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Abstract
Current approaches to in-network traffic processing involve the de-
ployment of monolithic middleboxes in virtual machines. These
approaches make it difficult to reuse functionality across different
packet processing elements and also do not use available in-network
processing resources efficiently. We present Slick, a framework for
programming network functions that allows a programmer to write
a single high-level control program that specifies custom packet
processing on precise subsets of traffic. The Slick runtime coor-
dinates the placement of fine-grained packet processing elements
(e.g., firewalls, load balancers) and steers traffic through sequences
of these element instances. A Slick program merely dictates what
processing should be performed on specific traffic flows, without
requiring the programmer to specify where in the network specific
processing elements are instantiated or how traffic should be routed
through them. In contrast to previous work, Slick handles both the
placement of fine-grained elements and the steering of traffic through
specific sequences of element instances, allowing for more efficient
use of network resources than solutions that solve each problem in
isolation.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks] Network Architecture and Design

General Terms: Algorithms; Design; Experimentation

Keywords: Software-Defined Networking (SDN); Network Func-
tions Virtualization (NFV)

1 Introduction
Recent trends suggest that network operators seek to deploy an in-
creasing range of network functions in the network. These functions
can perform arbitrary functions on packets, including access control,
intrusion detection, load balancing, caching, and transcoding. It is
commonly—if not always—assumed that these functions should be
deployed as monolithic middleboxes [9, 16, 21, 23, 44, 49]. Until
recently, these middleboxes have been deployed as vertically inte-
grated hardware (e.g., dedicated load balancers, firewalls, and other
devices), although the shift towards network functions virtualization
(NFV) [10] has enabled the deployment of these middleboxes in
virtual machines [33].

Current approaches to NFV make it possible to place existing
middleboxes in virtual machines at various points in the network
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and steer traffic through those middleboxes, instantiating and decom-
missioning instances in response to changing traffic conditions. This
approach to deploy network functions imposes severe limitations.
First, it requires the wholesale deployment of an existing middlebox;
they do not allow an operator to implement custom, fine-grained
packet processing functions in the data-plane that could be re-used
across multiple applications. For example, many middleboxes may
(re)implement their own packet processing modules that filter or
load-balance traffic, compute statistics on traffic flows, or other-
wise perform operations on packets (e.g., checksums) that could
be shared across different functions. Second, deploying an entire
middlebox inside a virtual machine does not scale to a large number
of instances on any physical machine, and deploying (or migrating)
the middlebox functions may be cumbersome in their own right.

We offer a fundamentally different approach to deploy network
functions. Rather than the conventional approach of redirecting traf-
fic flows through monolithic middleboxes, we propose a program-
ming model that allows a programmer to specify which sequences
of network functions should be applied to traffic that passes through
the network, leaving the thornier questions of where in the network
those functions are actually applied and how these functions are
applied to the underlying runtime system.

This paper presents Slick, an approach to programming network
functions that allows an operator to implement network functions
as chains of lightweight functions that can be placed at arbitrary
locations in the network and composed into more complex packet
processing sequences. Slick has two salient features:

• Programming abstraction. We develop a programming ab-
straction that allows a network operator to (1) implement cus-
tom network functions in a high-level language (i.e., Python)
and (2) specify which traffic flows should be routed through
sequences of these functions. A programmer may implement
(or reuse) specific functions as elements (a programming model
that takes inspiration from Click [28]) and specify sequences of
elements that should operate on specific portions of flowspace.

• Runtime. Slick’s runtime scalably and efficiently implements
the programming abstraction we have designed by decom-
posing network-wide packet processing into constituent func-
tions and placing those functions at appropriate locations in
the network. In contrast to existing approaches, which con-
sider placement in the absence of steering [29, 41, 44], or vice
versa [15, 18, 23], Slick takes a holistic approach, performing
both placement of modular packet-processing elements and
steering of traffic through those elements.

In contrast to NFV—which concerns the instantiation and manage-
ment of existing monolithic middleboxes in virtual machines—Slick
allows the placement of fine-grained functions, specified as elements
that the programmer can write in a high-level programming lan-
guage (e.g., Python), making the placement of these functions more
nimble, taking better advantage of available network resources, and
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allowing potential reuse and sharing of network functions that are
applied to traffic. Slick determines how many instances of each
element should be instantiated and where individual elements should
be placed (“placement”), as well as which traffic flows to direct
through specific element instances (“steering”). Slick elements can
be reconfigured at runtime after they are installed, and Slick policies
can specify that placement or steering should change at runtime, in
response to triggers from the network. For example, a middlebox
that checks DNS requests against a blacklist could trigger all of the
user’s traffic to be steered through the closest deep-packet inspection
element.

We develop several placement and steering algorithms and eval-
uate them on enterprise and data-center network topologies. Our
evaluation shows that Slick’s heuristics can achieve near-optimal
network bandwidth utilization on many network topologies and can
reduce the average link utilization compared to an approach that
only uses consolidation by as much as a factor of two.

The rest of the paper is organized as follows. Section 2 compares
Slick to other related work, including systems that have implemented
placement and steering independently, as well as more theoretical
treatments of middlebox control. Section 3 describes the Slick
architecture, including its programming model and the runtime that
it exposes to network operators. Sections 4 and 5 describe the
implementation of Slick and our evaluation of Slick’s placement
and steering algorithms and its controller’s performance on a variety
of network topologies. Section 6 discusses possible directions for
future work; we conclude in Section 7.

2 Related Work
Network functions virtualization (NFV) allows network operators to
instantiate middleboxes in virtual machines and place those VMs at
arbitrary locations in the network [10]; current approaches to NFV
still treat middleboxes as monolithic entities, and do not explore
how the constituent components of a middlebox might be decom-
posed into smaller modules. Other recent work has explored how
monolithic middleboxes in a cellular network might be instantiated
as virtual machines [21, 49]. In contrast, Slick explores how an oper-
ator can implement individual functions in a high-level language and
specify how those functions are chained together, while remaining
agnostic to how those functions are replicated and installed across
the network.
Programming model. Slick’s programming model has two salient
features: the decomposition of functions into modular elements and
the use of triggers to redirect processing from an in-network element
to the controller. Both of these features are inspired by previous work.
Slick’s use of the element abstraction is inspired by Click [28], which
allowed programmers to write modular elements and compose them
into packet processing pipelines on a single node. Slick differs from
Click in that it constructs such pipelines across a network, and hence
must address questions of both placement and steering. Extensible
Open Middleboxes (xOMB) [3], RFC 3234 [5], and other work on
modeling middleboxes [22] inspired the design and granularity of
Slick element functions. Previous work has also proposed the use
of triggers to allow one network element to signal to another [20,
27, 45, 47]; Slick incorporates this notion of triggers in a holistic
programming model that supports more expressive triggers and
perform other packet processing actions in response to the triggers.
Although Slick’s programming model draws inspiration from this
previous work, none of these systems incorporate these mechanisms
into a single coherent programming model, as Slick does. Although
OpenNF [17] and Split/Merge [40] offer programming interfaces

and control-plane mechanisms for helping operators migrate existing
middleboxes, they do not allow operators to write network functions
that operate on specific traffic flows in the data plane, nor do they
provide mechanisms for placing network functions.

Programming Languages. Many programming languages for
software defined networks can be used to express network poli-
cies [14, 27, 35, 47, 48]. Most of these languages (e.g., Frenetic [14],
Pyretic [35], Maple [48]) provide higher-level abstractions for pro-
gramming OpenFlow [34] switches. Merlin [47] and Kinetic [27]
provides some abstractions for handling events that middleboxes
may raise (similar to Slick’s ability to process triggers), but neither
provides a mechanism for installing network functions onto ma-
chines that host these functions. None of this prior work focuses
on decomposing the functions provided by monolithic middleboxes
into finer-grained, reusable modules, or the placement or steering
functions required to implement network-wide policies with these
modules.

Steering. Charikar et al. [7] and ETTM [8] assume that network
functions can be placed at all machines in the network and treat
resource management purely as a steering problem. This approach
simplifies resource management algorithms, since placing all func-
tions on every node reduces resource management to a traffic steer-
ing problem. Unfortunately, as the number of middlebox functions
proliferates—even Slick already supports about 15 distinct network
functions—simply placing all functions on every node quickly be-
comes intractable.

Other recent work on steering [12, 39, 50] has assumed pre-
specified, fixed placement of middleboxes within a network and
focused on developing an optimal steering mechanism that mini-
mizes utilization. In contrast, Slick makes no such assumption about
placement and must thus develop mechanisms for both steering and
placement. Our evaluation demonstrates that control over placement
significantly reduces both path length and average link utilization.
pSwitching [23] and OpenPipes [18] provide mechanisms for steer-
ing traffic through middleboxes or hardware modules but do not
offer a high-level programming model and do not propose specific
steering mechanisms.

Placement. Stratos explores questions of middlebox placement to
reduce inter-rack traffic in data centers [15] but focuses on placement
of entire virtual machines and does not explore the placement of
individual network functions, as in Slick. In contrast, Slick studies a
different class of placement problems that arise when middleboxes
are decomposed into constituent functions, each of which may have
different resource utilization and effects on traffic flows. CoMB
work explores whether multiple middleboxes can be consolidated
on single physical machines [41] but studies consolidation at the
granularity of virtual machines, as opposed to individual network
functions. Our evaluation demonstrates that studying consolidation
at the granularity of individual functions allows for different place-
ment decisions (e.g., placing elements that increase the amount of
network traffic towards the end of a path, and vice versa), thus signifi-
cantly reducing network utilization compared to CoMB. Sherry et al.
explore placing existing network middleboxes in the cloud and rout-
ing traffic through these off-path middleboxes for processing [44]; in
contrast, Slick enables on-path processing with fine-grained network
functions that an operator writes in a high-level language.

Applications. The IETF service function chaining working group
is actively exploring various applications of service function chain-
ing [43], including in mobile and data-center networks. Yang et al.
have studied how to enable certain applications by embedding net-
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Figure 1: Slick architecture. A programmer writes a Slick program that runs
at the controller, which in turn installs elements (i.e., high-level functions)
on machines in the network (placement) and installs forwarding rules on
switches to direct traffic flows through sequences of elements (steering).

work functions in an underlying network graph, but the work focuses
primarily on theoretical problems associated with embedding chains
of network functions in an underlying network graph [29] and does
not have a working system.

3 Slick
In this section, we present an overview of Slick, describe a motivat-
ing example (and explain why this example is difficult to implement
in existing NFV architectures), and describe Slick’s programming
model and runtime.

3.1 Overview
Figure 1 illustrates Slick’s architecture. The Slick controller runs an
application that specifies a sequence of elements that should process
a particular portion of flow space. An application specifies which
traffic should flow through specific sequences of elements. The Slick
controller supports these applications by deploying elements (on top
of a shim on each machine) and installing forwarding rules in the
switches to direct traffic through particular sequences of elements.
The controller instantiates functions on machines and installs for-
warding rules in switches to steer traffic towards those machines.
The Slick runtime takes a high-level policy and determines the num-
ber of element instances to deploy (and where to deploy them) to
ensure that no single element or network link is overloaded and that
traffic sees good end-to-end performance. Given values for each
packet-header field, the controller determines the sequence of ele-
ments that should be applied to a particular flow and installs flow
table modifications into corresponding switches to ensure that the
respective flow is forwarded through the corresponding sequence of
element descriptors.
Motivating Example. Suppose an operator configures the net-
work so that all Web traffic traverses an intrusion detection system
(IDS) [37,46]. The application specifies that all Web traffic (i.e., TCP
traffic with port 80) flows through an IDS element, with all packets
of a TCP connection in both directions traversing the same element.
The controller deploys one or more IDS elements in the network
and installs rules in the switches to direct port-80 traffic through the
element. As traffic demand increases, any single IDS element may
become overloaded; at this point, the Slick controller instantiates a
second IDS element and splits the port-80 traffic over two IDS ele-
ments, taking care to ensure that ongoing TCP connections complete
at the original IDS element and only new flows traverse the second

element. If the traffic demand decreases to the levels from before the
controller added additional elements and all flows through the first
IDS element expire, the controller reclaims resources by removing
that IDS element instance. Over time, the controller monitors the
machine and network load, adjusting the traffic splitting and routing
to minimize congestion. The IDS itself might inspect network traffic
and perform deep-packet inspection (DPI) only when it observes
DNS traffic from a device on the network to a blacklisted DNS
domain.

3.2 Programming Abstractions

Each network function corresponds to a software element. An ele-
ment may be configured either at initialization time or dynamically;
it may also generate an event stream that sends events to the con-
troller. A Slick control application specifies a high-level policy,
indicating which traffic flows should traverse a particular sequence
of elements (e.g., packets with destination port 80 should traverse
a firewall followed by a transcoder); an operator can write such a
policy independently of the network topology or where the elements
are installed.

Slick supports modular, composable elements that permit reuse
across many applications; each element also supports dynamic con-
figuration and supports sending events to the Slick controller that
might subsequently affect its operation. Slick elements are inspired
by elements in Click modular routers [28], from which we derive
Slick’s name. In this section, we describe how to program func-
tions and applications, detailing the interfaces they expose and the
abstractions presented to them.

3.2.1 Writing Slick Elements

Slick elements run on machines; an element can be an arbitrary
executable and may also have state. Elements process packets,
handle configuration requests from applications, and send events to
the controller.

Element methods. When a controller first installs an element on
a machine, it invokes the element’s init() method. As packets
destined for that element arrive at the machine, the element’s pro-
cess_pkt() method is called; this method can perform arbitrary
packet processing. An element can also be configured dynamically
by the controller: the configure() method allows the controller to
dynamically reconfigure network elements. This method also allows
a controller to update an element’s internal state; for example, a
firewall element could accept new rules via configure(). Finally,
an element can issue asynchronous, distributed triggers that allows
it to send events to the controller. The raise_trigger method ac-
cepts arbitrary inputs and delivers them to the controller (who, as we
will see, delivers them to the proper applications’ trigger handlers).
Figure 2 shows an example of a simple Slick element that logs all
packets that it sees. The init method (lines 6–10) performs any
operations that should be called when the element is initialized (in
this case, opening a file); the process_pkt method (lines 12–16) is
invoked whenever the element sees a packet.

Two properties of the Element class design make it easy to reuse
elements across applications. First, elements need not specify the
traffic flows that they process; an element simply processes any that
is passed to it. Second, elements are agnostic about what application
is invoking them. For example, the TriggerAll element sends an
event to the controller, and any control application that registers for
these events will receive them. Because any element implementa-
tion is agnostic about both the subset of traffic that it will operate
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1 class Logger(Element):

2 def __init__(self, shim, ed):

3 Element.__init__(self, shim, ed )

4 self.file_handle = None

5

6 def init(self, params):

7 filename = params["file_name"]

8 filename += str(self.ed)

9 if(filename):

10 self.file_handle = open(filename, ’a+’, 0)

11

12 def process_pkt(self, packets):

13 for buf in packets:

14 flow = self.extract_flow(buf)

15 self.file_handle.write(str(flow) + ’\n’)

16 return packets

Figure 2: The Logger element logs all packets it receives. (We have elided
the element’s shutdown method for clarity.)

on and the applications that will instantiate it, any given element
implementation can be reused across a wide variety of applications.

3.2.2 Programming Slick Applications

Slick applications run at the controller. These control applications
specify a sequence of elements that should process a given portion of
flow space (e.g., send all port 53 traffic through a Logger element).

Instantiating elements. An application specifies a portion of flow
space and applies that flow to a particular element/elements using the
apply_elem() method. Applying an element to a portion of flow
space causes the controller to install that element at the appropriate
locations in the network.

Figure 3a shows an example HttpLogger control application.
Lines 7–9 specify that the controller should ensure that Logger
(Figure 2) operates on all traffic with destination port 80, and to
supply http.log as its input parameter (which will set the log’s
filename). The apply_elem() method (Line 10) takes as inputs
the flow to which an element should be applied, the name of the
element, and an optional set of parameters to send to those elements’
init() method. Each call to apply_elem creates a new instance of
the specified elements.

A Slick application may create multiple instances of multiple
elements. For example, the HttpLogger application could have
made another call to apply_elem on all port 443 traffic with an-
other Logger function to also log HTTPS traffic. The apply_elem
method returns a unique element descriptor for each instantiated
element, to allow the controller to configure these elements after
installation time, and to process triggers.

Interacting with elements. An application can also interact with
any installed element after the element has been installed in the net-
work. Applications use configure() with the corresponding element
descriptor to send arbitrary configuration messages to Slick con-
troller, which will ultimately result in a call to that element instance’s
configure(). When an element sends a trigger to the controller, the
controller calls the corresponding application’s handle_trigger()
method and passes it two values:the descriptor of the element that
raised the trigger and any associated data. HttpLoggerViaTrigger
in Figure 3b applies the TriggerAll element (which simply raises

1 class HttpLogger(Application):

2 def __init__(self, controller , ad):

3 Application.__init__(self, controller , ad)

4

5 def init(self):

6 parameters = [{"file_name":"/tmp/http_log_mach"}]

7 flow = self.make_wildcard_flow()

8 flow[’tp_dst’] = 80

9 flow[’nw_proto’] = 6

10 ed = self.apply_elem(flow, ["Logger"], parameters)

11 if(self.check_elems_installed(ed)):

12 self.installed = True

(a) Logging all port-80 traffic at in-network traffic elements.

1 class HttpLoggerViaTrigger(Application):

2 def __init__(self, controller , ad):

3 Application.__init__(self, controller , ad)

4

5 def init(self):

6 flow = self.make_wildcard_flow()

7 flow[’tp_dst’] = 80

8 flow[’nw_proto’] = 6

9 self.ed = self.apply_elem(flow, ["TriggerAll"])

10 if(self.check_elems_installed(self.ed)):

11 self.installed = True

12 self.file_handle=open("http.log", ’a’)

13

14 def handle_trigger(self, ed, msg):

15 if(ed in self.ed):

16 self.file_handle.write(str(msg))

(b) Logging all port 80 traffic at the controller.

Figure 3: Two implementations of HttpLogger that perform logging in
different locations.

a trigger for every packet) to all HTTP traffic; handle_trigger()
will thus be called with each HTTP packet sent in the network.

Choosing where functions are performed. Figures 3a and 3b illus-
trate how Slick’s programming model allows a programmer to chose
where processing takes place: (1) HttpLogger places all the work
in the in-network machine by having the Logger element capture
and log all of the packets to file; (2) HttpLoggerViaTrigger uses
the TriggerAll element to cause the controller to log all packets at
the controller application. Each of these implementations represents
two extreme design points. The first approach places all processing
at the elements themselves, which is similar to how middleboxes
operate today. This approach scales well, depending on where el-
ements are installed in the network. The latter approach places all
processing at the controller, which can introduce a bottleneck at the
controller.

Building applications from multiple elements. Slick applications
can also define interactions between multiple elements. Figure 4
shows a BlacklistDropper application, which also illustrates the
use of raise_trigger and configure in the DNSBlacklist element.
The application applies DNSBlacklist element to all outgoing DNS
traffic (line 5), which raises a trigger whenever it detects a DNS
lookup to a blacklisted domain (lines 23–28). When the application
receives this trigger, it installs the DropAll element that simply
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1 class BlacklistDropper(Application):

2 def init(self, blacklist):

3 flow = self.make_wildcard_flow()

4 flow[’tp_dst’] = 53

5 eds = self.apply_elem(flow, ["DnsDpi"])

6 if(self.check_elems_installed(eds)):

7 self.installed = True

8 droppers = list()

9

10 def handle_trigger(self, ed, trigger):

11 if(trigger[’type’] == ’BlacklistedQuery’):

12 src_flow = self.make_wildcard_flow()

13 src_flow[’nw_src’] = trigger[’src_ip’]

14 eds = apply_elem(src_flow , ["DropAll"])

15 if(self.check_elems_installed(eds)):

16 droppers.append(eds[0])

17

18

19 class DNSBlacklist(Element):

20 def init(self, blacklist):

21 self.blacklist = blacklist

22

23 def process_pkt(self, pkts):

24 domain, src_ip = extract_dns_domain(pkts)

25 if(domain in self.blacklist):

26 self.raise_trigger(self.ed,

27 {’type’ : ’BlacklistedQuery’,

28 ’src_ip’ : src_ip })

29 return pkts

30

31 def configure(self, params):

32 if(params[’command’] == ’set−blacklist’):
33 self.blacklist = params[’blacklist’]

Figure 4: Slick applications can use triggers to asynchronously compose
elements. Element descriptors disambiguate multiple instances of the same
element.

drops all packets (lines 11–14), applying it to all subsequent traffic
from the host that initiated the DNS lookup (line 14).

Slick also allows element chains, enabling sequential processing
of packet flows by the elements in the chain. For example, to log
all the port 80 traffic and subsequently drop all the traffic, we can
modify (line 10) in Figure 3a as follows:
eds = self.apply_elem(flow, ["Logger", "DropAll"], parameters)

3.3 Runtime

The Slick controller maps a control application’s high-level policy
to the available pool of network resources (i.e., available network
bandwidth and computational elements). Given a high-level policy,
the controller determines how many instances of each element to
deploy and where to place or migrate them (placement). The con-
troller also determines the paths that each traffic flow should take
through the network so that traffic flows are processed by the correct
sequence of elements and also experience good end-to-end perfor-
mance (steering). The controller must adapt to topology changes
and machine failures, as well as shifts in load and changes in the
high-level policy. A shim on each machine allows the controller to
interact with the elements (e.g., to configure the element and receive
triggers).

Heuristic Reduce Reduce Reduce
b/w utilization resource utilization latency

Consolidation Yes Yes Yes
Inflation Yes Yes

Table 1: How different placement heuristics help achieve Slick objectives.

(a) Consolidation.

(b) No Consolidation.

Figure 5: When making placement decisions, the Slick controller must
determine whether to consolidate multiple elements on a single machine or
distribute those elements across multiple machines in the network or use a
combination of the two.

The Slick controller maps each new flow to elements that are
installed on machines in the network and keeps an updated view of
what resources are available on each machine. Instead of performing
a single optimization given resources and traffic flows, the Slick
controller performs a continuous incremental optimization that mini-
mizes changes to the installed configuration and ongoing network
traffic flows.

3.3.1 Placement

The controller’s placement algorithm determines the machines in
the network where element instances should be installed. The place-
ment algorithm may ultimately place multiple instances of the same
element at different places in the network, and a single machine may
also host multiple elements.

Placement aims to place instances of elements at various ma-
chines in the network to ensure that flows are processed by their
corresponding element sequences while using a reasonable amount
of bandwidth and machine resources and ensuring a low-latency
end-to-end path. Slick uses an inflation heuristic to reduce the over-
all network bandwidth required to support element sequences and a
consolidation heuristic to reduce both the utilization on individual
links and the number of overall machines required to host element
instances. Table 1 summarizes how different heuristics help achieve
different placement goals or have no impact on Slick’s goals. Place-
ment applies these two heuristics in order: the controller first decides
whether (and how) to consolidate elements on physical machines;
second, the controller determines where to place the consolidated
elements.

Step 1: Consolidating elements. When we have more than one
element that should operate sequentially on a certain flow space,
the first step is to decide whether we should consolidate contiguous
elements onto a single machine, or if we should distribute them
across multiple machines. Consider the network in Figure 5, which
shows two possible configurations in which a chain of two elements
can be deployed.
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Element Placement
Negative Inflation

Access Control Source
Firewall Source

Intrusion Prevention Source
Deduplicator Source
Decapsulator Source
Compressor Source

Positive Inflation
Encapsulator Destination

Decompressor Destination
Zero Inflation

Network Address Translation Any
Deep Packet Inspection Any

Intrusion Detection Any
Stateful load balance Any
Stateless load balance Any

Encrypt Any
Decrypt Any

Table 2: The inflation heuristic helps determine whether an element should
be placed closer to the source or closer to the destination.

We define an inflation factor as log( fout/ fin), where fin and fout
are the input and output traffic volumes, respectively. The intu-
ition for consolidation is that elements with negative inflation factor
should be placed closer to sources, and elements with positive infla-
tion factor should be placed closer to destinations. For any ordered
list of elements (E1, . . . ,En), we can decide places to “break” the
list into any number of sub-lists, where each sub-list is placed on a
single machine.

We can define the inflation factor of a machine m, λm, as the sum
of all of the inflation factors of the respective elements placed on
that machine. A negative inflation factor thus means that the consol-
idated elements on that node decrease overall traffic, and vice versa
for a positive inflation factor. Then, for a path of length l, we can
define the inflation for some consolidation along that path p, λp as
∑

l
i=1(i− l/2) ·λi. The brute-force consolidation algorithm searches

all possible consolidation combinations to minimize total inflation.
Given M possible machines on which to place a sequence of E ele-
ments, the algorithm tests ∑

E
i=1

(E−1
i−1

)
·
(M

i
)

possible combinations.
Table 2 enumerates some example elements, their inflation factors,

and whether they should be placed closer to source or destination.
The priority of placing an element near sources or destinations can
be overridden by Slick application writer.

Step 2: Placing consolidated elements. Once minimum-cost con-
solidation is computed, the placement algorithm uses the flow con-
nectivity matrix for each flow space, where ci j is the number of
flows from i to j. The placement algorithm identifies the longest
common routing path between the source(s) and destination(s). It
then places consolidated elements with negative inflation factor on
the node of longest common routing path that is closest to source(s),
for elements with positive inflation factor, the algorithm places the
consolidated element on the node of the longest common routing
path that is closest to destination(s).

Elements with inflation factors near zero should be placed at
machines that minimize the average path length for all source-
destination pairs in the flow space, or that have the highest be-
tweenness centrality for all source-destination pairs that exchange

s

E1,1

E1,2

E1,3

E3,1

E3,2

E3,3

E2,1

E2,2

d

Figure 6: Slick uses a virtual topology with mi elements at each stage i to
decide how to steer traffic from source to destination in the order specified in
the Slick application.

traffic in a given flow space. The betweenness centrality [30] of a
vertex v, cv is given by the expression:

cv = ∑
v/∈{s,d}

ρsd(v)
ρsd

(1)

where ρsd is the total number of shortest paths between s and d and
ρsd(v) is the number of those paths that pass through vertex v.

3.3.2 Steering

Given elements placed in the network and a flow that must traverse
a sequence of elements, the steering module determines the specific
sequence of element instances that a given flow should pass through.
If there are multiple instances of a particular element, the steering
module determines which element instance should be used to send
traffic through a particular sequence of elements. The steering
module acts on a virtual topology that includes the elements and the
connectivity between them.

Steering determines, for each portion of flow space, the specific
sequence of element instances that should be used to process traffic
for that flow. Recall that any given element might be installed in
more than one place in the network; steering thus determines the
instances of each element that traffic for a particular flow space
should be routed through. Slick performs steering by constructing
a virtual topology that represents the sources, destinations, and
possible sequences of element instances at each stage of an element
sequence; given this virtual topology, it computes a lowest cost path
through the corresponding sequence of elements, for each portion of
flow space. We describe this process in more detail below.

A Slick program determines the sequence of elements for each
corresponding part of flow space; each element may have multiple
instances in the network. Given an element sequence {E1, . . . ,En}
for some portion of flow space, where any Ei may have multiple
instances, Slick must steer each traffic flow through any instance of
each element in the sequence.

To help Slick compute the appropriate sequence of element in-
stances for each portion of flow space, we represent the set of all
element instances as a virtual topology, as shown in Figure 6. Traffic
from s to d is routed through one instance of Ei, in order, from Ei to
En. Each edge in the virtual topology has a weight that corresponds
to the sum of the physical network distance multiplied by the anti-
log of the inflation factor. This gives us weight of each virtual edge
based on the physical network topology and inflation factor of the
element instances. For a flow to which n elements are to be applied,
this graph takes O(n+∏

n
i=1 mi) time to construct, where mi is the

number of element instances at stage i. Given this virtual topology,
Slick computes the shortest weighted path from s to d.

To avoid overloading specific element instances, Slick removes
machines from the virtual topology if their load exceeds some
operator-specified threshold. If no machines that host instances
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Figure 7: The Slick runtime operates on top of an existing SDN controller
(in our implementation, Pox), and hosts applications that specify functions
that should operate on different parts of flow space. The controller installs
and configures elements on machines in the network, which interface to the
controller via a shim (Placement). The controller also uses a wire protocol
(e.g., OpenFlow) to configure flow-table entries in switches to steer traffic
through the appropriate elements installed on machines (Steering).

of some element Ei have spare capacity (again, determined by an
operator-specified threshold), the Slick controller will provision an-
other instance of the element on a new machine with the help of the
placement module.

3.3.3 Routing

Given a specific sequence of element instances to forward traffic
through, the routing module installs flow table entries into switches
to ensure that a traffic flow follows a specific path between each
pair of installed elements in an element sequence. It enables the
steering module to implement asymmetric steering such that ingress
and egress paths of the same flow can be asymmetric [42]. It also
provides Slick runtime with network link information and place-
ment module about the active switches generating traffic for a given
flow space. Slick’s routing module simply implements shortest-
path routing between two element instances, although the module
itself provides for other possible routing decisions between pairs of
elements.

4 Implementation
We implemented Slick in about 15,000 lines of Python, with Slick’s
controller built on top of POX [38] controller as an SDN application.
About half of the code involves the basic controller functions, such
as communication with elements and interfacing to placement and
steering modules, as well as the element shim as shown in Figure 7.
The remainder of the code includes several elements and reference
applications that use them.

4.1 Controller
The controller implementation includes functions to discover topol-
ogy and machine resources, as well as the runtime that implements
placement, steering and routing.

4.1.1 Discovery

The Slick controller must discover both the network topology, the
machines in the network that can host packet processing elements,
and the current network conditions (e.g., available network resources,
current machine load). It discovers topology using a link-layer
discovery protocol (e.g., LLDP) and machine resources through a
custom resource discovery protocol.

Network topology and congestion. Network switches and servers
are discovered using OpenFlow’s link-layer discovery protocol
(LLDP). The controller maintains a network map that includes a

mapping of element instances (each of which is identified by an
element descriptor) to its location in the network topology, as well
as a mapping between the MAC addresses that the controller knows
about and their corresponding IP addresses. The controller also peri-
odically polls the traffic load of each network link and the amount
of traffic that each element is processing.

Machine resources. Each Slick machine runs a shim layer that
registers with the Slick controller; the controller keeps track of the
available machines on which it can install elements. Each machine’s
shim has a configuration file that contains information about that
machine’s available resources and any other constraints that exist;
this specification ensures that the controller only installs elements on
machines that have both the capability and the available resources to
perform the corresponding processing (e.g., a configuration might en-
sure that a certain encryption element is only installed on machines
with the corresponding hardware acceleration for cryptographic op-
erations). These specifications also include various other parameters
including the number, types, and speeds of the processors on the ma-
chine, available storage, and the operating system type and version
of the machine.

Network model and overlay network abstraction. Using infor-
mation about available machines and link loads, the controller builds
a network model to perform operations including (1) finding ma-
chines that can host a particular element (for placement); (2) finding
machines where specific elements have been installed; (3) avoid
routing new traffic flows through either congested links or loaded
elements. Ultimately, the controller uses these functions to con-
struct an overlay network for each network policy that includes the
elements that are pertinent to any particular flow space.

Using knowledge of the underlying network topology and ma-
chine resources, Slick places elements and maintains an overlay
network topology that abstracts the physical topology. Each policy
has a corresponding overlay network topology; the steering module
uses this overlay network to find, for each flow, the shortest path be-
tween the source and destination that traverses a particular sequence
of elements.

4.1.2 Runtime

We implemented a variety of placement, steering, and routing al-
gorithms in Slick. Slick implements several placement algorithms,
including placing elements on k random machines in the network,
placing nodes according to centrality, placing elements on compat-
ible machines in a round-robin fashion, and weighting placement
according to centrality on a graph with nodes weighted according
to traffic load. Each placement algorithm is several hundred lines
of Python. Slick implements steering according to random paths
through the virtual topology (Figure 6), shortest hop count through
the topology, and two different shortest paths through the virtual
topology: one based purely on link weights, and another where link
weights are assigned according to traffic loads. Each steering algo-
rithm is between about 50 and 200 lines of Python. Routing is based
on shortest paths in the underlying topology through the sequence of
elements that steering selects; for this function, we were mainly able
to rely on path setup functions in Pox, but we also implemented a
mechanism to route on shortest paths through the underlying topol-
ogy. Slick’s routing algorithm generates microflow forwarding table
entries, which creates the potential for a large number of flow-table
entries. Other work has explored ways to reduce the number of flow
tables installed in switches, and Slick may be able to exploit these
techniques [13, 39].
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4.2 Elements and Applications

Shim. The Slick shim layer makes it possible to deploy and decom-
mission elements at runtime and also includes a virtual switch to
multiplex and de-multiplex traffic through these elements. The shim
also allows Slick to marshal control messages between Slick’s con-
trol applications running on the controller and the elements. Control
messages and triggers between applications and the controller are
encapsulated in JSON and sent over TCP connections.

Reference elements and applications. To demonstrate the flexibil-
ity and generality of Slick’s programming model, we have imple-
mented nearly 15 elements, which we have incorporated into several
real-world applications. The Slick elements provide functions at
different granularities and levels of complexity. These function in-
clude network traffic logging, TCP Stream analysis to detect OS
and browsers, DNS deep packet inspection, encryption, decryption,
compression, and decompression. The applications we have imple-
mented include a traffic quarantine application that is triggered by
DNS-based traffic monitoring and an application firewall.

5 Evaluation

We evaluate Slick using Mininet emulations for a variety of traf-
fic matrices and topologies. We address the following questions:
(1) What is the performance of Slick’s placement and steering al-
gorithms? (2) How efficiently does Slick place network elements
and steer traffic through these elements? (3) How close are Slick’s
placement and steering algorithms to the optimal solution? (4) How
does Slick generalize across different types of network topologies?

5.1 Experiment Setup

We evaluate Slick using the Mininet network emulator [19]. We
opted for evaluating Slick using emulation rather than simulations
or testbeds because emulations allow us to evaluate Slick under a
variety of network topologies and with a variety of traffic matri-
ces while ensuring that our results faithfully replicate the dynamics
of real networks. We ran the Slick controller on one virtual ma-
chine and performed network emulation using Mininet on another.
Each virtual machine had eight cores assigned and both VMs were
running on a server with 16 cores(Intel Xeon E5620 @ 2.40GHz)
and 24 GB RAM. The Mininet emulator limits our evaluations to
topologies with less than 60 switches. For all evaluations, we use
the applications and elements discussed in Section 4.

Topology. To demonstrate Slick’s generality, we emulate a number
of network topologies representing data-centers and enterprise net-
works. We evaluate Slick using a Fat Tree [1] network and using
a canonical tree topology that is representative of small data cen-
ters [4] and enterprise networks [26]. In each topology, we assume
that a Slick machine is attached to all switches within the network,
so each machine that is attached to a switch can also host Slick
elements. For all the experiments we use fat-tree with 20 (K=4)
switches and tree topologies with 3 tiers and 15 nodes, except where
stated otherwise.

Traffic Matrices. We evaluate Slick using a combination of two
types of traffic matrices. (1) East-West traffic, emulating machine-
to-machine traffic patterns which are prevalent in modern data-
centers [4], (e.g., MapReduce workloads). This traffic matrix gen-
erates traffic solely between end hosts within the same network;
and (2) North-South traffic, emulating user-to-server traffic patterns
that exist in a number of networks including data centers, enterprise

Tree1 Tree2 Tree3
FatTree1

FatTree2
FatTree3

Two Topologies with multiple traffic patterns

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
gg

re
ga

te
A

ve
ra

ge
N

et
w

or
k

B
an

dw
id

th Optimal
Slick
Random

Figure 8: Network utilization under different algorithms: Slick, Random,
and Optimal.

campus networks, and WAN. Traffic is between servers at the edge
and the core-devices which act as a gateway to the Internet.
Evaluation Metrics. We evaluate Slick’s effects on data-plane re-
source utilization and the performance of the Slick controller. First,
we study the effects of Slick’s programming model and algorithms
on the overall network data plane utilization (Section 5.2). We show
how using Slick’s programming model and algorithms can help ef-
ficient implementation of Slick policies. To evaluate the efficiency
of Slick’s implementation of network policies, we focus on the fol-
lowing metrics: the sum of the average link utilizations (aggregate
average network bandwidth), which allows us to understand the
efficiency of the different algorithms; path length, which allows us
to understand the impact of the different algorithms on the perfor-
mance of individual flows; and link utilization, which also allows us
to understand the effects of different algorithms on network traffic
aggregates. In Section 5.3, we study the effects of network size, the
length of Slick element chains, and the number of Slick element
instances on the performance of the Slick controller.

5.2 Efficiency
We now evaluate the outcomes of the placement and steering that
Slick computes. In doing so, we focus on evaluating Slick’s perfor-
mance against an Optimal algorithm, which provides an upper bound
on Slick’s performance; and a Random algorithm, which provides
a reasonable lower bound on Slick’s performance. The Random
placement algorithm randomly places elements and Random steer-
ing algorithm randomly chooses which traffic to steer through which
elements, while the Optimal algorithm assumes that all elements
are placed at all locations and that each node has infinite capacity,
thus eliminating the need for placement and steering. The Optimal
algorithm ensures that the shortest paths are used at the cost of
employing more elements.

We have evaluated Slick, Random, and Optimal algorithms under
all topologies and traffic matrices. Due to space constraints, we
focus on the results from the largest emulations, but the results from
smaller experiments are qualitatively similar. In Figure 8, we present
the total bandwidth utilization from running the three algorithms on
the tree topology and fat-tree topologies. The Tree1 and Fat-tree-1
experiments make decisions on four different flow spaces, which
have both East-West and North-South traffic flows. We deploy four
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Figure 9: Comparison of Slick placement with Random and Optimal place-
ment algorithms.

element chains with one to two elements in each chain. For each flow
space, all of the sources are clustered in single rack and all of the
destinations of a flow space are in single switch rack. In the Tree2,
Tree3, Fat-Tree-2, and Fat-tree-3 setups, sources and destinations
are randomly distributed across the network. Tree2 and Fat-tree-2
have eight randomly selected source destination pairs and Tree3 and
Fat-Tree-3 have sixteen randomly selected source destination pairs.

Slick consistently outperforms Random varying between 20%
and 120%. Interestingly, for the traffic matrices where sources are
clustered in single rack as well as destinations, (tree-1, fat-tree1 in
Figure 8), Slick performs within 5% of Optimal. For topologies
where sources and destinations are randomly distributed across the
network, Slick performs between Random and Optimal: consistently
reducing the performance gap between Optimal and Random by
half.

We also examine the link utilizations, paths lengths, and number
of element instances in the resulting solutions Figure 9a and Fig-
ure 9b). Although Slick has comparable path lengths (Figure 9b) and
number of elements as Random (Slick and Random use one element
instance and Optimal uses 20 element instances for the Fat-Tree
topology), Slick achieves much lower link utilization than Random
for the same number of element instances. The link utilizations
that Slick achieves are comparable to those achieved by Optimal.
Moreover, Optimal can only maintain shorter paths at the cost of
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Figure 10: Slick placement performance with increasing number of unique
flow spaces that the application processes.

deploying significantly more elements: In this experiment, Optimal
uses N times more elements than Slick, where N is the number of
switches in the topology.

Comparison to CoMB’s “Strict” Consolidation. Slick uses infla-
tion rates to guide consolidation and placement. CoMB [41]) also
utilized consolidation as a way to reduce overall network utilization.
CoMB argues for a strict consolidation, which always consolidates
all elements in a chain onto one machine. We examine network uti-
lization under CoMB and Slick’s consolidation techniques and show
that using inflation rates to guide consolidation can significantly
reduce network utilization.

We observe that while both consolidation techniques perform
comparable, there are situations when Slick consolidation outper-
forms CoMB’s strict consolidation, reducing overall utilization by
up to 50%. We examine the different element chains and observe
that strict consolidation does not perform as well when chains con-
tain a combination of elements with inflation factor > 0 and inflation
factor < 0. In these cases, strict consolidation fails to account for
the inflation factors and the resulting transformation in traffic that in-
crease network utilization (e.g., a decompressor/encryption element
that increases the overall data transmitted).

5.2.1 General Scaling Properties

We evaluate Slick on scenarios that involve processing a different
number of unique flow spaces and a random distribution of traffic
sources and destinations.

Number of distinct flow spaces. Figure 10 shows the aggregate
average bandwidth utilization for Slick placement and steering with
varying number of flow spaces. We use a tree topology; in each run,
we increase the number of flow spaces and applications and introduce
an element chain in the network. We can see with increasing number
of flow spaces Slick placement consistently performs within 10–
15% of Optimal placement and outperforms Random placement for
varying number of flow sizes. In all these experiment runs Optimal
had 15 more copies of element instances than Random and Optimal,
corresponding to the number of switches in the network. Each
flow space had four to eight sources and four to eight destinations
in it but all the sources and destinations in each flow space were
non-overlapping.

Increasing Source Destination Pairs. In above experiment the
intersection of sources and destinations was an empty set for all
the flow spaces but both East-West and North-South traffic pattern
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Figure 11: Effect of different placement algorithms on traffic distribution,
for different numbers of random source-destination pairs.

were present in them. In Figure 11, we present the aggregate av-
erage bandwidth utilization for the Slick algorithms with varying
number of distributed switches all across the networks such that
the intersection of source and destination switches can or cannot
be an empty set. This experiment also has both North-South and
East-West traffic flows. We use fixed tree and Fat-Tree topologies.
Here we use a simple application with only one flow space. We
deploy this application in both Tree and Fat-Tree topologies. For
each experiment iteration, we randomly select source destination
pairs and generate traffic between them. We increase the number
of randomly selected host pairs from 1 to 16. As we can see that
for both Tree 11a and Fat-Tree 11b topologies the Slick placement
algorithm performance starts decreasing with increasing number of
randomly distributed hosts. But for both topologies Slick placement
consistently performs better than Random placement and in many
cases performs comparably to Optimal.

5.2.2 Individual Placement and Steering Algorithms

We quantify the benefits of each of Slick’s placement and steering
algorithms by evaluating different combinations of placement and
steering algorithms: (Slick,Random), a version of Slick with our
placement algorithms but with Random steering; (Optimal, Slick) a
version of Slick with our steering algorithm but the optimal place-
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Figure 12: Quantifying the benefits of Slick’s different algorithms.

ment; and (Slick,Slick) a version of Slick with Slick’s placement
and steering algorithms.

In Figure 12, we compare the link utilization and path lengths for
the different algorithms. Figure 12 shows that Slick’s steering algo-
rithm contributes significantly to Slick’s improvement’s over random
by providing reductions of both the median and 99th percentile path
lengths (19%,30%) and link utilization (37%,34%) over random
steering. We used a Fat-Tree topology. We deploy one element
to process traffic of one flow space; with 16 randomly distributed
source destination switch pairs across the network. The traffic matrix
has both East-West and North-South traffic flows. Figure 12a shows
that Slick’s placement results in higher link utilizations in exchange
for deploying fewer element instances. Figure 12b shows that Slick
placement places elements in locations that provide shorter path
length by restricting the number of elements used. In real-world
networks, the presence of background traffic may result in higher
overall traffic latencies, but we expect the results to be qualitatively
similar; the respective differences in network performance between
different configurations may be larger, as a reulst of this increased
background traffic.

5.3 Controller Performance
We now explore the scalability of Slick’s control plane and examine
the different parameters that can affect its performance. We evaluate
how the following dimensions: a) Network Size; b) Size of elements
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Topology
Size (Nodes)

Avg. Steering
Time (ms)

Avg. Placement
Time (ms)

15 13 131
31 15 404
63 11 581

Table 3: Effect of network topology size on Slick’s steering and placement
algorithms.
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Figure 13: Performance of Slick’s steering algorithm compared to random
steering.

in a chain; c) Number of Element Instances in each stage of the chain.
affect the run times of Slick’s placement and steering modules.
Network Size and Element Chain Size. To quantify the effects of
network topology and element chain size on the Slick controller’s
performance, we run a Slick control application with multiple flow
spaces and element chains on topologies of varying sizes. From
Table 3, we observe that the time for placement is linear as a function
of network size. Similarly, the placement algorithm’s time as well
as element instantiation time is impacted by number of elements in
the element chain as shown in Figure 14. Topology size and element
chain size both have a profound effect on the cost of placement.
We also show that steering is understandably only impacted by the
number of element instances, as we explain in more detail below.
Element Instances. In this experiment, we fix the network size and
size of element chain and increase the number of element instances
that can potentially operate on the flow space (i.e., more element
instances in each stage of Figure 6). As the number of element
instances in the network increases, Slick’s steering algorithm’s com-
putation time increases linearly, as shown in Figure 13. Since the
steering algorithm will be called only on subset of flow spaces in
a network (flows requiring Slick element processing), the longer
time to run the algorithm is less of a concern. Additionally, Random
steering in Figure 13 shows the lower bound for computation time
for any steering algorithm implemented in Slick.

6 Future Work
In this section, we discuss possible avenues for future work. We
plan to release the source code to help encourage future research
along the lines we have outlined in this section.
Security. The security of Slick’s element placement could be im-
proved in the following ways: (1) enforcing resource isolation be-
tween different elements on a Slick machine; (2) enforcing control
over an element’s ability to modify and transform packet headers
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Figure 14: Effect of element chain size on Slick algorithms.

and payload; and (3) default path for a new flow when elements and
switches are configured. The Slick shim enforces access control and
can enforce limitations on header transformations. Slick’s design
explicitly allows for elements to run in separate separate address
spaces, thus allowing Slick to use existing primitives for resource
isolation (e.g., Cgroups [6, 31], Unikernels [32, 33]). Yet, more
work is needed to explore exactly how various authorization policies
might be expressed and implemented within the context of Slick.
These questions are further complicated by the increasing prevalence
of end-to-end encryption, which may require additional mechanisms
for authorization and key distribution.

Element sharing. In principle, Slick makes it possible for multi-
ple applications to share an element instance that is installed in the
network. In such cases, different applications may have unique or
conflicting configurations for the same element instance: For exam-
ple, two different applications may use an encryption instance with
different encryption keys or a compression element with different
levels of compression. To support this level of flexibility, the Slick
programming model would need to be extended to allow a program-
mer to specify which flows (and applications should map to specific
element instances).

Testing and Verification. Slick includes no primitives for enabling
testing, debugging, and verification of data-plane elements. Future
work might explore ways to adapt existing work on automating
test packet generation to test the deployment of Slick middlebox
functions [24]; applying invariant checkers to determine that the
modifications that Slick elements perform on packets do not result
in incorrect forwarding behavior or behavior that violates other high-
level policies or intent [25]; verifying that Slick policies achieve any
isolation properties that a network programmer may specify [36];
and verifying that any Slick policies that are deployed do not violate
end-to-end reachability properties [2, 11].

Network Routing. Slick implements several placement and steer-
ing algorithms, but only one network routing algorithm (i.e., shortest
path routing), yet the performance and optimality of Slick’s place-
ment and steering algorithms depend on the underlying network
routing algorithm. Future work could evaluate the effectiveness of
Slick’s placement and steering algorithms in the context of different
network routing algorithms.

7 Conclusion
Most work on managing and orchestrating middleboxes has focused
on deploying monolithic middleboxes, rather than deploying individ-
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ual functions written in a high-level language. Slick takes the latter
approach, representing a departure from existing designs, which
provides the programmer with improved flexibility and scaling prop-
erties. Slick allows a programmer to write a single application that
describes a sequence of processing elements for a given part of
flow space, leaving the details of how those elements are replicated
and placed throughout the network to the runtime. We presented
a prototype and displayed the strength of the programming model
by implementing several elements and realistic applications. We
showed that Slick can achieve near-optimal network bandwidth uti-
lization for a variety of topologies and traffic loads.
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