
unCaptcha: A Low-Resource Defeat of reCaptcha’s Audio Challenge

Kevin Bock Daven Patel George Hughey Dave Levin
University of Maryland

Abstract
CAPTCHAs are the Internet’s first line of defense against
automated account creation and service abuse. Google’s
reCaptcha, one of the most popular captcha systems,
is currently used by hundreds of thousands of web-
sites to protect against automated attackers by testing
whether a user is truly human. This paper presents
unCaptcha, an automated system that can solve re-
Captcha’s most difficult auditory challenges with high
success rate. We evaluate unCaptcha using over 450 re-
Captcha challenges from live websites, and show that
it can solve them with 85.15% accuracy in 5.42 sec-
onds, on average. unCaptcha combines free, public, on-
line speech-to-text engines with a novel phonetic map-
ping technique, demonstrating that it requires minimal
resources to mount a large-scale successful attack on the
reCaptcha system.

1 Introduction

CAPTCHAs (the Completely Automated Public Turing
tests to tell Computers and Humans Apart) are defense
systems designed to protect against automated account
creation and service abuse by presenting users with a
challenge that is easy for humans to solve but difficult
for computers [27, 8].1 Captchas are used extensively
online as a defense against automated bots and Sybil at-
tacks [4], as well as preventing spam. For instance, many
online registration platforms, from social media services
to email to ticketing systems [8], require the user to solve
a captcha during registration to prevent automated cre-
ation of fake accounts. In a similar vein, some online ser-
vicets have recently begun requiring Tor clients to solve
captchas before delivering web content [11, 16].

The security of captchas is paramount to protecting
services on the Internet from these attacks. As the

1For the remainder of the paper, we follow industry convention and
write the acronym in lowercase, as “captcha”, for readability.

spread of news and information is increasingly driven by
user content on sites like Twitter, YouTube, and Reddit,
bots that could defeat the captcha system and register a
disproportionate number of accounts could theoretically
control the flow of information en masse [29]. It is there-
fore unsurprising that captchas have been the target of
attack for researchers and attackers for years [27, 2, 25,
28, 21, 32, 13, 1, 22].

Until recently, captchas have featured distorted text
that users must correctly type to pass. Bursztein et
al. [1] showed these text-based captchas to be insecure
by demonstrating a system with near-complete (98%)
accuracy. As a result, text-based captchas have been
largely phased out in favor of image captchas (discussed
at greater length in Section 2).

However, visually impaired users are incapable of
solving these visual captchas, prompting the creation of
audio captchas [27]. Typical audio captchas consist of
different speakers saying words or digits at randomly
spaced intervals at a variable pitch or speed, often with
an accent and distortion/noise [27]. To solve the captcha,
a user must correctly identify the digits or words spoken
in the audio clip.

Attacks have been demonstrated on these audio
captchas with varying degrees of success in the past. This
is usually done by training local machine-learning mod-
els to identify the spoken words [2, 25], a high-resource
and time-consuming approach. Additionally, although
researchers have explored using online speech recogni-
tion services, including Sphinx [2] or Google Speech
Recognition [18], these services have not been accu-
rate enough to compete with offline services or solve the
captcha reliably.

We present unCaptcha, a low-resource, fully auto-
mated attack on Google’s 2017 reCaptcha audio captcha.
unCaptcha is viable for even a low-resource attacker;
rather than perform its own analysis locally, unCaptcha
leverages free, publicly-available speech recognition ser-
vices, and performs a minimal phonetic mapping to boost

1



accuracy. Using a free Amazon Elastic Compute Cluster
(EC2) t2.micro instance, we demonstrate that unCaptcha
can solve reCaptcha’s audio challenges with 85.15% ac-
curacy in 5.4 seconds, on average. As the audio captcha
is sufficient for passing the entire reCaptcha system, this
work presents a near complete defeat of the reCaptcha
system, rendering the hundreds of thousands of sites2

that rely on it vulnerable to abuse or automated attacks.
We demonstrate that it takes far fewer resources to mount
a high accuracy defeat of the reCaptcha system than pre-
viously thought, and make suggestions for more secure
auditory captcha designs.

The rest of this paper is organized as follows. In the
next section, we provide an overview of related work.
Section 3 details more background into Google’s re-
Captcha system, and Section 4 describes unCaptcha’s de-
sign. We analyze and evaluate unCaptcha in Section 5,
and propose defenses and more secure audio captcha so-
lutions in Section 6. Finally, we conclude in Section 7.

2 Related Work

Captchas have long been the target of automated attacks.
Due to the breadth of literature, we will focus only on
attacks concerning auditory captchas. Almost a decade
ago, Kochanski et al. investigated the security of au-
dio captchas and developed a synthetic benchmark for
evaluating automatic solvers [12]. This work concluded
that humans vastly outperform automated speech recog-
nition systems (when audio noise/distortion is added to
spoken digits), and has guided the design of modern au-
dio captchas. Further independent studies deployed a
two-phase segment-then-classify approach and success-
fully broke older versions of Google and Yahoo audio
captchas [26, 21]. These two-phase solvers usually oper-
ate by first extracting portions of the captcha that contain
the digit, and then running pre-trained machine learning
algorithms to classify those individual digits, rather than
classifying them all at once [24].

In 2012, a research team developed the Decaptcha sys-
tem, a high performance auditory captcha solver to attack
eBay’s captcha system [2]. Decaptcha was a two-phase
solver that first examined energy spikes in the audio file
to segment by digit. Using a supervised learning algo-
rithm and a large corpus of previously annotated eBay
captchas, researchers developed a powerful model that
could recognize digits. Decaptcha achieved 75% accu-
racy on tens of thousands of captchas on their largest ma-
chine learning model. Burzstein et al. also defined four
threat models for attackers, and explored the potential
damage each could do. Although the advanced and high-

2Google does not publish reCaptcha usage statistics. We make this
conservative estimate using a Censys [5] search for “recaptcha”.

level attackers, defined to have tens to hundreds of thou-
sands of IP addresses and tremendous local resources,
could achieve high accuracy with their Decaptcha model,
the defined low and even medium resource attackers
achieved only 10% success [2]. Such a model discrep-
ancy is common: many existing captcha solutions as-
sume high attacker resources, including cores, band-
width, IP addresses, and more, to achieve high accuracy
solving [27, 2, 25, 28, 21, 32].

In 2012, a Defcon group demonstrated a successful
attack on the original iteration of reCaptcha’s auditory
captcha [25]. Using a large, powerful, locally trained
neural network, they achieved over 99% accuracy on the
original audio captcha system. After Google updated
the auditory captcha system to change it from words to
digits, inject background noise, and vary number of dig-
its to mitigate their vulnerability, the researchers rewrote
their tool and still achieved 61% accuracy. After a third
reCaptcha update (which was very similar to the orig-
inal iteration, according to the researchers), they again
defeated it with 60% accuracy using their large neural
network. Their tremendous success was limited only by
their need for a large corpus of training data; gigabytes
of data were used for training in the original attacks [25].
A similar high-resource attack in 2013 using Hidden-
Markov Models was also highly successful, solving these
audio captchas with 52% accuracy[20].

In 2016, a proof of concept work was done to attack
the newly updated audio captcha [18]. This work demon-
strated that it was possible to submit the entire captcha
audio to Google Speech Recognition and get a candi-
date solution. No accuracy measures were published, but
the researcher noted that on the 4-5 digit captcha, it was
successful. However, shortly after this work, the new
2017 captcha was released, introducing the longer au-
dio captchas (10 digits) and background noise to each
digit. Presumably, the background noise lowered the
digit classification accuracy and the longer captcha re-
quired a higher accuracy (90%) to pass, and therefore
the new captcha broke this methodology. Since this work
only used Google’s Speech Recognition API and did not
segment the digits before analysis, ReCaptcha’s protec-
tion against this attack was successful. Still, this work
serves as a foundation for our approach to break the 2017
reCaptcha.

Threat Model

Prior work has generally assumed that attackers against
captcha systems are well-resourced. In particular, the
standard threat model involves an attacker who can at-
tack the captcha tens or hundreds of thousands of times
for a relatively small number of successes, and can scale
this attack to abuse services.

2



Tightly coupled with the captcha threat model is what
level of accuracy is considered sufficient to “defeat” a
given captcha system. An attacker with many resources
can afford a lower success rate, and thus some have ar-
gued that even a success rate of 1/10,000 is sufficient to
threaten the integrity of services against an advanced at-
tacker [3]. Others assume attackers have fewer resources
(limited training data and/or processing power) and de-
fine 1% success accuracy as sufficient to defeat a captcha
system [2]. Still others raise the bar to only classify-
ing success above a higher threshold, such as 50% or
70% [27].

In our work, we will assume an attacker with limited
resources; unlike previous works attacking captchas, our
threat model limits the attacker to one computer, one
IP address, a small amount of RAM and limited train-
ing data (less than 100MB).3 Therefore, we aim for ac-
curacy benchmarks above 50%, as a low-resource at-
tacker cannot afford a lower percentage of success. Other
works have achieved low-resource attacks on captchas
before: Yan et al. [32] successfully produced a low-
resource attack on the Microsoft text-based captcha in
2008, prompting Microsoft to request the work to be held
in confidence for months while a replacement system
was built. To our knowledge, no similar low-resource
attacks have been replicated for auditory captchas.

3 reCaptcha Background

The reCaptcha system relies on an advanced risk-
analysis engine. As the user interacts with reCaptcha
(clicking buttons and typing), the system determines a
level of suspicion for that user. Today, many users will
find that they simply need to click the checkbox and be
verified without needing to solve a captcha. This occurs
when the reCaptcha is fairly confident that the user is
human and not an automated attacker (this is called the
“noCaptcha reCaptcha”). If the system is unsure if the
user is a human (but is not highly suspicious either), it
will deliver a moderate challenge to the user (an easy
image problem or a short audio string of numbers to tran-
scribe). This often occurs when a user does not yet have
a long enough history of interaction with Google. How-
ever, as the reCaptcha system becomes increasingly sus-
picious, it delivers harder challenges: 10 digits in the au-
dio challenge, or prompting the user to solve multiple
challenges. By default, a user with no past history with
Google services will be automatically given the most dif-
ficult challenge. It is these most difficult challenges that
unCaptcha attempts to solve. In the backend, a developer

3For ease of comparison between resource levels, all of our bench-
mark testing for the ‘low-resource’ attacker was done on a free-tier
Amazon Elastic Computing t2.micro instance, with 1GB of RAM, 1
virtual CPU, and 8GB of storage.

can enable different levels of security for reCaptcha on a
3 point scale between “Easiest for users” and “Most se-
cure”. Through our experimentation, we could discern
no difference in the level of difficulty of the captcha it-
self across the three settings, suggesting that only aux-
iliary security checks are enabled in the higher security
settings.

Although the new reCaptcha system was introduced in
2014 to replace the traditional “distorted text” captcha,
not much is known about its inner workings. Google
has protected the inner design of reCaptcha heavily, re-
leasing few details about how their software works. The
captcha system is run from an encrypted, isolated VM
(Virtual Machine) in JavaScript with a unique bytecode
language. To make reverse engineering even more dif-
ficult, the bytecode has direct access to JavaScript vari-
ables of its own interpreter, and changes its own decryp-
tion key and even its own opcodes numbers at many
points during its own execution. A full working disas-
sembler and decompiler for the system was released, and
it was determined that the captcha system, in addition to
confirming the actual captcha solving, checked for the
presence of: valid plugins; a valid user-agent string; a
valid screen resolution; execution time; computer time-
zone; number of click, keyboard, or touch actions in the
iframe of the captcha; many browser-specific functions
and CSS rules; canvas rendering properties; server side
cookies; and likely more [15].

In 2016, a further analysis by Sivakorn et al. [23] of the
reCaptcha system explored the weaknesses of the initial
implementation of the image captcha. It is important to
note that the image captcha has changed since that paper,
and their methodology is no longer sufficient to defeat
the captcha. However, their analysis of the captcha’s risk
analysis system lends insight into its inner workings. In
particular, Silvakorn et al. found that Google’s tracking
cookies play an integral role in the captcha’s defenses.
The captcha system is made aware of every time a user
interacts with a Google service (or a page with Google’s
tracking cookies, such as Google analytics). After just 9
days of automated browsing across different Google ser-
vices, their bots’ tracking cookie was sufficient to fool
the risk analysis system into thinking they were human,
and checking off the box. However, their experiments
revealed each cookie could only immediately complete 8
captchas per day before needing to solve additional chal-
lenges. Their results also showed that the reCaptcha sys-
tem attempts to fingerprint the browser, using canvas ren-
dering techniques, comparing the user-agent to what the
browser reports, and potentially more [23]. Despite these
impressive efforts of the risk analysis engine to identify a
bot before the captcha, as we will show next, reCaptcha
still remains susceptible to low-resource attacks to its au-
dio challenge.

3



4 unCaptcha Design

In this section, we present the design and methodology of
unCaptcha, a novel, low-resource attack against the au-
ditory challenges in Google’s reCaptcha. unCaptcha is
a fully automated, end-to-end attack, and comprises four
key steps: (1) Obtaining the audio sample, (2) Segment-
ing the audio into per-digit sound bites, (3) Analyzing
the sound bites, and finally (4) Entering the captcha so-
lution. We present each of these in turn. See Figure 1 for
a diagram of the design.

4.1 Acquiring Audio Captchas
Our primary technical contribution lies in our ability
to accurately analyze audio challenges, but a full end-
to-end attack must also be able to first obtain the au-
dio challenge. This is nontrivial for a bot, as the re-
Captcha system uses multiple heuristics to distinguish
between humans and bots, including checks for fake
browser agents, headless browsers, javascript checks,
and more [15]. Important among these is the detection
of keyboard and mouse inputs that appear “inorganic”—
for instance, moving the mouse at superhuman speeds
or in perfectly straight lines. We describe here how
unCaptcha bypasses these; we use the popular Reddit
website as a running example, which uses reCaptcha to
defend against bot account creation. Note that some of
the more aggressive security checks are disabled in re-
Captcha’s lower security levels, but at the time of writ-
ing, our attack was fully functional against reCaptcha
on highest security level with all security features en-
abled. This methodology could be applied to any of the
hundreds of thousands of services that use Google’s re-
Captcha.

Using the popular browser automation software Se-
lenium4, unCaptcha finds a functioning HTTP proxy to
mask its connection from GatherProxy. It uses Firefox to
first navigate to Reddit.com, and performs some minor
page interaction. It clicks the link to create an account,
which opens a “create new account” modal box. The bot
then generates a random username, password, and email,
clicks into each field, and types it as a human would, with
random amounts of time between each keystroke so as to
fool reCaptcha. This is just a proof of concept, since no
additional processing is done to check if the username or
email is valid; these fields are only filled out to initiate
the captcha.

It is interesting to note here that our build of
unCaptcha was tested on both Mac OS X and Linux
(Ubuntu), but the attack only initially worked success-
fully on Linux, as reCaptcha could seemingly detect
the use of Selenium on OS X. This broken detection of

4https://www.seleniumhq.org

browser automation on Linux was a critical vulnerability
that in part originally enabled this attack. However, we
were later able to custom compile a Mac OS X Selenium
ChromeDriver that evaded detection by simply renam-
ing hardcoded DOM-accessible ChromeDriver-specific
variables, suggesting that reCaptcha’s Selenium detec-
tion system is still insufficient.

Once the username and password are filled, the re-
Captcha appears. unCaptcha locates the “I’m not a
robot” checkbox, and clicks it. Although we engi-
neered the typing to be pseudo-organic, the mouse move-
ments were left to Selenium’s default, inorganic behav-
ior. Across all captcha attacks, reCaptcha never seemed
to pick up on these mouse movements; we hypothesize
that reCaptcha does not actually examine mouse move-
ment patterns, but just a set number of events generated
from mouse usage (hover, unhover, etc), which are ac-
tually generated by browser automation software by de-
fault.

Next, the reCaptcha system generates a new iframe
with the actual reCaptcha challenge. From here, the bot
switches to an audio captcha, downloads the audio pay-
load from the page, and clicks the “PLAY” button, to
mimic a normal, listening user.

4.2 Audio Pre-processing

Following the methodologies in other works, the re-
trieved audio file is first segmented before recognition.
Google’s current audio reCaptcha does not have continu-
ous background noise to interfere with segmentation, and
relies entirely on distortion within the sound bites them-
selves for protection. Therefore, segmentation is surpris-
ingly straightforward; unCaptcha simply splits the audio
file by periods of silence using amplitude analysis to sep-
arate each spoken digit.

4.3 Analyzing the Audio

unCaptcha’s primary contribution is in how it analyzes
audio in an accurate and low-resource manner. Similar
to ReBreakCaptcha [18], we make use of existing online
speech-to-text services, but we apply two key additional
steps: phonetic mapping and ensembling. We describe
these in the following subsections.

4.3.1 Speech Recognition Services

After retrieving and segmenting the audio file,
unCaptcha uploads each sound bite to a set of dif-
ferent free online speech recognition services. All of
these services were registered within a day and required
no cost. In our implementation, we use six: Google

4



Figure 1: The overall design of unCaptcha. Note that speech-to-text analysis, phonetic mapping, and ensembling are
applied to each digit separately.

Cloud5, Bing Speech Recognition6, IBM Bluemix7,
Google Speech API, Wit-AI8, and Sphinx9 (available
through python’s speechrecognition library10). We
originally implemented a seventh service, Houndify, but
it performed so poorly in comparison in the presence of
distortion that we later removed it. By comparison, Re-
BreakCaptcha used only a single online service (Google
Speech API). However, as we show in Section 5, using
multiple speech recognition tools is critical to achieving
high accuracy.

For each sound bite, each of these services returns
a candidate text transcription. It is important to note
that most of these services are designed for generic
speech recognition, and unlike many prior approaches
with specifically trained models to classify spoken dig-
its, these multipurpose services frequently confuse digits
with words. We address this issue with phonetic map-
ping (Section 4.3.2). Additionally, we have found some
services to be significantly more accurate than others.
We address this by borrowing a technique from machine
learning: ensembling (Section 4.3.3).

4.3.2 Phonetic Mapping

Since these services support general speech recognition
(not only digits), we employ two layers of phonetic map-
ping: (1) exact-homophone, and (2) near-homophone.

The preliminary layer of phonetic processing maps
common mistakes in speech recognition back to corre-
sponding numerical digits. We map homophones of each
digit back to its numerical form (such as “to”/“too” 7→
“2,” “for”/“fore” 7→ “4”). Frequently, services also spell
out the digit instead of returning just the digit. For ex-
ample, an API might return the word “four” instead of
“4”. Therefore, we mapped the spelled-out versions of

5https://cloud.google.com/speech/
6https://microsoft.com/cognitive-services/en-us/speech-api
7https://ibm.com/watson/developercloud/doc/speech-to-text/
8https://wit.ai/
9http://cmusphinx.sourceforge.net/wiki/

10https://pypi.python.org/pypi/SpeechRecognition/

all ten digits to their respective numbers as well in the
preliminary layer.

In addition to the basic homophone mapping, a sec-
ond layer of phonetic processing is needed. Minor distor-
tion, heavily accented voices, or short sound bites nega-
tively affected the service’s ability to correctly identify
the digit. The services would often return words that
sounded phonetically similar to the correct digit. There-
fore, we added a heuristics based mapping layer to cor-
rect for common mistakes made by the services. In our
initial development, almost 100 captchas were solved by
hand as a test set to curate the heuristic list of near-
homophones. With just 36 near-homophones, unCaptcha
solved captchas at a rate greater than 50%. While this
list of near-homophones was manually created, it could
be also done in an unsupervised manner with natural lan-
guage processing. Some examples of near-homophones
include “free” for “3”, “sex” for “6”, and “mine” for “9”.
Few of these near-homophones are actually needed for a
basic level of success, but given the wide array of distor-
tion, more mappings vastly improved accuracy overall.

We further extended our phonetic mapping to include
partial matches for distinctive sounds of certain digit; for
example, words ending in “icks” on average should be
classified as a “6”, responses containing “ee” would be
classified as a “3”, etc. In total, unCaptcha’s heuristic
contains 129 of these homophones, near-homophones,
and partial matches which it uses to assemble a candi-
date solution string of digits. These homophones were
curated manually and chosen systematically, first using a
trial and error approach, making sure that common ho-
mophones were included. For fine-tuning, we employed
a statistical analysis of common errors from the speech-
to-text services, which identified other less intuitive map-
pings, such as “you know” for the number 0 (this alone
increased our captcha success rate by 0.6%). A more
comprehensive collection of such near-homophones and
partial matches would only improve overall accuracy;
however, our manually curated list was sufficient for the
initial build of unCaptcha.

Finally, we note that we did not include any of the au-

5



dio samples we used in constructing our phonetic map-
ping when evaluating unCaptcha (Section 5).

4.3.3 Ensembling

After performing phonetic mapping on each of the indi-
vidual speech recognition services’ predictions, we “en-
semble” their responses to obtain a single answer. In
essence, each candidate answer gets a weighted vote; the
answer with the highest weight wins. We assign weights
in two ways.

Throughout our evaluation, we observed that some on-
line speech recognition services were more accurate than
others at correctly identifying digits, and therefore the
balance of our heuristic model was partially driven by
these differences in accuracy. For example, during ini-
tial testing, we discovered that Google Cloud was much
better than Sphinx at correctly identifying digits; there-
fore, results from Google Cloud later were given a higher
weighting than from Sphinx.

An additional problem arises with this ensembling
approach: multiple services returning different, poten-
tially valid identifications. This was common with dis-
torted digits, particularly with harder to distinguish dig-
its. Some near-homophones began to fall under multiple
categories, for example,“fine” for “5” and for “9”, caus-
ing many false positives. To combat this, we assigned
a weighting value based on the phonetic similarity of
specific words and used a weighted majority vote to de-
termine the digit. Exact-homophones (such as “too” or
“for”) were given a high weighting value, while more
phonetically different near-homophone words that could
be confused between categories (such as “fine”) were
given a low weighting value. This change dramatically
improved accuracy (just over 65%). Phonetic analysis
of additional common mistakes also showed more near-
homophones, such as “brain” for 9, “we” for “3”, and
“they have” (they’ve) for “8”. This ensembling approach
and phonetic mapping layer sets this work apart from ex-
isting auditory attack methodologies, such as [18].

4.4 Entering the Solution

After a candidate string of digits has been assembled,
unCaptcha organically (with uniform timing randomness
between each character) types the solution into the field
and clicks the “Verify” button. Continuing with our
running example of Reddit: When successful, the bot
could go forward to creating an account. Although we
could have made Reddit accounts with every successful
captcha solution, we chose to make only a small number
(fewer than 10) of accounts as a proof of concept.

5 Evaluation

We tested unCaptcha on 459 hand-annotated captchas11

on a free-tier Amazon t2.micro EC2 instance, with 1
virtual core, 8GB storage, and 1GB of RAM. All test-
ing was done on reCaptcha’s most difficult, 10-digit
captchas.

5.1 Base, Per-digit Accuracy
We begin by investigating the base accuracy provided by
each of the services used in unCaptcha. Table 1 shows
the per-digit accuracy of each of the six services we use,
sorted in decreasing order of base accuracy. As these
results show, using a single service alone (such as Re-
BreakCaptcha, which used Google) would not lead to
high accuracy for 10-digit challenges.

Per-digit Accuracy Captcha
Service Base + Mapping Success
Google Cloud 55.55% 55.81% 2.61%
Wit 48.01% 64.45% 8.06%
Bing 44.12% 66.65% 10.39%
IBM 31.62% 62.67% 6.50%
Google 21.25% 28.10% 0.01%
Sphinx 6.64% 31.88% 0.02%

Table 1: Per-digit accuracy of each free online speech
recognition service used in unCaptcha, before (“Base”)
and after performing phonetic mapping. Also, overall
success rate of phonetic mapping against 10-digit chal-
lenges.

5.2 Benefit of Phonetic Mapping
Next, we explore the effectiveness of unCaptcha’s pho-
netic mapping (Section 4.3.2). Each service’s per-
digit accuracy after phonetic mapping is shown in
the “+Mapping” column in Table 1. Across all the
captchas, the phonetic processing increased the accu-
racy by an average of 17.04%, though some services
saw far greater improvements than others. For exam-
ple, Google Cloud needed almost no improvements—
nearly all of its returned suggestions were either digits
or exact-homophones of the digits. Wit AI performed
similarly well, but faltered significantly with digits 0, 6,
and 8. Bing’s speech-to-text software performed mod-
erately well across the board, again with the exception
of the digit 6. Indeed, we see a preponderance of errors
with the digit 6; we return to this point in Section 5.4.

11Although during the initial data collection phase 500 captchas were
attacked and downloaded for analysis, 41 captchas were accidentally
overwritten, leaving a test set of 459 captchas.

6



Best Ensemble Per-digit Captcha
N of N Services Accuracy Success
1 Google Cloud 55.81% 2.19%
2 Bing + IBM 82.87% 47.26%
3 + Google Cloud 88.25% 66.96%
4 + Wit 91.36% 78.12%
5 + Sphinx 91.93% 80.09%
6 + Google 91.99% 80.31%

+ “X” 7→ “6” 93.41% 85.15%

Table 2: The marginal benefit of ensembling multiple
services, after both phonetic mappings. After full en-
sembling, we replace each unknown (“X”) with a guess
for “6”, yielding our highest overall accuracy.

Appendix A shows the benefit of the near-homophone
mapping in a graphical manner. Note that many of
the unidentified clips (in the “X” column) are correctly
identified after the mapping, especially in Figures 7(a)
and 7(b).

5.3 Benefit of Ensembling
Even if some services are unable to identify a sound bite,
with ensembling (Section 4.3.3), it is likely that another
one can. Table 2 shows the maximum level of success
depending on the number of services used. This table
shows that it multiple services before the success rate can
reach the 50% success rate mark. After four services,
the marginal benefit drops off steeply. At this point, the
services are capable of correctly classifying 91.36% of
the digits. Additional services have difficulty classifying
the remaining 8.64% digits, so they barely improve the
success rate.

5.4 unCaptcha Accuracy
Putting all of the techniques together, we now present
unCaptcha’s overall accuracy.

Per-digit accuracy As Table 2 shows, after the service
aggregation and phonetic mapping, unCaptcha achieves
a per-digit accuracy of 91.99%. Figure 2 shows the dis-
tribution of received digits across those 459 captchas, as
well as the relative accuracy for each. The distribution
of digits received is nearly uniform, suggesting that re-
Captcha does a simple uniform sampling when generat-
ing the captchas.

Figure 3 presents confusion matrices that show how
unCaptcha performs on a per-digit basis. The column
labeled “X” in the confusion matrices represents a fail-
ure to produce a digit, meaning that unCaptcha could not
even identify the sound bite as a numeral. As can be seen

Figure 2: The distribution of digits sampled from re-
Captcha, and the number unCaptcha successfully de-
tected.

in Figure 3(a), the majority of errors came from misclas-
sifying the digit “6”.

Improving the accuracy of “6” After noticing the low
accuracy of “6”, we imposed a crude (but surprisingly ef-
fective) countermeasure: we simply map all unknowns
(“X”) to “6”, giving us the confusion matrix in Fig-
ure 3(b). This improved unCaptcha’s per-digit accuracy
from 91.99% to 93.41%, and overall captcha success rate
from 80.31% to 85.15% (this includes all 6 services and
both layers of phonetic mapping).

The success of unCaptcha’s ensembling approach can
be seen in comparing the overall confusion matrix in Fig-
ure 3(a) with the top performing services in Figures 5(b),
6(b), and 7(b); only the services working together were
capable of defeating reCaptcha.

Captcha success rate unCaptcha successfully solved
reCaptcha’s auditory challenges with an overall success
rate of 85.15%. This can be explained by two observa-
tions. First, reCaptcha requires only 9 of the 10 digits
to be successfully identified in order to pass the captcha.
We can thus view each digit as an independent trial. Sec-
ond, as is shown in Figure 2, the distribution of digits
is approximately uniform, and thus captcha success rate
can be modeled with a simple binomial distribution, with
a success probability equal to our per-digit accuracy of
93.41%. In testing, we also encountered no limitations
on the number of times we could automatically request a
new challenge. This weakness allows for even more ac-
curate attacks; for example, an attacker could repeatedly
request new audio challenges until it had higher confi-
dence in its solution.

7



(a) Without mapping unknowns to “6”. (b) With mapping unknowns to “6”.

Figure 3: Confusion matrices of unCaptcha after ensembling all six services and performing phonetic mapping. As
the digit “6” was the most consistently misclassified, we simply map all unknowns to “6”.

5.5 unCaptcha Speed

Recall that unCaptcha issues 10 (single-digit) queries to
each of 6 online speech recognition services. This is
an embarrassingly parallelizable task: the services are
independent of one another, and thus an attacker can
query them in parallel. We implemented two variants
of unCaptcha: one that solves each digit serially, and one
that solves them in parallel.

Solving each digitally serially resulted in an average
captcha completion time of 22.24 sec. Solving them in
parallel, unCaptcha took 5.42 sec on average with a stan-
dard deviation of 1.25 sec, a significant improvement in
speed.

The audio captchas we captured were on average
19.13 sec long, with a standard deviation of 2.39 sec. We
hypothesized that we would have to wait for the duration
of the entire audio clip before entering our solution for it
to be valid, but surprisingly, reCaptcha allowed solutions
to be submitted faster than the audio could play.

In short, the time it takes unCaptcha to solve re-
Captcha’s auditory challenges is on average 28.3% of the
time it would take for a human to listen to them. As such,
reCaptcha’s primary bottleneck on attack speed is service
response times.

5.6 Service Response Times

Across all six speech-to-text services unCaptcha uses,
we observed an average response time of 2.95 sec, with
a standard deviation of 1.99 sec. However, recall that
unCaptcha uses the free tiers of these services; response
times can go up considerably (or the services can become
unavailable) after exhausting the free allotment.

Service API Limits
Google 60 minutes/month
Google Cloud 60 minutes/month
Bing 5,000 queries/month
IBM 1,000 minutes/month
Sphinx None
Wit None

Table 3: API limits for the services unCaptcha uses (at
their respective free tiers).

Although a few of the services are free to use, oth-
ers limit the user based on number of queries or min-
utes of audio, as shown in Table 3. After this period,
users have to decide either to sign up for a new account
(to access new API keys) or pay for the service. Iron-
ically, a reCaptcha captcha is the only defense against
bot registration for a new account on many of these ser-
vices, meaning that unCaptcha could theoretically be
made self-sufficient by automatically signing up for a
new account if it detects that a given account is close
to its API limit.

5.7 Library Size Estimation

Throughout the process of manually solving each
captcha, we noticed a significant number of the individ-
ual digits were repeated. We investigate this duplicate
rate to see if we could estimate the library size of the
reCaptcha’s audio files. If the library size is too small,
reCaptcha could be vulnerable to an attack where the at-
tacker downloads all possible digits, classifies each of
them, and automatically compares each digit from an un-

8



Digit Duplication Rate (%)
0 40 / 408 (9.80%)
1 56 / 456 (12.28%)
2 65 / 442 (14.71%)
3 49 / 463 (10.58%)
4 68 / 468 (14.53%)
5 66 / 463 (14.25%)
6 58 / 452 (12.83%)
7 67 / 466 (14.38%)
8 51 / 482 (10.58%)
9 62 / 490 (12.65%)

Total 582 / 4590 (12.68%)

Table 4: Per-digit duplication rate of the reCaptcha’s au-
dio clips we collected during our evaluation. There is
considerable overlap in our moderately sized sample; we
estimate ∼36,500 total variants.

solved captcha with the already-classified digits. Ideally,
a captcha system would have none of these duplicates, so
that such an attack would not work.

To determine the number of duplications, we classi-
fied each audio segment as its respective digit and ana-
lyzed the Mel-Frequency Cepstral Coefficients (MFCCs)
of all digits. We found a non-negligible occurrence of
these duplicates; Table 4 shows that, of the 4590 total
per-digit audio samples we received, 12.68% of them
were repeats.12 Using the capture-recapture [10] method
to estimate the overall population size, we estimate that
Google stores approximately 3600 files per digit in its
database, from which it randomly selects files to gener-
ate a captcha, implying an overall library size of about
36,500 digits. The entire audio captcha (10 digits) file
size approximately 30KB, meaning the estimated library
size constitutes∼110 MB, well within the storage capac-
ity of a low-resource attacker. Classification would re-
quire a comparison between the test digit and the stored
digits, which could take a significant amount of time.
However, other means of comparison, such as through
the use of perceptual hashing [9], could drastically re-
duce the comparison time and make an attack feasible
for a low-resource attacker.

5.8 Offline Attack

A possible defense against uploading the sound clip to
online speech recognition services would be for services
to recognize captcha audio clips and refuse to transcribe
them or even purposefully transcribe incorrectly. Gen-
erally, this defense would only be easily feasible for
Google to do (as they have access their own captcha

12Note that this duplicate rate is only a conservative lower-bound
estimate, and the true duplication rate is likely higher than this.

audio library). As captcha sound bites are taken from
normal speech, it would be difficult for the other speech
recognition services to distinguish parts of speech taken
from a captcha and regular legitimate sound bites to tran-
scribe. Additionally, as the attacker has full control of
the sound clip to upload, the attacker could add some
small degrees of distortion, filtering, or other effects that
would not hamper transcription, but would make it more
difficult to identify as coming from a captcha. However,
we entertain the notion that speech recognition services
could refuse to transcribe captcha sound bites. With a
defense like this in mind, or in cases where Internet con-
nection is severely limited, we investigate to find if an
equally low-resource offline solver is possible, taking ad-
vantage of the small library size used by reCaptcha (only
10 digits).

To perform crude, lightweight speech recognition, our
offline solver relies on computing the Mel-Frequency
Cepstral Coefficients (MFCCs) as means of comparison
between sound bites of digits [7]. MFCCs capture fea-
tures about the short-term power spectrum of a sound
wave [14]. MFCCs are a feature widely used in au-
tomatic speech and speaker recognition, and were con-
sidered state-of-the-art until speech recognition switched
largely to machine learning. As MFCCs were origi-
nally standardized in 2003 to run on mobile phones, low-
resource implementations are available [6]. To prop-
erly compare MFCCs, Dynamic Time Warping (DTW) is
commonly used to address temporal misalignment [14].
In this manner, to “recognize” a given sound bite, the
MFCCs are computed for both the given sound and for
a small library of “template” sounds. Using DTW, the
given sound and each of the templates are compared, and
the template class that most closely aligns with the given
sound is considered correct. We follow this basic pattern
of recognition in our offline solver.

Offline solving proceeds as follows. First, a set of
control digits are randomly selected from a list of hand-
solved captchas. We tested the overall accuracy varying
the size of this control set from 5 to 250 examples (per
digit). MFCCs are computed and saved for each of these
control digits. After the control set is created, the solver
is ready to solve captchas. The test captcha is segmented
into individual test digits (using the same method as the
online unCaptcha solver), MFCCs are computed for each
test digit of the captcha and compared using the DTW
algorithm to each of the control digit clips. The class
of control digits with the minimum distance to the test
digit is chosen as the candidate solution. The candidate
string is then assembled as usual, and can be submitted
to reCaptcha.

It is important to note that like traditional MFCC
speech recognition, the offline MFCC solver does not at-
tempt to “transcribe” the spoken digits as typical speech

9



(a) The accuracy of identifying a single digit, with varying con-
trol size.

(b) The percentage of passing the entire 10-digit captcha, with
varying control size.

Figure 4: Digit accuracy and success rate of our MFCC-based offline captcha solver, as a function of the size of a
ground truth dataset. We observe diminishing returns, but a surprisingly high success rate (50%) for even a modest
ground truth (250 samples).

recognition services do; instead, it attempts to see which
set of control spoken digits is most similar to a test sound
bite. Even in the presence of noise, accents, or other mi-
nor distortion, as long as the waveform of a test digit
more closely resembles other same digits, it will be clas-
sified correctly. Additionally, this solution intentionally
relies on minimal training data and a low-resource al-
gorithm to remain viable for a low-resource attacker.
Even with 2500 comparisons per digit in the captcha, on
Amazon’s t2.micro instance with only one virtual CPU,
captcha solutions could be produced in under 30 seconds.
If more cores were available, this could also be effec-
tively parallelized to be computed faster.

Figures 4(a) and 4(b) show the single-digit and overall
captcha solving accuracy using the offline MFCC solver.
Even at the highest of only 250 sample captchas, overall
captcha solving accuracy reached 51% captchas. On av-
erage, with a sample control set of 250 captchas, captcha
solving took 29.26 seconds, only 4 seconds slower than
the online attack. Creating this set of captchas is simi-
larly trivial; at 21 seconds per captcha, one person could
build such a control set in under an hour and a half. Al-
though our offline solver performed worse than the on-
line solver, with 51% accuracy, it is still a sufficient suc-
cess rate to constitute a defeat of the reCaptcha system.

6 Countermeasures

In this section, we discuss some potential countermea-
sures to make the reCaptcha system and similar auditory
captchas more robust to withstand this attack.

6.1 Vocabulary Size

Improving the security of reCaptcha’s audio captchas is
critical since passing an auditory captcha bypasses re-
Captcha entirely. Checking for simple impossibilities,
such as moving the mouse faster than a human possibly
could, clicking the precise center of an element, or solv-
ing captchas faster than they can be heard would help
bolster security against less sophisticated bots. In the
immediate term, reCaptcha resiliency can be improved
by broadening the vocabulary of sound bites beyond just
digits. Our system of phonetic mapping relies on this
vocabulary of 10 elements; if a vocabulary of all spoken
words was used instead, it would be much more difficult
to detect or even correct errors from the speech to text
services using a simple phonetic mapping.

The overall success of the offline MFCC captcha
solver underscores the problem of using such a small
vocabulary size of only digits; as a bot needs to de-
cide only among 10 options, even relatively simplistic
speech recognition algorithms designed to run on min-
imal hardware constraints (old mobile phones) are ca-
pable of working well on average. For the security of
the auditory captcha to hold, a much more diverse vo-
cabulary of sounds is needed. This conclusion is not
new; in response to a similar conclusion drawn by Tam
et al. in 2008, the reCaptcha team redesigned their au-
dio captchas completely to include a full spoken sen-
tence or a collection of spoken words, a far more difficult
clip to defeat [27]. However, after migration to the new
image/audio reCaptcha, this change seems to have been
dropped.

10



6.2 Distortion

Adding background noise or background chatter between
digits to would make segmentation more difficult. (For
example, Amazon Web Services implements this for
their audio captcha.) However, to make the actual dig-
its to identify stand out to the user, this background noise
often needs to be quieter than the actual digits to identify,
making it susceptible for easy removal or identification
with a low-pass filter. Similar analysis can also remove
high-frequency noise, general distortion, or chatter from
periods without digits, making segmentation still rela-
tively easy. Recent studies support this, and have shown
that background noise is largely ineffective at impeding
automatic speech recognition [20]. Other audio based
tasks that were previously thought to only be doable
by humans, such as song identification, have also been
solved with a very high degree of accuracy [30].

As speech recognition systems get stronger and more
resilient to background noise and distortion, maintain-
ing the security of the audio captcha in its current form
will prove more difficult. In 2008, Tam et al. suggested
taking advantage of the human ability to understand dis-
torted audio through context clues. By replacing ran-
dom isolated words or digits with familiar phrases or
sentences, the idea was that humans could decipher dis-
torted utterances through familiarity with the phrase or
contextual clues in the sentence [26]. However, we be-
lieve this is not a viable longterm solution, particularly
given the advancements in neural networks and other ad-
vanced speech recognition services taking advantage of
contextual clues [31, 17, 19].

6.3 Auditory Instructions

We suggest a different approach: giving auditory in-
structions to the user to follow. For example, instead
of challenging the user with a sound to transcribe (or
identify), an automated series of tasks could be read to
the user. Even simple tasks like “move your mouse up-
wards,” “type a word,” “type the following word but
don’t type this word,” etc. could prove far more difficult
for a computer to solve, as it adds an additional layer
to the challenge. Beyond blind segmentation and tran-
scription, understanding the challenge commands would
require a host of custom processing, particularly since it
would be relatively easy for the captcha system to build
up a large vocabulary of similar commands. Such a chal-
lenge is also more truly akin to a Turing test. Although
making audio captchas more difficult for machines has
been traditionally associated with also making it harder
for humans, we believe this higher level test would be
easy for humans to solve while proving difficult for bots.

7 Conclusion

We demonstrate a low-resource, high accuracy defeat
of the reCaptcha system. After successfully running
against over 450 captchas, it can defeat reCaptcha with
over 85% accuracy. By ensembling the results from
free, non-specialized, online speech recognition services,
unCaptcha demonstrates that it is far cheaper to mount
a highly successful attack on reCaptcha than previously
thought. This carries major consequences; reCaptcha is
used by hundreds of thousands of sites as one of the
foremost lines of defense against service abuse and au-
tomated account creation. We make a number of sugges-
tions to mitigate our attack and reaffirm the security of
the reCaptcha, providing a third line of computational
defense against bots for auditory captcha systems. In
the future, we look to explore the efficacy of our attack
methodology on other auditory captcha systems, includ-
ing Amazon’s auditory captcha, eBay’s, and more. We
also seek to explore if this similar low-resource method-
ology of using free, online public services can be used to
attacking reCaptcha’s image captcha.

The code and data from this paper are publicly avail-
able at:

https://uncaptcha.cs.umd.edu

Responsible Disclosure
The day after we had a working prototype of unCaptcha
(mid-March 2017), we emailed the Google BotGuard
team to inform them of the weaknesses we discovered.
They reported that they were aware of the issues and
were working on a fix. As of mid-July 2017, minor up-
dates to reCaptcha had been made tightening the secu-
rity of the audio captcha specifically. Selenium detec-
tion now works across both Mac OS X and Linux on the
higher two security levels for the audio captcha, but Sele-
nium is still effective on the lowest security level. Inter-
estingly, these changes were made specifically to the au-
dio captcha: we can engage the image captcha without is-
sue using Selenium across all security levels. The rest of
our attack methodology still works, suggesting the only
current barrier to attack is evading browser-automation
detection. We have reported this to Google.

Acknowledgments

unCaptcha was originally prototyped at Bitcamp, a
hackathon at the University of Maryland; we thank
the Bitcamp organizers. We also thank our shepherd,
Christina Pöpper, and the anonymous WOOT reviewers
for their helpful feedback. This work was supported in
part by NSF grants CNS-1409249 and CNS-1564143.

11



References

[1] E. Bursztein, J. Aigrain, A. Moscicki, and J. C. Mitchell.
The end is nigh: Generic solving of text-based captchas.
In WOOT, 2014.

[2] E. Bursztein and S. Bethard. Decaptcha: Breaking 75%
of eBay audio CAPTCHAs. In WOOT, 2009.

[3] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwin-
ski. Building segmentation based human-friendly human
interaction proofs (HIPs). In Human interactive proofs,
pages 1–26. Springer, 2005.

[4] J. R. Douceur. The Sybil attack. In IPTPS, 2002.

[5] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.
Halderman. A search engine backed by internet-wide
scanning. In CCS, 2015.

[6] ETSI Standard. Speech processing, transmission and
quality aspects (STQ); distributed speech recognition;
frontend feature extraction algorithm; compression algo-
rithms. ETSI ES, 201(108):V1, 2003.

[7] T. Ganchev, N. Fakotakis, and G. Kokkinakis. Compara-
tive evaluation of various MFCC implementations on the
speaker verification task. In SPECOM, 2005.

[8] Google reCAPTCHA. https://www.google.com/ re-
captcha/intro/.

[9] N. M. Hamza zer, Blent Sankur. Robust audio hashing for
audio identification. EUSIPCO, 2004.

[10] S. Hjsgaard. The Capture-Recapture Model for Estimat-
ing Population Size. Department of Mathematical Sci-
ences, Aalborg University, 2014.

[11] S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundaresan,
V. Paxson, S. J. Murdoch, and D. McCoy. Do you see
what I see? Differential treatment of anonymous users.
In NDSS, 2016.

[12] G. Kochanski, D. P. Lopresti, and C. Shih. A reverse tur-
ing test using speech. In INTERSPEECH, 2002.

[13] S. Li, S. A. H. Shah, M. A. U. Khan, S. A. Khayam,
A.-R. Sadeghi, and R. Schmitz. Breaking e-banking
CAPTCHAs. In ACSAC, 2010.

[14] L. Muda, M. Begam, and I. Elamvazuthi. Voice recogni-
tion algorithms using mel frequency cepstral coefficient
(MFCC) and dynamic time warping (DTW) techniques.
arXiv preprint arXiv:1003.4083, 2010.

[15] neuroradiology. InsideReCaptcha.
https://github.com/neuroradiology/InsideReCaptcha,
2014.

[16] M. Prince. The trouble with Tor. CloudFlare Blog
(https://blog.cloudflare.com/the-trouble-with-tor/), Mar.
2016.

[17] J. Rao, F. Ture, H. He, O. Jojic, and J. Lin. Talking to your
TV: Context-aware voice search with hierarchical recur-
rent neural networks. arXiv preprint arXiv:1705.04892,
2017.

[18] ReBreakCaptcha: Breaking Googles Re-
Captcha v2 using.. Google. https://east-
ee.com/2017/02/28/rebreakcaptcha-breaking-googles-
recaptcha-v2-using-google/, Feb. 2017.

[19] Y. Ren, Y. Zhang, M. Zhang, and D. Ji. Context-sensitive
twitter sentiment classification using neural network. In
AAAI, 2016.

[20] S. Sano, T. Otsuka, and H. G. Okuno. Solving Google’s
continuous audio CAPTCHA with HMM-based auto-
matic speech recognition. In IWSEC, 2013.

[21] R. Santamarta. Breaking Gmails Audio
Captcha. Archived: https://web.archive.org/web/
20131214022419/
http://blog.wintercore.com/2008/03/05/breaking-gmails-
audio-captcha/, 2008.

[22] Simplecaptcha. http://simplecaptcha.sourceforge.net.

[23] S. Sivakorn, J. Polakis, and A. D. Keromytis. I’m not a
human: Breaking the Google reCAPTCHA. Black Hat,
2016.

[24] Y. Soupionis and D. Gritzalis. Audio CAPTCHA: Exist-
ing solutions assessment and a new implementation for
VoIP telephony. Computers & Security, 29(5):603–618,
2010.

[25] Stiltwalker: Nucaptcha, Paypal, SecurImage,
Slashdot, Davids Summer Communication.
http://www.dc949.org/projects/stiltwalker/, 2012.

[26] J. Tam, J. Simsa, D. Huggins-Daines, L. Von Ahn, and
M. Blum. Improving audio captchas. In SOUPS, 2008.

[27] J. Tam, J. Simsa, S. Hyde, and L. Von Ahn. Breaking
audio captchas. In NIPS, 2008.

[28] Using deep learning to break a captcha system.
https://deepmlblog.wordpress.com/2016/01/03/ how-to-
break-a-captcha-system/, Jan. 2016.

[29] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and
A. Flammini. Online human-bot interactions: Detec-
tion, estimation, and characterization. arXiv preprint
arXiv:1703.03107, 2017.

[30] A. Wang. The Shazam music recognition service. Com-
munications of the ACM, 49(8):44–48, Aug. 2006.

[31] B. D. Whissel. Speaker-independent phoneme
recognition in a continuous speech context us-
ing time-delay feed-forward neural networks.
http://bretwhissel.net/portfolio/the paper.pdf.

[32] J. Yan and A. S. El Ahmad. A low-cost attack on a Mi-
crosoft CAPTCHA. In CCS, 2008.

12



Appendix A Confusion Matrices

We present below the confusion matrices for each of the six services that unCaptcha uses. When the service is unable
to predict a digit, we denote its predicted value as “X”.

(a) Without phonetic mapping (b) With phonetic mapping

Figure 5: Google Cloud

(a) Without phonetic mapping (b) With phonetic mapping

Figure 6: WIT

13



(a) Without phonetic mapping (b) With phonetic mapping

Figure 7: Bing

(a) Without phonetic mapping (b) With phonetic mapping

Figure 8: IBM

14



(a) Without phonetic mapping (b) With phonetic mapping

Figure 9: Google

(a) Without phonetic mapping (b) With phonetic mapping

Figure 10: Sphinx

15


