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ABSTRACT
The ability to revoke certificates is a fundamental feature of
a public key infrastructure. However, certificate revocation
systems are generally regarded as ineffective and potentially
insecure: Some browsers bundle revocation updates with
more general software updates, and may go hours, days, or
indefinitely between updates; moreover, some operating sys-
tems make it difficult for users to demand recent revocation
data. This paper argues that this sad state of affairs is an
inexorable consequence of relying on unicast communication
to distribute revocation information.

We present RevCast, a broadcast system that dissemi-
nates revocation data in a timely and private manner. Rev-
Cast is not emulated broadcast over traditional Internet
links, but rather a separate metropolitan-area wireless broad-
cast link; specifically, we have designed RevCast to oper-
ate over existing FM radio, although the principles apply to
alternative implementations. We present the design, imple-
mentation, and initial deployment of RevCast on a 3 kW
commercial radio station using the FM RDS protocol. With
the use of two types of receivers (an RDS-to-LAN bridge that
we have prototyped and an RDS-enabled smartphone), we
show that, even at a low bitrate, RevCast is able to deliver
complete and timely revocation information, anonymously,
even for receivers who do not receive all packets all the time.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; E.3 [Data Encryption]: Public key cryptosys-
tems, Standards

Keywords
Certificates; Revocation; FM Radio; RDS; Heartbleed; Broad-
cast; Security; X.509
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1. INTRODUCTION
Today’s public key infrastructures (PKIs) provide the means

by which users can verify with whom they are communicat-
ing. A necessary primitive in any PKI is the ability for a
certificate authority (CA) to verifiably revoke a certificate it
has issued, and to disseminate these revocations to all users
who may have cached the corresponding certificates. In prac-
tice, the most common means of certificate revocation is for
a CA to aggregate its revocations into certificate revocation
lists (CRLs), as described in the X.509 standard [6]. CAs
are actively issuing revocations in their CRLs. We observed
at least one revocation in 17.6% of the 20 second intervals
in March 2014 and April 2014.

CRLs have been the focus of debate for nearly a decade:
given the high bandwidth costs of disseminating entire lists
of revocations to virtually all users, what properties can we
hope to achieve [18, 13], and if not, then should we elimi-
nate them altogether [25, 16]? We distill from these public
debates on CRLs a set of properties that we believe any
revocation system should have:

• Timeliness: The time from when a certificate is revoked
to the time that all interested, active parties learn of the
revocation should be minimized. Ideally, this would be
on the order of seconds, as opposed to the hours or days
it takes clients today.

• Low-cost dissemination: The raw bandwidth consumed
must scale well with the number of clients, CAs, and cer-
tificates, and overall deployment costs must be mitigated.

• Privacy: Ideally, obtaining revocation information should
not result in a loss of client privacy, e.g., by revealing
browsing habits.

These three naturally desirable properties have proven dif-
ficult to achieve in tandem. The de facto means of dissemi-
nating revocations, CRLs, achieve low cost and privacy, but
at the expense of timeliness. Google, for instance, pushes re-
vocation information to Chrome browsers via Chrome soft-
ware updates [15], though typically infrequently. On the
other end of the spectrum, the Online Certificate Status
Protocol (OCSP) [26] provides a more timely alternative to
CRLs—clients can request revocation state precisely when
they visit a given site—but results in users divulging their
browsing habits to a typically small set of third parties. Var-
ious approaches have been proposed that employ novel tech-
niques in cryptography [13, 10, 19, 17, 8, 1] and distributed
systems [31], but have broadly been able to achieve two of the
three properties simultaneously. (We review related work
more thoroughly Section 6.)



Based on these options, it would appear that revocation
systems are faced with inherent trade-offs between timeli-
ness, low cost, and privacy. Indeed, the communication
primitives of the Internet are not tailored to achieving what
would be ideal for certificate revocation: delivering a con-
stant stream of data to all users all the time. As a result,
all revocation systems of which we are aware assume that
clients can pull data only infrequently, on the order of hours
or days.

In this paper, we propose augmenting Internet communi-
cation with a very old communication primitive: metropolitan-
area broadcast. We present RevCast, a system which uses
low bit-rate radio broadcast, such as FM radio, to deliver
revocation information in a manner that is timely, naturally
scales to a virtually unbounded number of receivers within
a given area, and is inherently receiver-anonymous.
RevCast challenges the established belief that the trade-

offs between timeliness, low cost, and privacy must be inher-
ent to all revocation systems. Despite operating over FM’s
measly 421.8 bit/s, RevCast users need not wait hours or
days for up-to-date revocation data: we show, for the vast
majority of the time, users’ local revocation state remains
consistent within at most tens of seconds. The main techni-
cal challenge that RevCast addresses is the ability to com-
pactly represent many CAs’ attestations over such a low-
bandwidth channel. We demonstrate empirically that Rev-
Cast is able to use this meager bit-rate from a single tower
to simultaneously deliver in a timely manner all revocations
reported by 621 CAs over the span of a month.

This rest of this paper is organized as follows: We describe
in §2 the benefits that broadcast has over unicast when dis-
seminating revocation information, and argue that FM RDS
is particularly well-suited for this task. In §3, we present the
RevCast design, which makes use of multi-signatures to
achieve a compact representation of revocation state while
scaling to a large number of CAs. To demonstrate that Rev-
Cast permits a practical deployment today, we describe in
§4 an inexpensive hardware prototypical receiver, and eval-
uate it with an initial deployment on a 3 kW commercial ra-
dio station. With a trace-based evaluation, we demonstrate
in §5 that RevCast’s compact representation of revocation
state allows it to disseminate up-to-date information from
hundreds of CAs, typically within tens of seconds, despite
FM RDS’s meager bitrate. We also stress-test RevCast
with recent spikes in revocation rates due to the Heartbleed
OpenSSL vulnerability. Finally, we review related work in
§6 and conclude in §7.

Ultimately, RevCast demonstrates that, through the novel
use of existing infrastructure, a more timely and more pri-
vate revocation system is a practical reality.

2. DISSEMINATING REVOCATIONS
The key feature of certificate revocation is that one must

be able to retrieve an authoritative, current statement that
a certificate has not been revoked. Thus, when a certificate
is revoked, all users who have received the certificate—or
will ever receive it before it expires—must obtain a non-
repudiable attestation that it is no longer valid. Because
this set of users can be huge—especially for widely popular
services—the primary challenge in practice is to disseminate
the proofs of revocation to all users who need them. In this
section, we describe why unicast protocols are fundamen-
tally limited in achieving this goal, why broadcast is neces-

sary, and why we chose to focus on FM RDS as a practical
substrate for carrying RevCast.

2.1 Unicast revocation is flawed
The most common forms of certificate revocation are de-

signed around unicast. Commonly, this means either retriev-
ing a complete list (a CRL) to ensure that a certificate of
interest is not present, or querying for the status of a specific
certificate via OCSP. In both cases, for a current statement,
a query must be sent, per-server and disclosing the server
of interest in the case of OCSP, and per-CA and requiring
storage of unnecessary entries in the list in the case of CRLs.

Security is paramount in the design of a PKI, but im-
plementations of OCSP and CRL checking typically treat a
failure to communicate to the server as a benign indication
of Internet connectivity issues [3, 14]. This is despite the
fact that an attacker capable of intercepting a client’s traffic
to impersonate a server would almost certainly also be able
to intercept and discard OCSP.

Even multicast distribution of revocation information faces
similar problems. Application layer multicast is vulnerable
to eclipse attacks [27], where a node’s peers are replaced by
puppets of or Sybils [7] created by the attacker so that the
attacker can deny service to or otherwise fool the victim.
IP multicast can similarly be intercepted by a man-in-the-
middle and may be additionally vulnerable to a denial of
service attack by a well-provisioned attacker.

In short, although unicast has been successful as the de
facto communication primitive on the Internet, revocation
imposes unique requirements—in particular, the need to trans-
mit the same information to virtually all users—for which
unicast is ill-suited.

2.2 Broadcast is very well suited to revocation
The broadcast primitive, which delivers the same data to

all destinations, is the natural fit for revocations, which must
be delivered to (virtually) all clients. Unfortunately, there is
no such wide-area broadcast primitive on the Internet today
(broadcasts are relegated to subnets), nor is there likely to be
in the near future; interdomain broadcast would be difficult
to price, and the inherent amplification factor would be a
prime target for attackers.

However, metropolitan radio broadcast, as an alternate chan-
nel to the standard links on the Internet, is in widespread use
today. Moreover, it has many properties that make it a vast
improvement over unicast: It is robust to the types of eclipse
and man-in-the-middle attacks that plague application-layer
multicast. While subject to other forms of attack—in partic-
ular, jamming—metropolitan-area radio broadcast is gener-
ally regulated and monitored by an entity like the FCC, who
triangulates sources of jamming and prosecutes, if necessary.
Additionally, metropolitan-area broadcast is also trivially
receiver-anonymous, and has communication cost that scales
with the number of revocations rather than the number of
secure connections.

An inherent property of wireless broadcasts is that an in-
crease in transmission range results in lower bit-rates. As a
result, metropolitan-area radio broadcast systems typically
have far less bandwidth than standard Internet links. For
example, cell broadcast operates at 5225.7 bit/s across a
cell coverage area, and FM RDS (described more below)
operates at only 421.8 bit/s yet covers approximately 100
miles. While these bit-rates would be unreasonable for a



single user, the key property that revocation allows us to ex-
ploit is that all users must obtain the same data. Effectively,
then, metropolitan area broadcast achieves a throughput on
the order of their (low) bit-rate multiplied by the (huge)
number of users within broadcast range. In the case of FM
RDS, some towers cover over 10 million people, resulting in
an effective bandwidth of 4.22 Gbit/s.

2.3 FM RDS is particularly well suited
The European Broadcasting Union developed the FM Ra-

dio Data System (RDS) in the 1980s [23]. The RDS Open
Data Application (ODA) framework permits transmission of
arbitrary data, limited to an effective 421.8 bit/s. We chose
to focus our design and evaluation on FM RDS for the fol-
lowing reasons.

(1) FM transmissions have extensive coverage. Their fre-
quencies propagate through walls, and their transmission
ranges can be approximately 100 miles, depending on trans-
mitter power and terrain. This permits remarkably com-
plete coverage with few transmitters. Conversely, higher fre-
quencies associated with cellular infrastructure require more
transmitters to achieve similar coverage, and may be less
dependable indoors. Also, the higher frequency and lower
signal-to-noise ratio of satellite transmissions makes them
unreliable indoors.

(2) FM RDS receivers are inexpensive and small, capable
of being embedded into existing devices. They are even
present (but often disabled) in today’s cell phone chipsets,
notably the BCM4334 in the iPhone 5S. Although lower fre-
quency shortwave transmissions offer even better coverage
than FM’s VHF transmissions, receiving shortwave requires
large antennas.

(3) FM RDS transmitters are already licensed to transmit
data, and have the necessary Internet connectivity and com-
puting infrastructure to do so. Station identification and
information about the currently playing artist and song are
currently sent from distribution servers to radio stations via
TCP/IP, then broadcast to radios via FM RDS. An alter-
nate design, perhaps using an entire channel or an altogether
different subcarrier, would require licensing.

(4) Even considering its low bit-rate, FM RDS is currently
under-utilized and under-monetized. It takes relatively few
bits to provide artist, title, and station information. Also,
based on personal communication with radio station opera-
tors, we have found that FM RDS has yet to be monetized;
we therefore anticipate that shifting the infrastructure costs
that CAs currently face towards FM stations would be a
welcomed deployment by station operators.

Moreover, delivering revocation data via FM RDS along-
side standard Internet-based dissemination systems provides
defense in depth that makes attacks considerably more dif-
ficult. To block a user from receiving up-to-date revocation
state, an attacker would have to simultaneously intercept
Internet traffic and create a fault in the victim’s FM RDS
reception. Likewise, although typical Internet connectivity
interruption may cause a CRL fetch or OCSP query to fail,
it should not fail simultaneously with an orthogonal, radio-
based system.

2.4 Summary
It is our contention that broadcast, particularly on a chan-

nel that is independent from one an attacker might control,
provides a fundamental, missing primitive that can secure
the public key infrastructure efficiently. To move towards
this vision, we identify the primary technical challenge to
be making efficient use of metropolitan radio broadcast’s in-
herently low bit-rate so that all users can receive revocation
information in a timely manner. In the next section, we de-
scribe a protocol that shows this to be possible through the
novel use of recent cryptographic mechanisms.

3. REVCAST TRANSMISSION PROTOCOL
Our goal is to deliver revocations to millions of end hosts

in a manner that is:

• consistent: all receivers should be able to determine
how out of date their “revocation state” is

• timely: so long as CAs follow the protocol, end hosts’
revocation state should be up to date within at most tens
of seconds

• privacy-preserving: our protocol should reveal noth-
ing about users’ browsing habits to any party

• scalable with respect to the number of CAs: our
protocol should permit hundreds of CAs without sacri-
ficing any other properties

• able to support practical rates of revocation: our
metric for this is the ability to support all revocations
from an existing months-long data set of revocations

• consistent with the existing trust model: our pro-
tocol should remain correct without requiring either users
or CAs to trust any additional parties than in the current
web PKI

Additionally, we seek to optimize to support users who
may occasionally miss small portions of the broadcast. We
offer no additional optimizations for handling loss of very
large portions of the broadcast; in such events, the user
would have to obtain the data he missed via traditional
means (e.g., downloading the missed CRLs), but can benefit
from broadcasts in the interim.

These properties are natural to desire; indeed, we are not
the first to propose them [25, 16, 31]. However, we are the
first to demonstrate they can be practically realized using
existing infrastructure at low cost.

The principals involved in our protocol consist of CAs who
are the source of all revocation state, users who wish to main-
tain up-to-date revocation state, and towers who broadcast
this state to users. As we will see, in our design, towers also
play a slightly more active role in preparing the revocation
state for broadcast, but this does not require any additional
trust to maintain correctness.

Conceptually, the RevCast protocol is rather simple: the
CAs sign attestations of their revocation state and forward
them to the tower, who then broadcasts the attestations.
The challenge is to arrive at a compact representation of the
revocation state so as to keep transmissions timely despite
the 421.8 bit/s rate of the broadcast channel.



3.1 Assumptions and threat model
RevCast’s design is driven by several modest assump-

tions about the rate at which CAs revoke certificates. We
assume that, over a very small window of time (on the or-
der of 10 seconds), the following hold: (1) any given CA
revokes few certificates (typically none, but often fewer than
a dozen), and (2) at most only a few CAs issue revocations.
We emphasize that these assumptions only apply to these
very small windows of time, not across, say, hours or days.
In Section 5, we demonstrate, with a measurement study of
621 CAs over two months, that these assumptions do hold
in practice.

When operating at such small time windows, the primary
challenge lies not in delivering the revocations, but in deliv-
ering CAs’ attestations that nothing was revoked since the
last message. These attestations are ever-present, they come
from almost all CAs, and they must be delivered at a very
high rate for users to ensure that their revocation state is
up-to-date.
RevCast’s threat model mirrors that of today’s PKI: end-

users can make their own trust assumptions regarding indi-
vidual CAs. We note that RevCast does not require ad-
ditional trust assumptions regarding the FM tower. Towers
may arbitrarily drop, alter, or repeat transmissions from an
arbitrary subset of CAs. Moreover, attackers may jam or
drown-out FM towers with their own broadcasts. As we will
demonstrate in this section, RevCast remains secure in the
presence of such untrusted communication because it uses
FM merely as a means of dissemination—authentication is
achieved end-to-end (between CA and end-user).

3.2 A single CA
To simplify the presentation, let us first consider a single

CA making sole use of a tower to transmit its revocation
state. The critical information involved in a revocation r—
that is, what is required in X.509 [6]—consists of1:

• The CA’s identity and public key identifier.

• The serial number, s, of the revoked certificate.

• A timestamp, t, signifying at what time the certificate
should be considered revoked.

• The CA’s signature, σ, of the above information.

CA identifier.
Note that the CA’s identity and key change at a much

slower rate than the CA’s revocation state. Rather than
repeatedly broadcast these identifiers, the tower maintains a
simple web server that receivers can go to very infrequently
to learn of the associated CA’s identifier and key.

Revocations.
Suppose that our given CA generates revocation ri at time

ti. To put timing into perspective, note that a 4096 bit sig-
nature would take 9.71 seconds to transmit over our 421.8
bit/s RDS link. Our analysis of a large CRL dataset (Sec-
tion 5.3) indicates that the time between consecutive revoca-
tions, ti+1 − ti, is typically greater than 10 seconds (leaving

1There are various extensions that include information such
as the reason for the revocation, but since those are not
strictly necessary to determine if a certificate is revoked, we
do not consider them here.

enough time for the largest signatures we have observed),
but not always. In the event that ti+1 − ti is less than the
time to transmit ri’s revocation data, we could face unnec-
essary delays were we to simply stream revocations as they
occur from the CA to the tower. Were the tower to simply
wait and deliver a signature across both revocations ri and
ri+1, this delay could have been avoided.

Fortunately, the long time to broadcast revocation data
provides a natural window of time during which to aggre-
gate revocation data. Suppose that the tower can send a
new transmission every w seconds. The CA collates all
of its revocation data over w seconds, resulting in a (typ-
ically empty) set of revoked, time-tagged serial numbers
S = {(t1, s1), . . . , (tk, sk)}. Nearing the end of a broadcast
window, if S is non-empty, then the CA sends to the tower
the set S, and a signature over the entire set (we discuss
empty sets next).

One alternative to this fixed parameter w would be to sim-
ply wait until the previous transmission is complete. How-
ever, CAs sometimes (though quite rarely) appear to deliver
many revocations all at once (Section 5.3). Allowing the set
of revoked serial numbers S to grow unbounded would risk
having end hosts become arbitrarily inconsistent with the
tower. Instead, when S is too large to be able to transmit
within time w, then the CA sends a message attesting to
the fact that there are too many new revocations to broad-
cast. It can either split these up into successive broadcast
windows or, in the extreme case, simply suggest to end hosts
that they directly obtain the updated CRL.

Nothing-now messages.
Over a short period of time, it is likely that a given CA has

no revocation to send (Section 5.3). Were we to broadcast
nothing during these times, then end hosts would have no
way to distinguish between a period of no revocations and,
say, a malicious tower who has failed to forward the CA’s re-
vocation state. For end hosts to know that their revocation
information is up to date, a CA must provide “nothing-now”
messages: signed attestations that there have been no addi-
tional revocations since the last broadcast window.

More concretely, at the beginning of a broadcast window,
the tower delivers to the CA a timestamp T denoting a time
near the end of the broadcast window (roughly w seconds
into the future). If the CA has made no revocations by
time T , then it signs the message ⊥ ||w||T , and sends the
signature to the tower (in practice, ⊥ could be a constant,
well-known string, e.g., “nothing”). This represents a signed
attestation that“there have been no revocations in the inter-
val [T − w, T ].” Thus, at every time interval, the CA sends
one of two signed messages: either a list of revoked certifi-
cates’ serial numbers, or a message indicating that there are
no updates.

3.3 Multiple CAs
While a single CA could vastly improve timely delivery of

revocation state for a large fraction of the web’s certificates
(two CAs from our dataset each account for roughly 39%
of all of the revocations), we extend our protocol to allow
many more CAs to make simultaneous use of a tower. In
the remainder of this section, suppose there are N CAs who
all wish to make simultaneous use of a given tower.

A strawman approach would be to simply append all N
CAs’ revocation state. This would result in broadcasts that



consist of N signatures and up to N sets of revoked data.
That is, the messages would typically be roughly N times
larger than in the single-CA case, and thus would decrease
the timeliness of the information by a factor of roughly N ,
as well. In the event that all N CAs have new revocations
to issue within a given broadcast window, this may be the
best that we can achieve.

Revocations.
However, as our results in Section 5.3 show, it is extremely

uncommon for more than two CAs to have revocations to
send within a broadcast window of ten or less seconds. We
can therefore expect that there are typically only a small,
constant number of revocations from an even smaller set of
CAs to send within any broadcast. As a result, we append
these messages, typically resulting in at most two signatures
(and often none).

We compactly represent the originator of the individual re-
vocations by maintaining a simple lookup table at the tower.
This table maps CA ci, for 0 ≤ i ≤ N − 1, to its full CA
identifier and key identifier strings. We expect that this set
of CAs changes very infrequently, on the order of months—
in practice, the tower would likely have a business agreement
with a CA to transmit its revocation information. Receivers
must obtain this list whenever it updates, but doing so allows
the tower to only transmit the index i of the CA, instead of
the much longer identifier strings.

As a result, an individual revocation appears on the broad-
cast medium as i||Si||σi, comprising the revoking CA (i),
the time-stamped, revoked certificates serial numbers Si =
{(ti,1, si,1), . . . , (ti,k, si,k)}, and signature σi.

Saving bandwidth with multi-signatures.
The remaining challenge is to represent all of the nothing-

now signatures that all the other CAs must include. Recall
that a nothing-now message allows a CA to attest that it
has no new revocations since the last broadcast window.

Our key insight is that all CAs with nothing to send in a
given broadcast window can all sign the same message (⊥,
along with a recent, tower-supplied timestamp). We can
thus make use of a multi-signature [12] scheme, which allows
a set of N signers to sign the same message, resulting in a
single, “compact” signature with size equal to the size of the
largest signing key. Compared to the more general “aggre-
gate signature”—which allows a single signature over multi-
ple messages—multi-signatures can exploit the assumption
of a common message to achieve faster verification times.

We provide a background on multi-signatures using bilin-
ear maps, and then describe our protocol which uses them.

Background: multi-signatures with bilinear maps.
Recall that a bilinear map consists of a function e : G ×

G → G, with the special property that for any generator
g ∈ G, e(ga, gb) = e(g, g)ab. For groups G over which the
discrete log problem is hard (that is, given g and ga, it is hard
to determine a), bilinear maps allow for signature schemes,
wherein the private key is some random a and the public
key is ga for a publicly known generator g ∈ G. Boneh,
Lynn, and Shacham [5] described an elegant construction
of signatures in which signing a message m consists of sim-
ply computing H(m)a; verification consists of ensuring that
e(H(m)a, g) = e(H(m), ga).

Boldyreva [4] demonstrated that bilinear map-based schemes
also permit a straightforward protocol for multi-signatures;
we review this briefly here. Suppose, for simplicity, that
two parties with private keys a and b wish to sign the same
message m. In essence, a multi-signature results in a new
secret key a + b; the signed message is H(m)a · H(m)b =
H(m)a+b. Note that this can be computed nonsequentially :
the two signers could perform their action in parallel, and
either of them (or a third party) could combine them into
the multi-signature. Verification consists of ensuring that
e(H(m)a+b, g) = e(H(m), ga+b). Note that ga+b can be
computed by simply multiplying the two signers’ public keys
together: an operation that any verifier could perform.

One of the main attacks that significantly complicates
multi-signatures in most settings is known as a rogue key
attack [24]. The attack proceeds as follows: Given a vic-
tim’s public key ga, although it is difficult to compute a, it
is easy to invert this number to obtain g−a. An attacker can
thus, without knowing a, assert ownership of a public key
gr · g−a = gr−a for some randomly chosen r. Thus, a mes-
sage signed with r, i.e., H(m)r, would appear to be signed by
both a and r, because the equivalent multi-signature public
key would be ga+(r−a) = gr.

Rogue key attacks are possible when the attacker can as-
sert that he owns public key gr−a without having to prove it.
Ristenpart and Yilek [24] showed that they can be avoided
by requiring simple proofs of possession, that is, by requiring
that the attacker sign a message using his public key gr−a.
This requirement is often considered unreasonable in today’s
PKI, as it would require modifications to existing key sharing
schemes. However, as we show next, our application permits
including these proofs of possession in-band.

Nothing-now messages.
Using Boldyreva’s multi-signature scheme, our protocol

proceeds as follows. Suppose CA ci has key pair (PKi,SKi) =
(a, ga) for some well-known g and random a, as above. At
the start of a broadcast window, the tower sends to each CA
a timestamp T representing when the next broadcast will
be sent. Each CA first verifies that this is a valid times-
tamp approximately w seconds (the length of the broadcast
window) into the future. Nearing the end of the broad-
cast window, suppose the set of CAs who have no revoca-
tions to report is R. Each CA ci ∈ R computes signature
σ⊥,i = H(⊥ ||w||T )SKi , and sends σ⊥,i to the tower.

We can avoid the rogue key attack in our setting by requir-
ing that, before entering a multi-signature, each CA must
have issued a verifiable individual signature—a revocation—
before entering a multi-signature. This individual signature
serves as proof that the sender owns his public key, and
can thus be safely assumed not to be launching a rogue
key attack in our multi-signature scheme. Such a proof of
possession also requires that RevCast use different hash
functions for individual signatures and nothing-now signa-
tures [24] (in practice, this can be achieved by using the same
hash function, but simply with different prefixes, H(0||x)
and H(1||x)).

An honest tower may refuse to include signatures in its
broadcast for two reasons. First, the tower does not include
signatures that it cannot verify; to do otherwise would allow
a single signer to make the multi-signature fail to verify for
all parties. Second, if the tower does not receive CA ci’s mes-
sage before its scheduled transmission time T , then the tower



proceeds without ci’s signature that round; to do otherwise
would allow a lazy (or malicious) CA to delay everyone’s re-
vocation state from being sent. It is thus important that each
CA remain online and available, which is consistent with the
assumptions of CA availability today. Suppose w.l.o.g. that
each CA ci ∈ R returns its signature by the deadline, and
that the tower is able to successfully verify all of them.

Having collected and verified signatures from the CAs in
R, the tower constructs the multi-signature by simply mul-
tiplying the signatures together: σ⊥ =

∏
i∈R σ⊥,i. As a

final step, the tower broadcasts: (1) individual revocations
(if any), (2) the timestamp T , and (3) the multi-signature
σ⊥.

Receivers verify the individual revocations as in the single-
CA case. To verify the multi-signature σ⊥, the receiver re-
constructs R—note that this is simply the set of all CAs
registered at the tower minus those who issued individual
revocations in this time interval—and checks that e(σ⊥, g) =
e(H(⊥ ||w||T ),

∏
i∈R PKi).

3.4 Handling receiver loss
Our protocol thus far has assumed that every receiver ob-

tains all transmissions, but as our FM RDS measurement
results demonstrate (Section 4), receivers near the periphery
of a tower’s service contour can experience low but consistent
loss. We extend our protocol once more to assist these users,
keeping them from having to query the CAs repeatedly.

Our insight is to exploit the fact that, within most broad-
cast windows, there are no revocations from any CA. If a
receiver fails to obtain the data from one or more consec-
utive broadcast windows, we seek a means by which that
receiver could ascertain whether it has missed any updates.

To this end, CAs optionally participate in one more multi-
signature. This“nothing-since”attestation is meant to repre-
sent says that none of the set of signing CAs have issued any
updates within the last W seconds: a larger window of time
than our broadcast windows (W > w). This follows a nearly
identical protocol to the nothing-now multi-signatures: In
addition to the timestamp of the next broadcast, T , the
tower also sends some time in the past, T −W . If the CA
has issued no revocations within the time period [T −W,T ],
then it signs the message ⊥ ||W ||T . As before, the tower col-
lates the signatures by multiplying them together. Note that
this is a strict generalization of the nothing-now messages,
which are nothing-since messages with W = w.

In addition to sending the multi-signature, the tower must
also compactly represent the set C of CAs who are included
in the nothing-since signature. This was not necessary for
nothing-now messages, since the set of CAs who have noth-
ing to send now is simply the set of all CAs set-minus the
set of CAs who issued individual signatures. We represent C
with a bit array of length N , and transmit either the bit ar-
ray itself or in run-length encoded form, whichever is smaller
for that transmission.

The extension as described above introduces a redundancy:
any CA providing a nothing-since signature implicitly has no
revocations now, yet in our scheme it also provides a nothing-
now signature. This permits a straightforward optimization
wherein each CA signs at most one message: a revocation, a
nothing-since (if it has not revoked in the last W seconds),
or a nothing-now (if it is not revoking now, but has revoked
within the past W seconds). Receivers infer the set of CAs
involved in the nothing-now multi-signature by simply re-

moving both the CAs who provided individual signatures as
well as those who signed the nothing-since message.

We note in closing that, were our protocol applied to
a more reliable broadcast medium, nothing-since messages
may not be strictly necessary, though it would allow receivers
to occasionally enter a power-save state.

3.5 A day in the life of a receiver
We summarize our design by discussing how a receiver

interacts with our system. If the receiver has not obtained
the tower’s table mapping index i (0 ≤ i ≤ N−1) to each CA
ci’s identity and key identifier strings, then it obtains this
as well as tower-specified parameters w and W by accessing,
say, a web server run by the tower.

The receiver then tunes to the station and, within each
receiver window, obtains a message that comprises the fol-
lowing components:

• Individual revocations, i||t1||s1|| · · · ||tk||sk||σi, where i
represents the tower-supplied index for CA ci, the (t, s)
pairs represent the timestamp and serial number of cer-
tificates that ci revokes, and σi is ci’s signature over this
list.

• A list of CAs who failed to reply to the tower in time for
inclusion in the broadcast.

• Nothing-now multi-signatures, T ||σ⊥, where T represents
a tower-supplied timestamp and σ⊥ is the multi-signature
signed by all CAs except those who issued individual re-
vocations or failed to reply in time.

• Nothing-since multi-signatures C||σ′⊥, where C repre-
sents the list of CAs who have signed multi-signature
σ′⊥, asserting that they have not issued any revocations
in the period [T −W,T ].

If any of the above signatures fail verification, then the re-
ceiver drops the corresponding data, and treats it as if he
failed to obtain the broadcast.

Suppose the receiver missed the previous m broadcast
windows, that is, that his state is m ∗ w seconds old. If
m ∗ w ≤ W , then the receiver can determine (from the
nothing-since message) from whom he has missed prior re-
vocations, and request them directly from the corresponding
CAs, e.g., by downloading their CRLs. If, on the other hand,
m∗w > W , then the receiver has missed too many messages
for the nothing-since messages to help—perhaps the receiver
just turned on for the first time, or experienced a prolonged
failure. In such an event, the receiver must obtain, one-time,
the CRLs from each of the CAs it trusts, but can then use
any broadcasts it obtains in the interim.

Note that throughout this process, the tower is merely a
forwarder: though the tower could potentially be an active
attacker, the results of Boldyreva’s multi-signature scheme
ensure that the end-user can still verify the authenticity and
non-repudiability of each CA’s message. As such, the secu-
rity analysis follows as a direct application of Boldyreva’s
scheme.

3.6 RSA-based multi-signatures instead?
Our protocol makes use of bilinear maps over elliptic curves,

but in practice today, CAs almost solely use RSA. Ideally,
we would make use only of the RSA key pairs that CAs al-
ready have. Here, we briefly describe our rationale behind
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Figure 1: Overview of RevCast.

choosing ECC, and potential areas of future work to more
readily permit an RSA-based approach.

Adopting use of our system would require that CAs gener-
ate elliptic curve keys (a, ga) under some well-known gener-
ator g, and to attest to them. This process is possible incre-
mentally and without requiring additional trust assumptions
on behalf of users. One such construction could proceed by
having a CA sign its public key ga with its existing RSA
public key, and disseminating this info (e.g., directly off of
the CA’s website and through the tower itself). Because the
trust in the elliptic curve-based key would be rooted in the
RSA key, clients’ root CA information need not be modified.

Elliptic curve techniques have several benefits over their
RSA-based counterparts, most notably smaller key sizes (and
thus less bandwidth consumed). Additionally, with respect
to multi-signature schemes, the bilinear map-based construc-
tion we use [4] has the attractive property that it does not
require sequential signing. All RSA-based multi-signature
schemes of which we are aware require sequential signing
or interaction; a non-sequential RSA-based multi-signature
scheme would be extremely powerful in our setting. Nonethe-
less, given the duration of our broadcast windows, sequential
signing may be feasible in practice for a moderately sized set
of CAs.

Finally, the bilinear maps-based scheme we use is, we have
found, extremely simple to express and to implement. Other
RSA-based schemes of which we are aware are considerably
more complex [20], but it is possible that this would be im-
proved in the future.

4. DESIGN AND IMPLEMENTATION
In this section, we describe the design and prototype im-

plementation of a full end-to-end RevCast system that makes
use of the transmission protocol from Section 3. Figure 1 il-
lustrates an overview: RevCast transmissions come from
CAs to an Internet-connected server in the radio station.
End hosts can receive RevCast directly through an embed-
ded FM RDS receiver, or via a proximal FM RDS receiver
that locally rebroadcasts (e.g., over a wireless access point)
messages to clients that missed broadcasts while powered-off
and, for incremental deployment, to non-FM RDS enabled
clients.

4.1 Transmitter
Installed at the radio station, the RevCast transmitter

software runs on an Internet-connected computer that can
send data to the RDS encoder with Ethernet or serial con-

nection. This is in line with the current server deployments
at radio stations to download and broadcast artist and song
information over RDS. Additionally, our transmitter can au-
thenticate, authorize, and charge CAs to transmit their re-
vocations, but this is outside of the scope of this paper.

The underlying RDS ODA protocol provides nominal head-
ers, but to support our variable-sized transmissions, we have
constructed our own framing scheme. We call each unit of
transmission a package, which consists of segments, which
are in turn (sender(s), data, signature(s)) triples. The be-
ginning of a package, the segments within a package, and the
signature are delimited. This is driven by the principle that
a radio’s wake-up time varies and a receiver should be able
to detect the start of a new segment they want to receive.
We use the RDS B group as a delimiter (16 modifiable bits),
followed by the data in RDS A groups (37 modifiable bits).

4.2 Receiver
A RevCast receiver is simply any client that can obtain

and verify transmissions from our over-the-air protocol. As a
means to bootstrap deployment to existing devices, we have
developed a last-mile link receiver prototype for PCs and
OpenWRT routers that receives broadcasts and optionally
rebroadcasts them over a local wireless network. In this sec-
tion we describe the receiver hardware prototype, the corre-
sponding client-side software, and how the power consump-
tion of a RevCast receiver will not significantly drain the
batteries of RDS-enabled smartphones.

RDS-to-LAN bridge.
To realize our vision of a pervasive deployment of Rev-

Cast receivers in Internet-connected devices, we designed
a RDS-to-LAN bridge: a low-cost, low-power RDS receiver
that can be plugged into residential wireless access points via
USB, over which it can then rebroadcast revocation state.
We envision the RDS-to-LAN bridge deployment in routers
as a last-mile link. Our RDS-to-LAN bridge prototype in-
cludes a 1/30th wavelength monopole antenna trace on the
PCB, and a Silicon Labs si4705 FM receiver integrated cir-
cuit. These chipsets have several nice properties that make
them ideal for a pervasive deployment: they are inexpensive,
small (the si4705 is 3 mm2), power-friendly, and they require
only a few external components.

Client-side API.
We implemented a receiver in C that runs on OpenWRT

routers, PCs, and smartphones. Our design takes advantage
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Figure 2: Broadcasting 149 packages (x-axis), each 160 bytes, from a 3 kW tower to four RevCast RDS-to-
LAN bridges (y-axis). A black box indicates the package’s signature verified, a white box indicates either the
signature did not verify or there were missing RDS groups. RDS error correction is disabled. The high SNR
receivers capture >99% of the packages. The low SNR receivers miss many, but not all, and they only miss
three of the same packages.

of the continuous-stream nature of broadcasts; as there is
always incoming data, a receiver can easily detect that it
missed a transmission. The client can receive broadcasts
from a local receiver (as is the case with an RDS-enabled
smartphone) or over LAN multicast from an RDS-to-LAN
bridge. The client-side API consists of three methods:

• Subscription: Applications ask the receiver to subscribe
to RevCast segments on a given tower. The receiver
then tunes to the specified tower, and stores on all in-
coming RevCast-related transmission on its local, Mi-
croSD storage. The receiver’s subscription service is a
basic TCP server that takes subscriptions as input and
outputs segments to applications.

• Local-retrieval: Clients may not be able (or want) to
stay powered-on to receive all broadcasts. Instead, while
powered-off, the local RDS-to-LAN bridge stores incom-
ing broadcasts, which the client can explicitly retrieve
after powering back on. We have embedded a 16 GB
MicroSD card in our receiver, which allows for storage of
ten years of continuous broadcasts. We run a small TCP
server on the receiver, that allows clients to obtain the
segments reliably and in order.

• Verification: Finally, upon retrieving all of the incom-
ing revocation state, the client verifies the relevant sig-
natures, and discards any that fail verification. A client
could perform verification of all incoming signatures, but
a reasonable optimization would be to immediately verify
revocation signatures only if the client holds the corre-
sponding certificate.

Power consumption.
Because RevCast runs continuously on all devices, it

is important that receiving and verifying revocations from
RevCast remain power-friendly. Here, we describe why
RevCast will not significantly drain the battery of an RDS-
enabled smartphone. The primary reason is that, in the com-
mon case (when there are no new revocations), RevCast
will not require continuous operation of the RDS receiver.
With 621 CAs, RevCast requires 2.89 sec to receive the
package comprised of nothing-now and nothing-since mes-
sages. The receiver could then be powered off for the re-
mainder of the broadcast window (tens of seconds in our ex-
periments), minus the time it takes the receiver to turn on
and tune in. As a concrete example, we measured the si4705
chipset to take ∼0.7 sec to turn on and tune in. Moreover,

Location SNR Dist. from tower
Apartment building 40 0.85 km
Apartment building 24 5.5 km
University building interior 22 2.7 km
Apartment building 19 8.0 km

Table 1: RevCast prototype receiver locations in
the testbed deployment

the si4705 can receive most of the 2.89 seconds-long package
without having to power on the smartphone’s CPU because
the si4705 has an internal FIFO that can store up to 2.19
seconds worth of RDS messages.

Using the Google Nexus 5’s power consumption as an ex-
ample, we can compare the energy consumed receiving revo-
cations with RevCast to normal operation. To power on,
tune in, and receive a package consisting only of nothing-
now and nothing-since messages takes the si4705 3.59 sec.
The si4705’s power consumption while receiving RDS is only
64 mW. This results in a total consumption of 230 mJ or
the equivalent of 605 msec of idle CPU and dimmest screen
brightness (which consumes 380 mW). RevCast will also
consume some energy to store the package until the smart-
phone needs it. Assuming 20 sec broadcast windows, contin-
uous reception of RevCast on a Google Nexus 5 for an en-
tire day would consume as much power as leaving the phone
idle, and with dimmed screen, for 0.73 hours. This is a rea-
sonable cost for most users, but further optimizations are
possible.

4.3 Metropolitan micro-benchmarks
We evaluate RevCast’s transmitter and receiver proto-

types in a metropolitan area with a 3 kW commercial FM
radio station located in the center of a mid-sized metropoli-
tan area and four RDS-to-LAN bridges.

The station agreed to let us send RevCast’s RDS mes-
sages 50% of the time with their artist and track title RDS
messages occupying the other 50%. Because RevCast trans-
mits with a different RDS message identifier than the sta-
tion, it should not interfere, and we are not aware of any
complaints of radio problems from listeners of the station.

We transmitted 149 RevCast 160 byte packages simulta-
neously to the four receivers and observed if the signatures
verified successfully. Figure 2 shows the results. We placed
two receivers in a high signal strength area, and two in a low
signal strength area, as shown in Table 1. The high signal
strength receivers received over 99% of the packages. The



10
2

10
3

10
4

10
5

1
2013

2 3 4 5 6 7 8 9 10 11 12 1
2014

2 3 4 5

#
 o

f 
R

ev
o
ca

ti
o
n

s 
P

er
 D

a
y

Month:
Year:

Heartbleed

Weekday
Saturday

Sunday
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24 SNR receiver operates on the edge of this high reception
probability region, and it only had errors in one package.

An even distribution of RDS group errors would cause the
receivers to lose many, if not all, of the 160 byte packages
(each 160 byte package is made up of ∼35 RDS groups). The
lowest signal strength receiver was able to receive 72% of
the 149 transmitted packages. This is an encouraging result.
It indicates that RDS receivers with small trace antennas
can receive packages, albeit with a moderate package loss
rate, when they are a few kilometers away from a moderately
powered transmitter.

5. TRACE-BASED EVALUATION
In this section, we feed a stream of 114,021 certificate re-

vocations through a simulation of RevCast, subject to the
FM loss model measured in Section 4.3. Our results show
that: (1) 96% of the time RevCast can transmit all re-
vocations within 10 seconds, (2) the nothing-since attesta-
tions are remarkably effective at eliminating CRL checks,
and (3) when there were extreme revocation rates as a re-
sult of the widespread Heartbleed vulnerability [30], 70%
of the time RevCast could transmit all revocations within
10 seconds. Further, we reinforce the validity of the trace-
driven simulation by studying the CA revocation behavior
our dataset.

5.1 CRL dataset
The dataset of certificate revocations that we analyze were

collected by Zhang et al. [30] from the CRLs for public-facing
SSL servers on the Internet. Rapid72 collected SSL certifi-
cates from the entire IPv4 address space from October 2013
to April 2014. Zhang et al. extracted the CRL extension field
from these certificates; then they downloaded the CRLs on
May 6, 2014. There are 974 unique CRLs in this dataset
from 621 CAs, totaling 87 MB.

Figure 3 shows the number of revocations per day in the
dataset. On a typical day, the number of revocations per
day is on the order of thousands: even a low bandwidth
distribution system may be able to keep up with the rate
of revocations. The number of revocations is significantly

2https://scans.io/study/sonar.ssl
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Figure 4: Even while transmitting revocations
within 10 seconds, RevCast requires significantly
less than the resources available in FM RDS for 96%
of the intervals where there are revocations.

lower on weekends compared to weekdays (GMT). Inter-
estingly, the number of revocations on Saturdays tends to
outweigh Sundays, except in the wake of Heartbleed. The
number of revocations in each hour also exhibits a diurnal
pattern, confirming that many certificate revocations are is-
sued during business hours. This could be explained by the
fact that most revocations are likely benign (e.g., a CA is-
suing a certificate to supersede one that is nearing expiry),
though Zhang et al. also find that even compromised certifi-
cates are typically only revoked during traditional business
hours [30].

Over time, CAs can remove revocations from their CRLs
for at least three reasons (there may be others that are not
documented): (1) The RFC requires that revocations must
be removed from CRLs one CRL issue period after the cer-
tificate expires [6]. (2) Revocations with the reason code that
the certificate is on hold may be temporary revocations. (3)
Revocations may only exist in a CRL for an operator spec-
ified amount of time. As such, we constrain our dataset to
only the month prior to Heartbleed and the month following
Heartbleed (March, 2014 to April 2014).

Our resulting, two-month-long dataset which we use in the
remainder of our evaluation comprises 114,021 revocations
before Heartbleed and 402,747 revocations after Heartbleed.
The gray box in Figure 3 indicates the days covered by this
time period.

5.2 RevCast simulation results
Using a simulation, we begin our evaluation by measuring

how well the small protocol messages in RevCast can dis-
tribute 114,021 revocations over the one-month period before
Heartbleed. We are interested in two features: how many in-
tervals include revocations and how often must a client resort
to pulling the CRL due to loss when using the nothing-since
attestation. We vary the length of the interval: a shorter
interval provides faster revocation but limits the number of
revocations that can be transmitted in that interval.

We simulate transmitting all revocations over the one-
month period with all of the fields in the RevCast protocol.
This includes the three segments in each package as well as
sizes and delimiters for framing so the receivers can parse



No. Since Loss Rate Pulls / Avoided Pull Int. (hr)

1 min
0.6% 425 / 109,257 1.66
11% 8,067 / 1,953,529 0.07
28% 19,463 / 4,691,474 0.03

2 min
0.6% 1,500 / 242,590 0.83
11% 27,031 / 4,293,996 0.03
28% 64,928 / 10,298,436 0.02

3 min
0.6% 2,380 / 291,796 0.83
11% 42,079 / 5,129,459 0.03
28% 101,353 / 12,298,736 0.01

Table 2: The attested nothing-since allows receivers
with moderate losses to avoid pulling many CRLs to
make up for the losses.

the messages out of a continuous RDS broadcast. We as-
sume 233-bit signatures. When there are are no revocations,
the protocol requires at most 2.89 seconds to transmit the
package.

Figure 4 shows, for broadcast windows of 10, 20, 60, and
120 seconds, what fraction of the interval is used to trans-
mit all necessary RDS data. Only 3.7% of the 10-second
intervals included too many certificate revocations from too
many CAs to be completely conveyed. A two-minute interval
is long enough to transmit 99.995% of the revocations that
occur during any two-minute interval in the data. With coor-
dination with the CAs, there may be a means to smooth any
bursts in revocations so that they are spread across shorter
intervals, which we leave to future work.

We simulate transmitting to receivers that have some losses.
Losses in FM may occur because receivers are outside the
main coverage area of the transmitter or because they are
moving. Such receivers will usually receive revocations as
transmitted, but when there are losses, they may need to
pull a CRL over the Internet. The nothing-since segment
(Section 3.4) allows receivers to know which CAs had noth-
ing to revoke over an interval. This consumes one bit per CA
(621 bits), though it could be more compactly transmitted
with run length encoding.

The loss experiment is trace-driven by the loss patterns ob-
served in the metropolitan micro-benchmark in Section 4.3.
Because the pattern of losses is particular to FM RDS (losses
are not uniform), we repeat the loss patterns over the one
month period. We ran it on the three receivers which had
low enough SNR from the tower that they experienced some
loss: 0.6%, 11%, and 28%. The results in Table 2 indi-
cate, for one, two, and three minute nothing-since messages,
how many CRL pulls were necessary, how many pulls were
avoided during losses due to the existence of nothing-since
messages, and the median interval between pulls. The re-
sults indicate that a receiver in a position such that it has a
low loss rate (e.g., 0.6%) can receive revocations while only
requiring hundreds of delta CRL pulls over a one month
period. The results also demonstrate the power of nothing-
since messages: although the receivers that experience signif-
icant losses must pull more often, the nothing-since messages
allow them to avoid over 99% of the pulls they would have
otherwise needed.

One remaining question is: are losses correlated across
many receivers? If so, they might flood CRLs with pull re-
quests when there is a loss. The micro-benchmark results
in Section 4.3 indicate that this is unlikely as the 11% and
28% loss rate receivers only missed three of the same pack-
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Figure 5: Within any given 20 or 120 second win-
dow of time, few CAs issue any revocations; more-
over, when there are revocations within such small
windows, they usually come from only one or two
distinct CAs.

ages. If the losses were independent, we would expect the
two receivers to lose five of the same packages. Independent
loss is expected because losses are likely to be due to a re-
ceiver independently losing synchronization with the trans-
mitted signal rather than due to a widespread property of
the transmission.

5.3 Why RevCast works
The simulation results show that RevCast is viable for

distributing revocations, but the remaining question is: what
is the nature of certificate revocations that makes RevCast
work so well in practice?

Many revocations in the same interval are uncommon.
Recall from Figure 4 that RevCast is able to deliver al-

most all revocation state within broadcast windows of ten
or more seconds. Figure 5 (top) demonstrates that this is
in large part due to the fact that, within these small win-
dows of time, there are few revocations to send. Moreover,
when there are individual revocations to send, they usually
come from one or two CAs; as a result, RevCast is typically
able to represent individual revocations using at most three
signatures.

Most of the time, no CAs have any revocations to send.
RevCast excels in these time windows through its use of
multi-signatures for the nothing-now messages. As a result,
users learn that all N CAs have nothing to revoke at the
cost of a single, compact signature.

Most CAs revoke infrequently.
The nothing-since field keeps the number of CRL pulls

low when there are losses. The nothing-since field works
well when CAs revoke sparsely. Figure 5 (bottom) shows the
distribution of the number of CAs issuing revocations within
a given 20- or 120-second interval over the pre-Heartbleed
month. In the majority of all 120-second intervals over the
course of a month, there are two or fewer CAs revoking in
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that interval. For 90% of 20-second intervals, there is at
most one CA who issues a revocation. This demonstrates the
importance, and the power, of our nothing-since messages.

5.4 Worst-case scenario: Heartbleed
These observations—that in small windows, CAs do not

revoke much—holds in the normal case, but not always. In
early April 2014, a buffer over-run vulnerability in OpenSSL,
called Heartbleed [28, 9], risked exposing servers’ private
keys, resulting in a nearly two orders of magnitude increase
in the rate of revocations (Fig. 3). We ran our trace-based
evaluations using a month of revocations starting from the
day that Heartbleed was publicly announced, April 7. Fig-
ure 6 demonstrates that for 70% of 10-second intervals, Rev-
Cast was able to deliver all revocation state without any
additional delays (compare this to the 96% for the typical
case). 30% of the time, RevCast required additional time
to handle the uncharacteristically large influx, though typ-
ically less than a minute. In the extreme case, RevCast
required 15.5 minutes to clear its buffer of revocations.

While this number may seem high, it is crucial to note
what this represents: in the wake of a disastrous vulnera-
bility, RevCast was able to deliver all revocations within
15.5 minutes of when the revocation was first announced.
Certainly, had a standard browser pulled immediately at
this time, it could have downloaded the revocations more
quickly, but in practice browsers do so on the order of hours
or days. As such, this is a vast improvement over the revo-
cation systems of today, even in our worst-case scenario.

6. RELATED WORK
Revocation dissemination ideally satisfies three properties:

timeliness, low cost of operation, and privacy. There have
been many schemes that have focused on various combina-
tions of these properties. Recall that, traditionally, a CA
hosts its CRLs, which end hosts download directly. Be-
cause end hosts download the entire list of revocations, this
approach protects user privacy. However, this simple pull-
everything scheme comes at the cost of transmitting so much
data (the entire list of revoked certificates) that it would not
be possible to simultaneously satisfy timeliness for all users
will maintaining low cost of deployment.

The Online Certificate Status Protocol (OCSP) [26] ad-
dresses these high costs of deployment by allowing users to
query for the status of a certificate in particular. This de-
creases the amount of information a user has to pull, but at
the cost of exposing users’ browsing habits. Nonetheless, the
decrease in cost has led to a fairly widespread, mainstream
deployment of OCSP.

OCSP stapling [21] and short-lived certs [29] are modifica-
tions to existing revocation systems to improve privacy and
reduce bandwidth required by CAs, but both fundamentally
require far more bandwidth from the CA to disseminate re-
vocation as quickly as RevCast. The bandwidth consumed
by both OCSP stapling and short-lived certs increases with
the number of active certificates. RevCast takes advantage
of the scalability and privacy that broadcast naturally pro-
vides, so the CAs’ bandwidth consumption increases only
with the number of revocations (and broadcast windows,
e.g., 10 sec intervals, in a day). Chrome CRLSets [11] require
little bandwidth from the CAs, but the bandwidth required
from Google increases with the number of Chrome installs;
this is likely why their revocation update interval is so long.

Many schemes have been proposed that broadly follow the
design where a CA sends to a set of distributed “directories”
that users subsequently query. Most such approaches seek
to lower the raw amount of bandwidth from CA to directory
and from directory to user [13, 10, 19, 17, 8, 1], while others
seek to support more sophisticated trust models than today’s
PKI supports [31].

Fundamentally, all of these approaches are faced with the
same trade-offs of timeliness versus bandwidth, and thus
they typically assume updates come infrequently (once a
day). A key technical challenge many of them face is mak-
ing it easy to verify that a certificate has not been revoked
without requiring a user to download the entire revocation
list with every query [17, 8, 1]. Because we can operate in
a world where everyone gets everything, many of these is-
sues become trivial: a user knows that a given CA has not
revoked certificate c if the user has obtained all of the CA’s
attestations, and if none of them include the individual re-
vocation of c. Our key technical challenge lies elsewhere: in
making sure that all users can get all CAs’ data despite hav-
ing a very narrow broadcast bandwidth in which to operate.

We are not the first to propose using FM RDS as a generic
link for Internet applications. Rahmati et al. [22] demon-
strate that it is feasible to construct large, repairable mes-
sages out of RDS’s eight byte messages. They also describe
some of the higher-layer challenges in deploying a general
data RDS broadcast system on existing FM radio stations.
RevCast represents a more concrete application of the FM
RDS medium; we view it as complementary to this work.

Finally, AlertFM [2] also uses RDS via leased bandwidth
to distribute local and national emergency alerts to receivers
of their own design, including both standalone text displays
and USB based for windows PCs. We see the existence
of AlertFM as a demonstration that it is feasible to in-
ject timely RDS at scale, and its obscurity as another sign
that the market is not enthusiastic about special purpose
receivers. Because RevCast can operate over any existing
FM RDS receiver, we are optimistic that it has a higher
likelihood of adoption.



7. CONCLUSION
We have presented RevCast, a revocation dissemination

system built upon FM radio broadcast. RevCast demon-
strates that, with a new communication primitive—metropolitan-
area broadcast—it is possible to simultaneously achieve time-
liness and privacy at low cost. RevCast thereby challenges
the established belief that these three properties face funda-
mental trade-offs. RevCast achieves this despite FM RDS’s
421.8 bps bitrate by applying a compact multi-signature
scheme [4].

One of the main contributions of RevCast is the obser-
vation that radio broadcast can be highly practical because:
(1) small receiver hardware exists and is even already in-
stalled in most smartphones (2) tiny FM antennas can be
integrated into phones because the spectrum used by FM
stations is only 200 kHz (3) RDS is an open standard and
there are no licenses for the receivers or transmitters and
(4) the radio stations we spoke to were willing to share their
RDS bandwidth with us; so radio stations have RDS band-
width to spare. Although it is difficult to predict what sys-
tems are likely to experience wide-scale deployment, these
observations indicate that fast, private revocation over FM
is surprisingly practical.

There are several interesting avenues of future work. Our
evaluation focuses on the question of how much revocation
state can be pushed from a single FM tower to cover a single
metropolitan area. What towers should be used in conjunc-
tion to cover as many people as possible within a country?
One possible direction is to exploit the fact that there ap-
pear to be regional CAs. For instance, some European coun-
tries provide certificates to their citizens: the inherently ge-
ographic scoping that FM transmitters provide would thus
seem to be a natural fit for covering the vast majority of
people who would be interested in learning of their fellow
citizens’ revocations.
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