
possible now, while users of a routing overlay may generate traffic
at varying times throughout the day, and with varying demand.

In attempting to solve the selfish routing overlay problem, we
focus on building incentives in PeerWise. Our solution to motivat-
ing participation is based on PeerWise’s notion of peering agree-
ments. A peering agreement in PeerWise is made between two par-
ticipants, p and q, wherein p agrees to act as a latency-reducing
relay for q, and vice versa.

A selfish PeerWise user is faced with two interdependent deci-
sions: (1) choosing with whom to form peering agreements, and
(2) choosing how much to allocate to the peers it chooses. We pro-

pose two mechanisms to address these. The first mechanism (§4)
borrows from the notion of Service Level Agreements (SLAs) that
autonomous systems in the Internet use to establish business agree-
ments with one another. SLAs in PeerWise allow peers to expres-
sively negotiate their demands and the recourses they take when the
SLAs are violated.

SLA violations require recourse. The second mechanism we
present (§5) addresses the problem of avoiding negotiations with
peers who continually violate their SLAs. An intuitive solution to
this is for peers to punish one another by offering reduced quality
of service, but this runs the risk of incurring unnecessary perfor-
mance degradation or, if engineered poorly, system-wide collapse.
Our mechanism takes a subtly different approach than punishment.
We propose that peers instead use SLA violations as a negative re-
flection on the perceived benefit that violators offer. We present
simulation results that show that our mechanism limits how often
victims return to an SLA violator, and achieves long-lived peerings
with peers that satisfy SLAs. We conclude with a discussion of
potential emergent behaviors in a selfish routing overlay, and open
problems (§6).

2. THE SELFISH ROUTING OVERLAY
PROBLEM

The problem of providing incentives in routing overlays repre-
sents a new point in the design space of incentives for selfish partic-
ipants. Broadly, we aim to promote participation and resource shar-
ing among selfish peers. In this section, we formulate the problem
of providing incentives in routing overlays in the context of how it
differs from well-studied problems.

2.1 Participants may opt out
Latency-reducing routing overlays are an optimization on stan-

dard Internet routing. Participants in routing overlays may always
leave the system and “fall back” on the higher-latency paths that
BGP returns. Thus, when a participant in a routing overlay per-
ceives their costs from remaining in the system to exceed their ben-
efits, they may opt out of the system. In this sense, fairness comes
“for free”: routing overlay participants can always achieve correct-
ness without their costs exceeding their benefit. This is unlike most
P2P systems such as BitTorrent [3], where for many files the only
way to download the file is via BitTorrent.

We view the fundamental goal of providing incentives in routing
overlays to be to motivate peers to stay in the system as long as
possible. This equates to allowing peers to easily find benefit from
the system (if it exists for them) and to maintain that benefit over
long periods of time.

2.2 Not all peers benefit from one another
It is not the case that a given peer can benefit from every other

peer. Though the triangle inequality does not always hold in the
Internet, it often does [5, 14, 15]. Conversely, in many peer-to-peer
systems, all peers stand to benefit from all others. In BitTorrent,
for example, a peer can potentially benefit from every other peer,
as long as they do not have all of the same pieces of the file. Peers
in a routing overlay, however, may have a small (or perhaps even
empty) set of other peers who can offer them lower latency paths to
a given destination. A goal is thus to match up the peers in a way
that benefits as many as possible.

2.3 Users have varying demand
Users’ traffic and latency demands in the Internet vary across the

applications they use, the destinations they contact, the time of the

day, and so on. For some applications, like ssh, a small amount
of bandwidth with a large reduction in latency is sufficient, while
in others, like VoIP, a reduction in latency is allowed only as long
as there is a moderate amount of bandwidth. This is distinct from
systems like BitTorrent, wherein everyone’s demand is the same:
download the file as quickly as possible. Another goal of a routing
overlay is thus to allow peers to communicate their demands with
one another. If two peers are willing to relay for one another, then
they should ideally be able to negotiate a mutually advantageous
agreement. Put simply: allow willing peers to peer. We propose
to apply the notion of Service Level Agreements (SLAs) to routing
overlays to achieve this expressiveness (§4).

2.4 Long-lived agreements are preferred
Users vary not only the amount of resources they demand, but

also the time at which they demand it. Often in routing overlays,
peers may be expected to generate traffic at different times. Con-
versely, BitTorrent peers benefit from one another simultaneously.
An important goal in selfish routing overlays is therefore to mo-
tivate peers to maintain long-lived agreements with one another
to forward, and to not require simultaneous interest. Long-lived
agreements are natural in routing overlays, because if p benefits
from having r as a relay at one point in time, p is likely to continue
benefiting from r in the future [9].

This differs from applications where there is an end-game. In
BitTorrent, for example, there is a finite-sized file, so peers will not
benefit from one another indefinitely. Ad hoc wireless networks
might also be considered to have an end-game in that the com-
prising nodes are generally battery-constrained, or are mobile and
therefore unlikely to interact with others for long periods of time.

We propose a mechanism to ensure long-lived peerings. Interest-
ingly, our mechanism does not require any degraded service, and is
resilient to varying network conditions (§5).

2.5 No modifications to destinations
Routing overlays are intended to be used to contact any destina-

tions in the Internet. Requiring modifications to all destinations in
the Internet would render deployment infeasible. We do not require
any modifications to the users’ destinations.

This affects how selfish peers in a routing overlay interact with
one another. Suppose peer p is relaying his traffic through peer r to
reach destination pd. Tunneling packets through r entails r rewrit-
ing the source address of the packet with his own IP address. From
pd’s perspective, r’s host is connecting to pd, not p’s. If r were to
stop relaying for p while p had an open connection to pd, then p
would have no means of recovering this connection. Modifications
to the destination could alleviate this, but again, at the cost of ease
of deployment. This further motivates the need for long-lived peer-
ings; by providing incentive for r to maintain its peering agreement
with p, p can gains (more) assurance that its connections through r
will remain.

2.6 Peerings are not roommates
Establishing peering agreements in PeerWise is similar to the

classic stable roommates problem [8]. The stable roommates prob-
lem takes as input a set of agents, and outputs a matching: a set
of pairs of agents (“roommates”). A matching is stable if there are
no two agents that would both prefer to be matched with one an-
other over the agents with whom they are respectively matched. A
matching M is maximal if there is no other matching M ′ such that
|M ′| > |M |.

Stable and maximal matching problems appear to be a natu-
ral fit for PeerWise. Stability relates to long-lived peering agree-

AC DB

direct paths

detours

peering

Figure 1: Obtaining faster paths with PeerWise: A discovers a
detour to C through B; B also finds that it can reach D faster if
it traverses A; A and B create a mutually advantageous peering
which they both use to get more quickly to their destinations.

ments, and maximal matching equates to maximizing participation
in PeerWise. However, the problem of choosing relays in Peer-
Wise is vastly more complex than the stable roommates problem.
Instead of being matched with one other peer, participants in Peer-
Wise make many peering agreements; preferences in PeerWise may
therefore be exponential in size. Varying network conditions and
user demands add further complexity. It is therefore unlikely that
a generalization of the stable roommates problem to PeerWise-like
settings will allow a polynomial time algorithm. A more rigorous
understanding of the connection between the two problems is an
area of future work, and may help to reveal the theoretical limits of
the mechanisms we present in this paper.

3. SELFISHNESS IN PEERWISE
We focus on providing incentives in the PeerWise [9] routing

overlay. In this section, we review PeerWise, and define the utility
of a PeerWise participant.

3.1 PeerWise Overview
PeerWise [9] is a latency-reducing routing overlay that provides

scalability and fairness. The key idea of PeerWise is that two nodes
can cooperate to obtain faster end-to-end paths without either being
compelled to offer more service than they receive. PeerWise com-
prises two mechanisms: (1) it uses network coordinate systems,
such as Vivaldi [5], to aid in discovering triangle inequality viola-
tions in the Internet; and (2) nodes negotiate and establish peering
agreements to each other based strictly on mutual advantage.

Figure 1 shows a two-node PeerWise overlay. Node A discov-
ers a faster path to D via B. However, B will not help A unless A
provides a detour in exchange. Since there is a shorter path from B
to C going through A, A and B can help each other communicate
faster with their intended destinations. Therefore they establish a
pairwise peering.

3.2 Self-interest in PeerWise
Selfish peers will strategically attempt to form peering agree-

ments that maximize their individual utility, regardless of how it
might impact the rest of the system. Here, we formalize the goals
and utilities of selfish peers. We assume that peers only seek out
mutually advantageous latency reduction, as opposed to one party
paying the other to relay. We leave the use of transferable utility
(money) as an alternative form of payment to future work.

3.2.1 A PeerWise peer’s utility
A peer’s utility is defined by the benefits and costs that it per-

ceives. The benefit that a PeerWise peer p obtains from using r as a
relay to reach destination d is an increasing function of its latency
reduction:

Lp(r)
def
= 1− �(p→ r → d)

�(p→ d)

where �(x) denotes the latency for path x. A peer’s benefit is also a
function of the amount of traffic it is allowed to forward. For exam-
ple, a 99% latency reduction for one packet is likely not preferable
to a 20% reduction for all of a peer’s traffic. For ease of exposition,
we assume that p has a minimum amount of required bandwidth,
and if r does not provide this, then p receives no benefit from r.

The cost that peer p incurs from relaying for r is an increasing
function in bp(r), the amount of bandwidth p forwards for r, and is
normalized by the amount of bandwidth p is willing to provide to
PeerWise, Bp:

Cp(r)
def
=

bp(r)

Bp

Such cost can come in many forms: the impact to their own ap-
plications’ performance, actual money-per-byte costs, the need to
leave their computer turned on over night, and so on.

We propose the following general form utility function for peer
p:

up(r)
def
= αpLp(r)− βpCp(r) (1)

Constants αp ≥ 0 and βp can be chosen to suit a wide range of
users:

• αp = 0, βp < 0: p is altruistic.

• αp > βp > 0: p is willing to pay more for his latency
savings than he receives.

• βp > αp > 0: p expects to get more than he gives back to
the system.

• αp > 0, βp = 0: p does not incur costs on his uplink.

As discussed in §2.1, a peer will not remain in the system if its total
costs outweigh its total benefits. We now see that p will leave the
system if its sum utility is less than zero. Note that if p is altruistic
then αp = 0 and βp < 0, hence up is never negative.

3.2.2 Selfishly selecting peering agreements
Each PeerWise peer p must decide when to commit to and when

to dissolve a peering agreement. This is the fundamental problem a
selfish peer must solve in PeerWise.

More formally, a selfish peer p’s goal is to choose a set P of
peers with whom to make peering agreements. Suppose that p that
is willing to contribute a total amount of bandwidth Bp ·T to other
PeerWise peers over any period of time T . To limit the burstiness
of p’s contribution, p may also wish to ensure that it never has to
provide more than Sp bandwidth at any point in time. This protects
p from having to provide all of its Bp ·T bandwidth in a very small
period of time, which could adversely affect p’s performance. We
formalize this with the following natural optimization problem:

maximize
X

q∈P
up(q) (2)

s.t.
X

q∈P
Cp(q, t) ≤ Sp, ∀t (3)

X

q∈P

TX

t=t0

Cp(q, t) ≤ Bp · T, ∀t0, T (4)

This formulation makes clear an important difference between
selfish behavior in PeerWise and selfish behavior in a system like
BitTorrent: time. Peers’ demands in BitTorrent are constant: send
as much as possible now. However, a peer’s demands in Peer-
Wise depend on when that user wishes to access its destinations,
and could be nil when the user is asleep, for instance. We investi-
gate this further in the context of over-committing one’s resources

(§6.1). In §4 and §5, we present mechanisms to assist PeerWise
peers in obtaining a beneficial a set of peering agreements, while
motivating them to uphold their responsibilities in their agreements.

4. SERVICE LEVEL AGREEMENTS
In PeerWise, nodes negotiate and establish peering agreements

to each other based strictly on mutual advantage. In a previous
paper [9] we showed how potentially good peers are found—by
exploiting the inability of network coordinates to work with tri-
angle inequality violations—and how the peering agreements are
negotiated—nodes that provide each other latency reduction to at
least one destination form a peering. Next we focus on mecha-
nisms that ensure the validity and stability of such agreements over
long periods of time.

A service level agreement (SLA) is a formal contract between
two peers that establishes all aspects of the service that each pro-
vides to the other. Nodes in routing overlays are inherently selfish
and SLAs are an efficient method to curtail the effects of the self-
ishness. SLAs ensure that each node receives the expected level
of quality-of-service even when the traffic demand in the network
varies and the mutual advantage offered by a peering is time depen-
dent. We describe the design of the PeerWise SLAs next.

4.1 SLA design space
We identify three performance metrics to be used as the basis for

an SLA between two PeerWise users:

• latency reduction: the minimum latency reduction that a
peer offers to the other to a specific destination

• bandwidth: the average bandwidth at which one peer for-
wards packets for the other to a specific destination

• burstiness: the maximum bandwidth at which one peer for-
wards packets for the other to a specific destination

Each SLA is associated with a re-evaluation timeout which trig-
gers a verification of the SLA against the traffic exchange since
the previous timeout. We assume that each PeerWise user has the
means to monitor the traffic over all its peerings. Because IP is best
effort and cannot provide measurable service, we do not require
the bounds on the performance metrics defined in the SLA to be
strictly enforced; it is enough if most of the packets sent over the
peering satisfy the bounds specified by the SLA. Furthermore, we
enforce frequent re-evaluations (on the order of minutes or hours
rather than days or weeks). In doing so, we seek to protect the
users against long periods when although the SLA is not violated,
the peering is unusable.

Next we present a simple example of SLA between two Peer-
Wise users. In Figure 1, nodes A and B discover mutual advantage
and decide to form a peering. The SLA of the peering may state
that A and B must offer each other latency reductions of at least
10ms for 95% of the packets that each send to C and D. The re-
evaluation timeout is set 60 seconds. Furthermore, the bandwidth
that each peer uses to forward each other’s packets must not exceed
20kB/s averaged over the 60 seconds, with its maximum value al-
ways below 100kB/s.

Our SLA design draws from the agreements between autonomous
systems in the Internet. Similarly to AS SLAs, PeerWise SLAs are
intended to be maintained over long periods of time. In this way,
long term reputation can motivate cooperation. However, AS SLAs
are defined over much larger time scales. We require SLAs to be
verified more often because traffic fluctuations may have bigger ef-
fects on a single link that connects two users than on a collection
of links that interconnects two autonomous systems.

4.2 Dynamic SLAs
Because nodes generally do not know a priori their traffic de-

mands and because the service performance metrics are chosen
based on at most a few measurements, we do not require fixed
SLAs between two PeerWise nodes. Instead, two nodes start with
a temporary SLA, which specifies latency reductions as advertised
during the negotiation and bandwidth metrics according to each
node’s expected demand. This is different from AS level SLAs,
which are based on previous study of the network utilization and
on performance metrics averaged over long periods of time [10].

The bandwidth and burstiness parameters of the SLA can be au-
tomatically changed after every re-evaluation to align with the real
traffic exchanged between the peers. We allow both positive and
negative parameter scaling. If two peers respect the terms of the
SLA and if they have enough spare bandwidth, they may offer to re-
lay each other’s traffic at faster and faster rates. On the other hand,
if a peer does not offer as much latency reduction as promised,
then the available bandwidth through its peer will be reduced. In
the next section we present mechanisms to encourage long-lived
peerings even when users are selfish.

5. MECHANISMS FOR LONG-LIVED
PEERINGS

PeerWise participants’ choice of relays is driven by their selfish
interest in obtaining their most preferred relays. Each peer p has a
partially ordered preference, �p, of relays. If, for two peers a and
b, a �p b, then p will prefer to use a as a relay regardless of the
impact on b.

Given the anarchistic nature of this process, it is not surprising
that it can yield poor outcomes. For example, consider three peers,
a, b, and c, where b �a c, c �b a, and a �c b. These cyclic
preferences lead to oscillating peering agreements: if a obtains its
preferred relay b, then that leaves c available. Since b prefers c, b
will selfishly break its peering agreement with a in favor for c. This
in turn leaves a available, leading c to break its peering agreement
with b, and the process repeats indefinitely. These oscillating peer-
ing agreements resemble persistent oscillations which could occur
in BGP [12]. Next we present a simple mechanism that limits the
effect of selfishness on the stability of peerings.

5.1 Long-term cooperation with confidence
A fundamental difference between route changes in BGP and

PeerWise is that a route change in PeerWise will generally result
in a lost connection (§2.5). As such, PeerWise participants de-
sire long-lived peerings, and should prefer relays who respect their
SLAs for long periods of time. Though a peer i can measure the
reduction in latency that a neighbor j provides, i cannot know if or
when j will violate their SLA. Instead, i maintains some measure
of confidence that j will relay i’s packets. i’s confidence in j can
change over time, based at least in part on the history of interactions
between i and j.

We propose that, in determining neighbor preferences, a peer ex-
plicitly incorporates its confidence that a given neighbor will main-
tain an SLA. Specifically, we propose that each peer i maintain a
confidence value, cij for each peer j with whom it has interacted.
A peer’s confidence in another increases or decreases based on the
interactions those two peers have had. For instance, when peer j
violates or prematurely dissolves a peering agreement with i, i low-
ers his confidence of j. Though cij could also incorporate others’
interactions with j, we focus in this paper only on confidence based
on one’s own interactions.

A

B C

A

B C

A

B C

A

B C

(c) C violates the SLA
with B to peer with A

(a) Initial primary (solid) and
secondary (dashed) preferences

(b) Initial, unstable
peering

(e) Stable peering

A

B C

(d) B loses confidence in
C, updates preferences

Figure 2: Cyclic preferences lead to unstable peerings, but participants prefer long-lived peerings. Algorithm 1 addresses this by
incorporating into a peer B’s preference the confidence B has in its neighbors to maintain a long-lived peering.

Algorithm 1 Handling SLA violations.
Periodically run at peer i:

• when i and j have a peering agreement

– if j respects the SLA, cij ← cij + cstep

– if j violates the SLA or drops the peering, cij ← cij/2

• when i and j do not have an agreement, but they previously
had one

– cij ← cij + cstep/(sij + 1)

Confidence values more accurately capture a peer’s expected util-
ity from a neighbor because they incorporate not just the instan-
taneous utility, but the history of interactions between the peers.
Peers’ preferences over one another can then combine the potential
benefit of a peering—based on latency reduction, bandwidth, and
burstiness described in §4—and the expectation that the peer will
actually provide it. The power of incorporating history is demon-
strated in Figure 2, wherein B’s loss of confidence in C eliminates
the initial, oscillating peering agreements.

To experimentally study the use of confidence values, we now
propose a specific algorithm, Algorithm 1, to capture peers’ con-
fidence in one another. Peer i runs the algorithm at every prede-
termined period of time T . cstep represents the default value for
increasing confidence. sij represents the number of times j has
dropped a peering with i.

In Algorithm 1, the confidence value for a node increases slowly
(additively) as the SLA is respected, and decreases quickly (multi-
plicatively) whenever the node violates the SLA. In this way, it will
be more difficult for j to re-establish the agreement with i. This
mechanism acts as a disincentive for nodes to constantly drop and
add peerings on a small time scale.

5.2 Experimental results
To study the stability of PeerWise peerings we evaluate our con-

fidence mechanism with a simulator. The simulations use a fixed
topology of 16 PlanetLab nodes—the PeerWise nodes—and 16 pop-
ular web servers—the destinations. The latencies between Planet-
Lab nodes and web servers were measured in January 2008.

Each PeerWise node attempts to connect to each destination.
SLAs are established between nodes that offer each other at least
10ms or 10% latency reduction. In our experiments, bandwidth is
not a constraint. A peer violates an SLA associated with an exist-
ing peering whenever a new peering that offers higher benefit to the
same destination is discovered. We assume that the re-evaluation
period and the performance metrics of the SLAs never change. To
assign confidence values for each node, we use the algorithm de-

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

C
D

F

Peering Lifetime (in Peering Steps)

0.20
0.01
0.00

Figure 3: Peering lifetimes for different values of cstep.

scribed in §5.1. We restrict the confidence values to the interval
[0,1] and we use three different values for cstep: 0, 0.01 and 0.2.
After each re-evaluation period (peering step), we compute the to-
tal number of existing peerings, as well as the number of peerings
that have been destroyed since the last re-evaluation. We present
the results in Figures 3 and 4.

When cstep is 0, the confidence value of a peer that destroys a
peering can never increase. Destroyed peerings are not recreated
and the number of existing peerings after each re-evaluation even-
tually converges to a small value (around 50 in Figure 4). However,
the peerings that do exist are long-lived, as shown in Figure 3. As
cstep increases, so does the chance that a destroyed peering will be
re-established. For cstep = 0.2, almost 150 exist at a given mo-
ment. Though there are many more peerings with greater values of
cstep, the longevity of these peerings is diminished.

Thus, confidence values quantify the trade-off between how long-
lived a peering is—longer with a smaller cstep—and how many
peerings there are—more with a larger cstep.

6. EMERGENT BEHAVIORS
In this section, we discuss two behaviors that may emerge in a

system of selfish PeerWise participants.

6.1 Overselling one’s resources
Peers may be inclined to promise more bandwidth across all of

the peering agreements than they choose to actually provide over
any period of time. This is common with today’s ISPs, which ad-
vertise more bandwidth to home users than the ISP has provisioned.
ISPs do this under the expectation that few enough users will wish
to consume the advertised bandwidth at the same time. In other
words, ISPs provision for average demands, and offer no assurance
to customers when demand far exceeds the average.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

N
um

be
r

of
 P

ee
rin

gs

Peering Step

Existing
Destroyed

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

N
um

be
r

of
 P

ee
rin

gs

Peering Step

Existing
Destroyed

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600 700

N
um

be
r

of
 P

ee
rin

gs

Peering Step

Existing
Destroyed

Figure 4: Example runs for different values of cstep: 0 (left), 0.01 (middle) and 0.2 (right).

In PeerWise, when a peer p makes a peering agreement with peer
q, p commits to providing some amount bp(q) of bandwidth to q.
Recall from Eq. (4) that p provisions Bp bandwidth for participa-
tion; p wishes to never provide more than T · Bp bandwidth over
any period of time, T . This does not necessarily mean that, across
all of p’s peering agreements,

P
q∈P bp(q) ≤ Bp. Whenever this

inequality does not hold, we say that p has oversold his resources.
The benefit of overselling is that it allows a peer to create more

peering agreements, and therefore reach more destinations with
lower latency. The risk of overselling is that, when more peers
attempt to claim their promised bandwidth than p provisioned for,
then p will be forced to violate the constraints in Eqs. (3) and (4).
Violating these constraints may result in p violating some of its
peering agreements, and as losing some of its relays (§5).

6.2 Reselling peering agreements
Selfish participants in PeerWise may attempt to create multi-hop

paths to increase their profits. One such opportunity arises because
PeerWise peers are unlikely to have global information about all
relays. In a cooperative setting, if peer p knew that peer r could
act as a latency-reducing relay for q—that is, �(q → r → dq) <
�(q → dq)—then p would inform q about r. In a selfish environ-
ment, p may trivially attempt to charge q for this information. An
interesting scenario occurs when �(q → p → r → dq) < �(q →
dq) < �(q → p → dq). In this case, p may attempt to pretend
that he can offer q a one-relay, latency-reducing path, and secretly
“re-relay” through r. Although q may not obtain as much benefit
as if he were to know of and relay directly to r, q does obtain im-
proved performance. This provides peer p an in-band incentive to
assist peers in finding lower-latency paths.

Reselling need not be an act of subterfuge. Although most la-
tency reduction is possible with one-relay paths, there are some
source-destination pairs which obtain their optimal latency reduc-
tion with multi-hop paths [9]. Building multi-hop paths is a natural
extension of peering agreements in PeerWise, as above.

An interesting area of future work is in studying the incentives
properties of a path of these bilateral agreements. Would, for in-
stance, a path built of bilateral peering agreements have comparable
incentive properties to mechanisms that require more communica-
tion, such as VCG routing [13, 2, 6]?

7. CONCLUSION
We have proposed the selfish routing overlay problem, and demon-

strated its difference from other, well-studied problems such as in-
centives in BitTorrent and the stable roommates problem. This
problem is complex, in part due to the fact that participants’ utilities
can vary greatly. The crux of the selfish routing overlay problem is

a local decision made by each peer: which peering agreements to
maintain, and when, if ever, to dissolve the agreements it has.

Within the context of the PeerWise Internet routing overlay, we
proposed two mechanisms to assist selfish routing overlay partici-
pants in choosing and negotiating their peering agreements. We be-
lieve these two mechanisms to be fundamental components toward
solving the selfish routing overlay problem. An in-band mechanism
as general as an SLA addresses the disparate goals of these peers.
Reacting to the history of interaction between peers addresses per-
sistent free-riders and unstable preferences.

The mechanisms presented in this paper are some initial steps
toward addressing the tussles that exist between routing overlay
peers. Many areas of future work remain. An important area of
future work is in developing specific SLAs and studying how well
they perform in the Internet, and what behaviors emerge.

Acknowledgments
We thank the anonymous reviewers for their helpful comments.
This work was supported in part by NSF Awards ITR-0426683,
CNS-0643443 and CNS-0626629, and MIPS grant 3808.

8. REFERENCES
[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient overlay networks. In SOSP, 2001.
[2] E. Clarke. Multipart pricing of public goods. Public choice, 11,

1971.
[3] B. Cohen. Incentives build robustness in BitTorrent. In P2PEcon,

2003.
[4] J. Corbo, S. Jain, M. Mitzenmacher, and D. C. Parkes. An

economically principled generative model of AS graph connectivity.
In NetEcon+IBC, 2007.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a
decentralized network coordinate system. In SIGCOMM, 2004.

[6] T. Groves. Incentives in teams. Econometrica, 41, 1973.
[7] K. P. Gummadi, et al. Improving the reliability of internet paths with

one-hop source routing. In OSDI, 2004.
[8] R. W. Irving. An efficient algorithm for the stable roommates

problem. Journal of Algorithms, 6:577–595, 1985.
[9] C. Lumezanu, D. Levin, and N. Spring. PeerWise discovery and

negotiation of faster paths. In HotNets, 2007.
[10] J. Martin and A. Nilsson. On service level agreements for ip

network. In IEEE Infocom, 2002.
[11] A. Nakao and L. Peterson. Scalable routing overlay networks. In

ACM SIGOPS Operating Systems Review, 2006.
[12] K. Varadhan, R. Govindan, and D. Estrin. Persistent route

oscillations in inter-domain routing. Computer Networks,
32(1):1–16, 2000.

[13] W. Vickrey. Counterspeculation, auctions, and competitive sealed
tenders. Journal of Finance, 16, 1961.

[14] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight
network location service without virtual coordinates. In SIGCOMM,
2005.

[15] B. Zhang, et al. Measurement-based analysis, modeling, and
synthesis of the internet delay space. In IMC, 2006.

	Introduction
	The Selfish Routing Overlay Problem
	Participants may opt out
	Not all peers benefit from one another
	Users have varying demand
	Long-lived agreements are preferred
	No modifications to destinations
	Peerings are not roommates

	Selfishness in PeerWise
	PeerWise Overview
	Self-interest in PeerWise
	A PeerWise peer's utility
	Selfishly selecting peering agreements

	Service Level Agreements
	SLA design space
	Dynamic SLAs

	Mechanisms for Long-Lived Peerings
	Long-term cooperation with confidence
	Experimental results

	Emergent Behaviors
	Overselling one's resources
	Reselling peering agreements

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

