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ABSTRACT
Today’s network measurements rely heavily on Internet-wide scan-
ning, employing tools like ZMap that are capable of quickly iterat-
ing over the entire IPv4 address space. Unfortunately, IPv6’s vast
address space poses an existential threat for Internet-wide scans
and traditional network measurement techniques. To address this
reality, e�orts are underway to develop “hitlists” of known-active
IPv6 addresses to reduce the search space for would-be scanners.
As a result, there is an inexorable push for constructing as large
and complete a hitlist as possible.

This paper asks: what are the potential bene�ts and harms when
IPv6 hitlists grow larger? To answer this question, we obtain the
largest IPv6 active-address list to date: 7.9 billion addresses, 898
times larger than the current state-of-the-art hitlist. Although our
list is not comprehensive, it is a signi�cant step forward and pro-
vides a glimpse into the type of analyses possible with more com-
plete hitlists.

We compare our dataset to prior IPv6 hitlists and show both
bene�ts and dangers. The bene�ts include improved insight into
client devices (prior datasets consist primarily of routers), outage
detection, IPv6 roll-out, previously unknown aliased networks, and
address assignment strategies. The dangers, unfortunately, are se-
vere: we expose widespread instances of addresses that permit user
tracking and device geolocation, and a dearth of �rewalls in home
networks. We discuss ethics and security guidelines to ensure a
safe path towards more complete hitlists.
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1 INTRODUCTION
ZMap [19] revolutionized Internet scanning in 2013, enabling scans
of the entire IPv4 Internet in under an hour. Since then, Internet-
wide scanning has become one of the most powerful and commonly
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used tools formeasurement researchers and practitioners, leading to
previously inaccessible �ndings in security [4, 12, 15, 18, 55], topol-
ogy discovery [9], IoT measurement [30], outage detection [53],
and more.

Unfortunately, the continued, accelerating deployment of IPv6
represents an existential crisis for Internet-wide scanning. In con-
trast to IPv4, brute-force scanning of every IPv6 address is im-
possible owing to IPv6’s exponentially larger address space (2128
compared to IPv4’s 232).

Without the prospect of iterating over all IPv6 addresses, some
scanning tools instead rely on “hitlists” that identify addresses that
are likely to be active and in-use, and probe only those. Others have
introduced IPv6 target generation algorithms that emit potentially-
active IPv6 addresses as probing candidates; these models must
be trained on some hitlist and are biased to the types of addresses
contained in their training data. Thus, the larger and more repre-
sentative these hitlists are, the more complete the view of the IPv6
Internet available to measurement e�orts [58].

As a result, the “holy grail” of Internet scanning is a complete list
of all active IPv6 addresses. There are ongoing e�orts approximate
such a list. To date, the largest public list is the IPv6 Hitlist [24, 75].
The IPv6 Hitlist uses a variety of active measurement techniques—
namely ZMap6 [70] and Yarrp [9]—and target generation algorithms
to discover new responsive IPv6 addresses.1 Their most recent
e�orts in 2022 nearly tripled IPv6 Hitlist’s size to a total of 8.8M
addresses [75].

In this paper, we ask: what are the potential bene�ts and harms
when IPv6 hitlists grow larger? To answer this question, we obtain
the largest list of active IPv6 addresses to date: 7.9 billion addresses,
898 times larger than the current IPv6 Hitlist snapshot and 370 times
larger than the Hitlist over the same time interval. Our corpus
contains nearly 15 times more active IPv6 addresses than all of
the active IPv6 addresses discovered in the IPv6 Hitlist’s four-year
history though it was collected in about 15% of the time. In contrast
with the active measurements employed by the IPv6 Hitlist, we
passively collected the nearly 8 billion active IPv6 addresses in
our corpus by running a set of 27 geographically-distributed NTP
servers as part of the NTP Pool [3], which devices worldwide use
to synchronize their clocks.

Although our hitlist is not comprehensive—for instance, we are
likely missing most modern Android devices because they are not
con�gured to use the NTP Pool by default—it is a signi�cant leap
forward from the current state of IPv6 hitlists. As such, it provides a
glimpse into what the future holds as the community moves toward
its goal of a more comprehensive hitlist.

Our glimpse into the future of IPv6 hitlists produces two broad
results: that network measurement insights are indeed improved
through a bigger list (especially one that is passively collected like

1We use capitalization to di�erentiate between hitlists in general (lowercase) and the
IPv6 Hitlist in particular (uppercase).
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ours), and that large hitlists poses signi�cant security and privacy
risks.

Bene�ts: New insights from larger hitlists What is gained
from having larger IPv6 hitlists? What do current hitlists lack, and
does �lling in those gaps facilitate a deeper understanding of the
IPv6 Internet?

We �nd that a signi�cant missing portion of prior IPv6 hitlists is
end-host addresses. The IPv6 Hitlist, for example, relies primarily
on ZMap6 and Yarrp, and as a result discovers many infrastructure
nodes (especially routers and CPE), but has di�culty identifying
end-hosts due to �rewalling and frequently unpredictable and eph-
emeral client addresses [50]. Conversely, our dataset is comprised
largely of end-hosts, though not exclusively (virtually all Internet
devices must synchronize their clocks).

We demonstrate that when a hitlist has more end-host addresses,
it enables investigations that are impossible with existing hitlists,
such as studying client address entropy, IoT detection, and address
assignment patterns. However, these new insights are not without
cost.

Threats: Newprivacy leaks from larger hitlists Conventional
wisdom dictates that IPv4 addresses do not constitute personally
identi�able information (PII). This is largely because the link be-
tween a device and an IPv4 address is very weak: addresses are
assigned randomly and are frequently reassigned, and multiple de-
vices often map to the same address at any time. However, the same
is not always true for IPv6 addresses. It is now well-known that
IPv6 addresses can risk uniquely identifying a client device—e.g.,
if the device embeds its MAC address into the lower-order bits of
its IPv6 addresses, then it could potentially be tracked as it moves
across networks.

These privacy issues were not a major concern for previous
IPv6 hitlists, as they focused primarily on infrastructure nodes,
which typically have no active user and do not move much across
networks. However, more complete hitlists will inevitably include
more client devices.

We performwhat we believe to be the �rst analysis of the privacy
risks inherent to large, client-rich IPv6 hitlists. We observe nearly
15 million clients in multiple networks across four distinct types
of address tracking, and apply recent precision IPv6 geolocation
techniques to hundreds of thousands of addresses.

Collectively, our results show that there is signi�cant promise in
store for larger IPv6 hitlists and Internet scanning, but also potential
harm in making larger hitlists public.

Contributions To summarize, we make the following contribu-
tions:

• We collect and report on the largest publicly-obtained IPv6 hitlist
to date: over three orders of magnitude larger than prior public
hitlists.
• We perform a thorough comparison with the two premiere
hitlists in use today—the IPv6 Hitlist [75] and CAIDA’s routed /48
dataset [14]—�nding that our NTP-derived dataset is far larger
and comprises more end-hosts, but that each dataset provides a
complementary perspective on active IPv6 addresses.

• We show that larger, more client-centric IPv6 hitlists enable
new discoveries that prior hitlists do not, particularly in address
patterns and aliased network discovery.
• We also show that larger, more client-centric IPv6 hitlists enable
new attacks on privacy in the form of tracking and geolocation.
• We discuss the ethical rami�cations of our �ndings, and pro-
vide guidelines that we hope will help shape future e�orts in
obtaining and sharing more complete IPv6 hitlists.
• Wemake the active /48 pre�xes we discovered publicly available
at https://v6-research.cs.umd.edu

2 BACKGROUND AND RELATEDWORK
2.1 Why creating IPv6 hitlists is hard
Applications ranging from census and adoption studies [17, 52],
to vulnerability identi�cation and remediation [41], to outage de-
tection [39, 54, 59, 67] all rely on an understanding of what IP
addresses are assigned to live hosts. In IPv4, identifying these hosts
is tractable due to stateless scanners like ZMap [19] and Yarrp [9]
that can probe the IPv4 Internet in minutes. However, several fac-
tors complicate live address discovery and hitlist creation in IPv6.

The �rst and most obvious complicating factor is the immensity
of the IPv6 address space. This leads to large pre�xes—at least /64
and frequently /56 or larger [61]—being delegated to even residen-
tial customers. Thus, the average Internet subscriber has 4 billion
or more times the number of IP addresses in the entire IPv4 Internet
available to her, all of which are publicly routable; contrast this
with IPv4, in which she commonly has one public IP, with her home
network hidden behind a NAT. With such large pre�xes delegated
to customers with only tens or hundreds of devices, IPv6 is con-
siderably more sparse than IPv4. Further, some service providers
delegate pre�xes to their customers for only short periods (e.g., 24
hours) before recuperating them and issuing new ones [64].

The lower 64 bits of a 128-bit IPv6 address is called the Inter-
face Identi�er (IID), and its assignment adds further complexity to
creating IPv6 hitlists. Some IPv6 addresses are manually assigned:
these are often infrastructure devices that network administrators
prefer to assign easily memorable IIDs for troubleshooting [62],
like ::1 or ::2. Occasionally, some network operators will embed
the IPv4 address assigned to the same interface in the IID [10],
but there is no requirement to do so and these embeddings are
relatively uncommon. Often, hosts self-assign IIDs via one of sev-
eral processes. Extended Unique Identi�er - 64 (EUI-64) Stateless
Address Autocon�guration (SLAAC) [49] embeds the interface’s
Media Access Control (MAC) address in the IID, after inverting
the Universal/Local bit of the MAC and inserting a 0xFF 0xFE

in-between the third and fourth bytes. Because these addresses
embed a static, link-layer identi�er in the IPv6 address that allows
for device identi�cation and tracking, as well as attacks tailored
to device manufacturers, generating ephemeral random addresses
has instead been encouraged since 2001 [50]. However, ephem-
eral addresses are problematic for servers, which should possess
stable yet privacy-preserving addresses for long periods of time.
In response, standards have been proposed for generating stable,
random addresses [28]. Finally, DHCPv6 [46], the less-ubiquitous
cousin of its IPv4 analog, also exists to assign addresses to hosts.
However, given such large pre�x allocations, it is up to the DHCPv6
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implementation and operator con�guration how client addresses
are assigned.

Even responsive addresses in IPv6 may not indicate a live host.
In IPv6, aliasing, in which a single device replies to probes to an
entire network, is a relatively common practice. This necessitates a
�ltering step in hitlist creation, wherein responsive addresses from
aliased networks are removed.

2.2 Related Work
There have been extensive e�orts to discover new live IPv6 ad-
dresses through both active and passive measurements.

Active approaches Beverly developed the Yarrp high-speed, state-
less traceroute tool to improve host and topology discovery in both
IPv4 and IPv6 [9], and Beverly et al. used Yarrp to discover sig-
ni�cant IPv6 Internet core topology [11]. Similarly, Gasser et al.
developed ZMap6 [70] IPv6 extensions of the ZMap [19] high-speed
scanner to enable fast IPv6 scanning without tracing to intermedi-
ate hops [25]. Gasser et al. used a combination of ZMap6, scamper
traceroutes [38], and public data sources to develop an IPv6 hitlist
and identify aliased networks [24]. They continue to publish a
weekly hitlist of responsive addresses and known aliased and non-
aliased networks [1]. Rye and Beverly used Yarrp and ZMap6 to
focus discovery of topology at the network periphery (Customer
Premises Equipment (CPE) devices in customer ISP networks) [65]
and characterized high-frequency customer network changes [64].
Others have enumerated reverse DNS zones to discover active IPv6
addresses [13, 21, 69]. Foremski et al. [22] aggregated datasets com-
prising more than 3.5 billion IPv6 addresses from cloud providers
and ISPs to develop new candidate addresses for active measure-
ments. Numerous machine learning models [68] have been trained
on responsive addresses in order to generate candidate addresses
for active measurements, using Bayesian networks [47], reinforce-
ment learning [32], generative adversarial networks [16], divisive
hierarchical clustering [37], and ensemble learning [72].

As we will demonstrate, our passive approach is largely com-
plementary to these active e�orts, exposing portions of the in-use
IPv6 address space that the active e�orts alone do not reach.

Passive approaches Numerous passive IPv6 e�orts also have
studied IPv6 addressing. Gasser et al. [24] and Huz et al. [33] both
crowd-source small numbers of IPv6 client addresses viaMechanical
Turk [6] and Proli�c Academic [2]. A major barrier to conducting
large-scale passive IPv6 measurements, however, is access to propri-
etary datasets. Plonka and Berger [56] use IPv6 addresses gathered
from a large CDN’s webservers to determine how customer ad-
dresses change over time. Using data obtained from Facebook, Li
and Freeman [36] examine how client IPv6 addresses change over
time and consider the problem of handling abusive or malicious
actors in IPv6. Saidi et al. [66] examine aggregated IPv6 client tra�c,
including NTP, provided by a large European ISP to track customer
subnet allocations over time by tracking clients employing EUI-64
IPv6 addresses. Enayet and Heidemann use data from the DNS B
root to detect outages in IPv4 and IPv6 [20], while Fukuda and
Heidemann use DNS backscatter from the B root to detect IPv6
scanning [23].

Comparison of passive and active approaches Several works
compare active and passive measurement approaches, albeit only
in IPv4 and on a far smaller scale than our work. Bartlett et al. com-
pared passive monitoring and active probing to discover services
running on a university network [8]; Heidemann et al. similarly
used passive and active approaches to discover IPv4 end hosts
in 2008 [31]. Zander et al. used several passive sources of active
IPv4 addresses, including Wikipedia edits and NetFlow records,
to augment active measurements to estimate IPv4 address space
utilization [73].

Unlike prior active e�orts, we avoid sending millions of unso-
licited probes in search of active addresses. Unlike many prior
passive e�orts, our technique does not require access to privileged
datasets obtained by private organizations. Rather, we demonstrate
that enormous amounts of IPv6 data can be obtained by contribut-
ing to an open service—the NTP Pool—which we review next.

2.3 NTP and the NTP Pool
The Network Time Protocol (NTP) is one of the Internet’s oldest
protocols, standardized in 1985 in RFC958 [44]. NTP synchronizes
a device’s clock with a remote time server, even in variable-delay
networks. Keeping accurate time is of immense importance to a
variety of applications ranging from TLS certi�cate validation [40,
74], to authentication [35, 40, 45], to DNS cache entries [40]. Most
devices on the Internet today synchronize their clocks using NTP.

Where a device looks for its time is typically a function of its
operating system. Windows clients and servers, for instance, syn-
chronize their time with time.windows.com [43] by default when
not joined to a domain. Likewise, Apple devices synchronize with
time.apple.com. Android clients until Android 8 (Oreo) used the
NTP Pool (pool.ntp.org, discussed next); later versions now use
time.android.com [27]. NTP servers can additionally be speci�ed
via DHCP [5] and DHCPv6 [26] options.

The NTP Pool Project [3] provides NTP service through a world-
wide set of geographically distributed NTP servers, many of which
are contributed by volunteers. Any host with a publicly reachable
IP address can serve in the NTP Pool. The Pool preferentially directs
clients to servers geographically near them, using a combination of
IP geolocation and DNS round robin. The NTP Pool Project further
provides various “vendor zones” to equipment and software ven-
dors to use as defaults on their devices; vendor zones for Android,
Ubuntu, and CentOS exist, among many others (android, ubuntu,
and centos.pool.ntp.org, respectively.)

3 METHODOLOGY
This section �rst highlights the measurement infrastructure we
established to conduct our experiments. Then, it introduces the
other IPv6 address datasets that we compare to our NTP-derived
corpus. Finally, we discuss how we geolocate NTP client addresses
and our methodology for probing back to active NTP clients that
query our servers.

Vantage Points In order to measure the e�ectiveness of using
NTP servers as large-scale, longitudinal, passive IPv6 measurement
infrastructure, we operated 27 NTP servers from 25 January 2022
through 31 August 2022. We chose Virtual Private Servers (VPSs)
from 20 countries across 6 continents to obtain geographic diversity.
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Dataset Dates IPv6 Addresses ASNs /48s Avg. Addrs
per /48Num. Common Num. Common Num. Common

NTP Pool (This paper) Jan–Aug ’22 7,914,066,999 – 9,006 – 7,205,127 – 1,098
IPv6 Hitlist [1] Feb–Aug ’22 21,409,629 277,026 18,184 7,560 431,851 267,908 50
CAIDA Routed /48 [14] Feb–Apr ’22 11,613,494 3,117 13,770 6,957 11,111,563 102,864 1

Table 1: Comparison IPv6 datasets considered. Our NTP corpus is passively collected, while the comparison datasets used
active techniques. “Common” denotes the intersection of the comparison data with our data.

Speci�cally, we ran 6 servers in the US, 2 in Japan, 2 in Germany,
and 1 server in each of: Australia, Bahrain, Brazil, Bulgaria, Hong
Kong, India, Indonesia, Mexico, Netherlands, Poland, Singapore,
South Africa, South Korea, Spain, Sweden, Taiwan, and the United
Kingdom.

Though we ran servers in 20 countries, the NTP Pool’s load
balancing allowed us to collect data from 175 countries2 in total.
The majority of the IPv6 addresses we discovered came from India
(1.9B), China (1.6B), US (1.2B), Brazil (700M), and Indonesia (630M),
collectively accounting for 76% of our entire dataset. The other 170
countries accounted for 24%.

We emphasize that each VPS was minimally provisioned and
cost on average less than $7 per month to operate. We typically used
one virtual core, 500MB–2GB of RAM, and a Linux OS available
from the VPS vendor (Ubuntu, Amazon Linux, or CentOS).

Each of these VPSs was con�gured as a stratum-2 NTP server
and joined to the NTP Pool. Because the NTP Pool directs clients to
its NTP servers via a DNS round-robin that incorporates the client’s
coarse-grained IP geolocation, our globally-distributed NTP servers
were visited by a wide range of clients around the world.

Comparative Datasets In order to compare our passive NTP
results with contemporaneous, state-of-the-art IPv6 measurements,
we acquired two external datasets. First, we compare against the
IPv6 Hitlist [24], which provides a list of responsive addresses
and networks that the operators detect as being aliased networks
(responsive on all addresses) and those that are not. The Hitlist is
updated on roughly a weekly basis, so in order to best compare
our dataset to their data, we consider all Hitlist responsive IPv6
addresses published during our study’s time frame. IPv6 Hitlist data
concurrent with our study was published �rst on 16 February 2022
and runs through 29August 2022.While our study collects onlyNTP
requests, the IPv6 Hitlist is obtained through active measurements
using ICMPv6, TCP ports 80 and 443 (HTTP and HTTPS), and
UDP ports 53 (DNS), 161 (SNMP), and 443 (QUIC). Our IPv6 Hitlist
comparison dataset consists of 21,409,629 unique IPv6 addresses.

Second, we leverage a large dataset of 1,083,188,032 Yarrp traces
conducted by CAIDA from their Archipelago distributed measure-
ment system [34] between 3 February and 6 April 2022. Their mea-
surement methodology splits each pre�x of length /32 or longer
into /48s and probes the ::1 address of each /48. For pre�xes of
length less than /32, only a single ::1 address is probed, with no
splitting into constituent /48s. These traces discovered 11,613,494
live addresses. We refer to this measurement as the “CAIDA routed
/48” dataset throughout.

2We count ISO-3166-1 two-letter country codes and use the term “countries,” although
some are dependent territories.

Table 1 lists the relevant details of each dataset involved in our
study. We will explore these numbers in more detail in §4, but
even at a glance it is clear that the NTP data corpus comprises
three orders of magnitude more addresses, with a greater density
of addresses on average in each /48.

Geolocation We consider two di�erent types of geolocation in
our results. First, we used MaxMind’s GeoLite2 City database [42]
to geolocate the NTP client addresses we observed. While �ne-
grained IP-geolocation is often error-prone, particularly in IPv6,
we consider only the country reported by MaxMind in aggregated
results and do not use the more granular geolocation data it reports.

Second, for IPv6 addresses with embedded MAC addresses in
the form of EUI-64 Interface Identi�ers (IIDs), we attempt to link
this embedded MAC address with a wireless MAC address from
the same device obtained from a geolocation service. EUI-64 IIDs
are constructed by �rst inverting the seventh least signi�cant bit
of the most signi�cant byte of the interface’s MAC address. Then,
a static OxFF 0xFE is inserted between the third and fourth bytes
of the MAC address to create a 64-bit identi�er; this is then used
as the lower 64 bits of the IP address in an EUI-64 IPv6 address.
Recovering interface MAC addresses is a simple process — the 0xFF
0xFE bytes of an EUI-64 IIDs are removed, followed by the seventh
bit’s inversion.

Both Google and Apple both o�er geolocation APIs [7, 29], and
other individual and community projects also collect wireless ge-
olocation information [48, 51, 57, 71]. Our methodology for linking
wired EUI-64-derived MAC addresses to wireless MAC addresses
follows that of Rye and Beverly [63], wherein they form a linkage
between the most commonly-arising o�sets between pairs of wired
andwireless identi�ers fromwithin the same vendor-assigned three-
byte address pre�x, called an Organizationally Unique Identi�er
(OUI). This is often, but not always, the closest match betweenwired
and wireless MAC addresses within the same OUI. This method-
ology is also limited to devices that have wireless and wired MAC
addresses from the same OUI.

Backscanning In order to compare and contrast active and pas-
sive methodologies for compiling IPv6 hitlists, we actively probed
NTP clients that visited �ve of our 27 NTP servers over the course
of a week during January 2023. During this week, we recorded
the source addresses of NTP clients that queried the servers over
ten minute intervals. When the interval concluded, we initiated
traceroutes from the servers back to the clients using Yarrp and
sent ICMPv6 Echo Requests to the clients with ZMap6. The probe
targets were both the NTP client address that had queried the NTP
server, as well as a random IPv6 address within the same /64 as
the client. All probes used ICMPv6 in order to minimize potential
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disruption to the probed addresses; no IP was probed more than
once during a 10 minute interval.

Ethical Considerations During this study, we accumulated nearly
8 billion unique IPv6 addresses by adding 27 NTP servers to the
NTP Pool. Users of the NTP Pool had no way of knowing their
NTP request data could or would be used in our study. That said,
our study follows the same general principles of prior IPv6 Hitlist
generation [24] as well as other peer-o�ered infrastructure, such
as studies that use BitTorrent to collect and study IP addresses [60].
Like those studies, we do not collect any PII that might be included
in the application-layer data (NTP requests do not contain PII).

Novel to our �ndings, however, is that large sets of IPv6 addresses
may in and of themselves contain enough information to track and
geolocate users. These attacks on privacy are made possible through
the lower-order bits (speci�cally, we make use of EUI-64 IIDs). Thus,
to avoid spreading this potentially sensitive information, we will
only be releasing our dataset at the /48 level. This is an ethical
consideration that future IPv6 hitlists must contend with: what
is an appropriate way to share hitlists so as to enable Internet
scanning tools to use them?

We communicated with the project owners of the NTP Pool to
inform them of our experiments and to ensure that we were abiding
by both the terms of service and acting in a way that preserved
the privacy of the NTP Pool users. They concurred that we were
not violating any NTP Pool policy or community standard and
requested that address data released be aggregated to protect user
privacy.

We also submitted our study to our institution’s IRB for review.
Much like other institutions’ IRBs [24], they did not consider IP
addresses as constituting human data. However, after informing
them of our privacy results (§5), they agreed that further future
consideration would be appropriate. Our hope is that this paper
can be a �rst step towards the networking community helping to
guide appropriate methods for ethically sharing IPv6 hitlists as they
continue to grow.

Finally, contrary to active measurements that introduce immense
volumes of super�uous data for the sole purpose of eliciting re-
sponses from remote devices (e.g., traceroute and ping), our
experiments actually provided a bene�cial service to the devices we
measured. All of our servers provided stratum-2 NTP service and
are located in cloud providers with exceptionally high availabil-
ity, providing a reliable source of accurate time for NTP clients.
Therefore, we believe that the bene�ts of our work outweigh the
potential harm or risk that it may present.

4 BENEFITS OF LARGER HITLISTS
We begin our analysis by evaluating whether larger IPv6 hitlists
confer bene�ts: as the community races to obtain larger hitlists, is
it worth it? To this end, we �rst show that our NTP-based dataset is
not only larger, but nearly disjoint with and complementary to other
state-of-the-art IPv6 measurements. Then, we evaluate various
applications of this larger hitlist: measuring aliased networks and
analyzing IPv6 addressing patterns.

4.1 How Do the Datasets Compare?
First, we compare our dataset to the IPv6 Hitlist and a large-scale
active measurement conducted by CAIDA.

In terms of size Table 1 compares the aggregate number of live
IPv6 addresses we observed during our study to the number of
responsive addresses collected by the IPv6 Hitlist project and during
a large-scale, active measurement campaign by CAIDA. Running 27
IPv6 NTP servers from January through August 2022, we observed
7.9 billion unique IPv6 source addresses—370 times more than the
IPv6 Hitlist’s collections over a comparable period of time. The
CAIDA measurement discovered 11,613,494 addresses during its
two-month run, 681 times fewer than the NTP corpus.

In terms of addresses discovered Despite the massive di�er-
ence in size, our dataset did not subsume either of the active datasets;
we only discovered 1.3% (277,026) of the addresses that IPv6 Hitlist
found, and a mere 0.02% of the IPv6 addresses CAIDA’s routed /48
dataset discovered. This shows that the datasets are indeed comple-
mentary, and suggests that the kinds of devices we are �nding are
in fact distinct. We con�rm this hypothesis later in this section.

In terms of Autonomous Systems (ASes) While the number of
raw addresses in the NTP corpus dwarfs the other dataset address
counts by several orders of magnitude, this trend is reversed in the
number of ASes we observe. Our NTP corpus contains 65.3% of the
number of ASes observed in the CAIDA scan (9,006 vs 13,770) and
49.5% of the number discovered in the IPv6 Hitlist data (9,006 vs
18,184). This discrepancy is likely due to the nature of the two active
datasets, which use traceroute-like tools to discover Internet
infrastructure between their vantage point and their probe targets.
Our data, coming from NTP clients, is concentrated in ASes where
NTP Pool clients exist, typically in customer ISPs. This hypothesis is
strengthened by examining the types of ASes the di�erent corpora
addresses originate from, as classi�ed by ASdb [76]. While the
top AS type is consistent between all three datasets (“Computer
and Information Technology”,“Internet Service Provider (ISP)”), an
additional 14% (1,146,709,677) of our NTP Pool corpus originates
from “Phone Provider” ISP subtype. By contrast, only 2% of the IPv6
Hitlist addresses originate from “Phone Provider” ASes, indicating
that the NTP Pool corpus consists of a higher percentage of mobile
clients than do either of the two active datasets.

In terms of pre�xes Though the NTP Pool corpus IPv6 addresses
are concentrated in fewer ASes than either of the two active mea-
surements, our NTP dataset exhibits the highest number of ad-
dresses discovered per /48 (Table 1). The NTP dataset discovers a
mean of 1,098 addresses per /48, while the IPv6 Hitlist uncovers 50
and the CAIDA scanning only 1. This “address density” has at least
two potential root causes. First, NTP Pool clients may more com-
monly be client devices that frequently change their (random) IID
in order to prevent tracking, as is considered best practice for client
devices [50]. This phenomenon would manifest as many di�erent
addresses originating from the same pre�x—for instance, a /56 or
/64 allocated to a residential deployment by a customer ISP. A sec-
ond possibility is that our passive NTP methodology detects more
customer deployments than either of the active probing methods.
While we detect devices in customer deployments so long as they
visit an NTP Pool server, these networks are often highly subnetted
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Figure 1: IID entropies of the IPv6 addresses from the NTP
Pool, IPv6 Hitlist, and CAIDA routed /48 corpora, as well as
the IID entropies of their intersections.

and would require signi�cant active probing to discover the CPE
devices, which may or may not respond. Neither the IPv6 Hitlist nor
CAIDA scanning is speci�cally calibrated to do such �ne-grained,
residential deployment discovery. Note that these two root causes
are not mutually exclusive; both may manifest in our data.

In terms of device type It is in general very di�cult to perform
device �ngerprinting at scale. However, we can fortunately make
use of features of the IPv6 addresses themselves to gain some insight
into the kinds of devices that comprise the respective datasets.

We examined the IIDs, or lower 64 bits, of the addresses in each
dataset. Because IIDs uniquely identify a host interface on a net-
work, and because di�erent types of hosts are subject to di�erent
concerns (e.g., preventing client tracking, static server addresses,
or infrastructure addresses easily memorable by network admin-
istrators), the randomness (or lack thereof) of an IID may vary
signi�cantly between device types.

Figure 1 plots the CDF of all addresses found in each dataset
versus IID entropy, using the normalized Shannon entropy as a
metric. The NTP Pool corpus exhibits signi�cantly higher entropy
than the other two datasets, with a median normalized Shannon
entropy of approximately 0.8. The IPv6 Hitlist has a somewhat
lower median entropy of about 0.7, while almost the entirety of the
CAIDA dataset has extremely low entropy.

These data points reinforce the hypothesis that our NTP Pool
dataset consists primarily of client devices, which often use ephem-
eral, random addresses to defend against long-term tracking. The
CAIDA dataset, by contrast, discovers mainly core Internet infras-
tructure, which is often manually addressed by operators with an
incentive to create easily-memorable addresses. The IPv6 Hitlist
occupies a middle ground of sorts, discovering both core Internet
infrastructure, as well as some higher-entropy addresses assigned
to CPE devices at the network periphery. In the next subsection,
we further investigate address entropies within our dataset to il-
luminate di�erences in IPv6 addressing schemes between service
providers.

Observed address durations The durations over which we ob-
serve distinct IPv6 addresses vary signi�cantly, as shown in Figure 2.
Figure 2(a) displays a CCDF of the lifetimes with which we observe
all of the 7.9 billion addresses in our dataset. More than 60% of them
are observed only once (a “lifetime” of 0 seconds in the plot). With
purely passive measurements, we cannot determine whether this is
because the devices had highly ephemeral addresses, or simply be-
cause they only contacted our (or anyone’s) NTP servers only once.
This demonstrates the importance of combining passive collection
with active scans; so long as a device shows up even once at our
servers (e.g., at boot-up), it can be used in subsequent backscanning.

At the opposite extreme, 95,780,865 (1.2%) IPv6 addresses are
observed for a week or longer, 32,985,774 (0.4%) IPv6 addresses for
a month or longer, and 2,218,998 (0.03%) IPv6 addresses for more
than six months. Figure 2(b) is a CDF of the 670,737,407 unique IIDs
we observed, binned by the entropy of the IID. This �gure shows
that while ⇠10% more of the low normalized entropy (< 0.25) IIDs
appear only once in our corpus than medium or high entropy IIDs,
low entropy IIDs are more likely to persist for long periods of time.
In fact, 10% of all low entropy IIDs are observed for a week or more,
as compared to 5% or less of the medium and high entropy IIDs.

Summary Collectively, these results show that our hitlist of IPv6
addresses has little overlap with prior datasets, and in particular
adds more end-host devices than any prior e�orts. This is a natural
progression in IPv6 hitlists, but one that would have been much
more di�cult with purely active measurement-based approaches.

4.2 Backscanning and Aliased Networks
The IPv6 addresses we discovered are only useful for Internet scan-
ning insomuch as they are responsive to outside scans. Moreover,
if the addresses we learned are merely aliases of one another, then
the volume of them would not be useful. To test both of these, we
initiated Yarrp traces and ZMap6 probes from �ve NTP servers back
to the clients that contacted them, as well as to a random address
in the same /64 (see §3).

Responsiveness to backscanning As described in §3, we initi-
ated a limited number of ICMPv6 scans back to NTP clients over the
course of a week in January 2023. About two-thirds of the 71,341,581
NTP clients that were probed from the NTP servers responded to
Yarrp or ZMap6 probes. This shows that the addresses we obtained
can be used as scan targets.

In contrast to the NTP clients we probed, the random targets
we probed in the same network as the NTP clients responded only
3.5% of the time. Because it is exceedingly unlikely that we guessed
a live random-IID IPv6 address, these responses almost certainly
originate from aliased networks.

Figure 3 displays the IID entropy of the responsive addresses bro-
ken down by whether the address was responsive to backscanning
(“NTP hit”) or not (“NTP miss”) or if the address was randomly
chosen yet responsive (“Random”). The responsive NTP client ad-
dresses exhibit the lowest median normalized IID Shannon entropy,
although they still exhibit higher entropy than addresses in our
comparison datasets.

The higher the IID entropy, the less likely the end-host was to re-
spond. Nearly 70% of the unresponsive NTP clients had normalized
entropy greater than 0.75, compared to only ⇠50% of the responsive
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(a) CCDF of distinct address lifetimes over all IPv6 addresses ob-
served during our study. (b) CDF of IID lifetimes by IID entropy category.

Figure 2: Address and IID lifetimes vary signi�cantly. While most addresses and IIDs are observed only once, many persist for
days or months.

Figure 3: CDF of the IID entropy of NTP clients probed back
with Yarrp and ZMap6. The clients that we passively detect
from running anNTP client are responsive to back scanning,
particularly those with slightly lower entropy in their IID.

clients. We speculate that this can be attributed to infrastructure
devices, which typically have stable, low-entropy IIDs, and are more
likely to be responsive than client devices, such as mobile phones
and personal computers. Client devices are more likely to reside
behind a router or CPE device, which are often con�gured to block
unsolicited inbound tra�c, such as our ICMPv6 Yarrp and ZMap6
probes. Also, because IPv6 client addresses are often ephemeral, it
is conceivable that some clients change addresses after querying
our NTP servers and are no longer assigned that address when we
probe it after the ten minute interval expires. Mobility may also
play a factor, with devices switching to a new network in the period
between sending an NTP request and when our probing began.

Discovering aliased networks As part of our backscanning,
we received ICMPv6 responses to 4,476,089 unique, random IPv6
addresses we probed. These responses originated from 3,740,619
unique /64s. Because these addresses were chosen randomly from
within active /64s, it is much more likely that the network in ques-
tion is aliased rather than we randomly chose the address of a live
host in an unaliased network. We compared our inferred aliased
networks to those within the IPv6 Hitlist, which maintains a list of
aliased networks. Of the 4.5 million aliased addresses we probed,
the IPv6 Hitlist also categorized 4,425,001 (98%) as aliased. How-
ever, we discover an additional 46,512 aliased addresses in pre�xes
the IPv6 Hitlist does not recognize as aliased. This suggests that
backscanning NTP clients is a potential avenue for discovering
additional aliased IPv6 networks.

Finally, we examine the NTP clients in networks that we later
determined were aliased via our backscanning technique. We �nd
3,841,751 NTP client addresses are part of aliased /64s as discovered
by backscanning. These NTP client addresses originate from 36
di�erent ASes.

We note that because the pre�xes these NTP clients originate
in are aliased, an active measurement campaign would be unable
to distinguish these live hosts from aliased responses. That is, if
it even attempted to scan the pre�x in the �rst place—�ltering
known aliased networks is a best practice �rst stepwhen conducting
active measurements. Indeed, we searched for these addresses in
a contemporaneous IPv6 Hitlist and found only 23 addresses in
our backscanning-detected /64s, while our NTP corpus contains
3,841,751.

Summary These results show that the majority of the addresses
learned from our NTP-based dataset are responsive to scanning,
despite the fact that most of them are clients and thus likely behind
CPE devices. While this is a boon for Internet scanning, the fact
that many of the devices are clients means that it is also a potential
security issue; most would likely bene�t from being behind �rewalls.
We also �nd that many of the addresses in our dataset are unlikely
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(a) CDF of IPv6 address IID entropies observed in the top �ve ASes
observed between Jan-Aug 2022.
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(b) CDF of IPv6 address IID entropies for the top �ve ASes observed
on 1 July 2022.

Figure 4: A comparison of the normalized Shannon entropies of collected IPv6 addresses over two time periods.

to ever be discovered with today’s active measurement techniques:
guessing active random IPv6 addresses or di�erentiating active
addresses in aliased networks is impractical. Collectively, these
results motivate complementing active measurements with passive
data collection to obtain more complete IPv6 hitlists.

4.3 IPv6 Addressing Patterns
Our collection of IPv6 addresses permits insight into address allo-
cation patterns, both on a macro scale, which has been previously
studied [22, 24], and also at an AS level. The magnitude of ad-
dresses we obtain and the breadth of the networks from which they
originate allows us to observe interesting phenomena speci�c to
individual service providers. These phenomena are not visible from
active measurements, and may help inform active measurement
studies by illuminating the types of addresses present in various
ASes.

Figure 4 displays two plots; each is a CDF over the total number
of IPv6 addresses observed during a time interval plotted against
the normalized Shannon entropy of address IID. While an imperfect
proxy for randomness (e.g., the IID 0123:4567:89ab:cdef has a
normalized Shannon entropy of 1.0, but such a clear pattern might
conceivably appear as the result of a network operator manually
assigning it), IID entropy allows us to make generalizations about
the types of addresses found within speci�c ASes.

Variability in entropy across ASes Figure 4(a) displays CDFs
of the normalized IID Shannon entropies of the top �ve most
commonly-observed ASes in our entire dataset, collected between
January and August 2022. Three of the top �ve ASes (T-Mobile,
ChinaNet, and China Mobile) exhibit entropy behavior that closely
tracks with the NTP aggregate curve shown in Figure 1. The re-
maining two entropy curves, representing Reliance Jio and Teleko-
munikasi Selular (an Indian and Indonesian mobile provider, respec-
tively), exhibit much lower median entropies. Further, while about
60% of the Reliance Jio addresses have high entropy (>0.75), approx-
imately one-third exhibit a lower entropy below 0.6. This indicates

that there are perhaps multiple classes of IPv6 addresses reaching
our NTP servers from this network. Closer inspection reveals that
at least two addressing patterns exist for hosts on Reliance Jio’s
network: one that randomizes all eight bytes of the IID, and another
that uses the only lower four IID bytes with the remaining four set
to 0.

Addressing strategies This result inspired us to investigate dif-
ferent patterns of addresses within ASes. To permit comparison to
IPv6 Hitlist data, which is released in snapshots at intervals, we
limit this analysis to a single day: 1 July 2022. Limiting this analysis
to a single day also minimizes the in�uence that numerous random,
ephemeral addresses from the same host might have over longer
observation windows. Figure 4(b) shows the entropy of the top �ve
ASes from that day in our dataset.

We compare the 46,195,900 NTP addresses we collect on 1 July
2022 to the IPv6Hitlist’s 2,970,366 IPs released on 1 July for theweek
prior across seven categories: (1) All zero IIDs (“Zeroes”); (2) IIDs
with only the least signi�cant byte set (“Low Byte”); (3) two least
signi�cant bytes (“Low 2 Bytes”); (4) IPv4 mapped addresses; and
(5) high-entropy (>0.75); (6) medium-entropy (between 0.25 and
0.75); and (7) low-entropy (<0.25) IIDs. For IPv4 mapped addresses,
which embed an IPv4 address in the IPv6 IID, we check whether
any of three di�erent embedded address encodings produce an IPv4
address in the same AS as the IPv6 address they are embedded
in. We accept IPv4 embedded addresses only when i) there are at
least 100 instances of them in the AS, and ii) more than 10% of the
AS’s total addresses are IPv4 embedded. These steps reduce false
positives from random IIDs that coincidentally produce embedded
IPv4 addresses in the same AS as the IPv6 address.

Figure 5 compares the frequency of these seven categories be-
tween our NTP-derived dataset and the IPv6 Hitlist. We �nd that
the distributions of address types vary signi�cantly between the
two datasets. For the day considered, the NTP dataset is two-thirds
high-entropy, with an additional 21% medium entropy. The IPv6
Hitlist, on the other hand, is approximately 20% medium and high
entropy over the same time period. The fraction of IPv6 Hitlist Low
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Manufacturer Count Manufacturer Count
Unlisted 126,789,603 Sunnovo International Limited 1,193,746
Amazon Technologies Inc. 19,090,527 Hui Zhou Gaoshengda Technology Co.,LTD 1,067,459
Samsung Electronics Co.,Ltd 2,683,846 Huawei Technologies 876,083
Sonos, Inc. 1,633,209 Shenzhen Chuangwei-RGB Electronics 861,122
vivo Mobile Communication Co., Ltd. 1,330,987 Skyworth Digital Technology (Shenzhen) Co.,Ltd 723,316

Table 2: Number of MAC addresses extracted from EUI-64 IPv6 NTP clients by manufacturer (N = 171,611,786)
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Figure 5: Fraction of the NTP corpus and IPv6 Hitlist that
fall into each of seven categories for 1 July 2022. Note:�-axis
is log-scale.

Byte addresses, however, is nearly 33 times that of the NTP corpus,
and it contains 3% IPv4 mapped addresses compared to the NTP
corpus’ 0.00002%.

Taking only the IPv6 Hitlist into consideration, it would appear
that the preponderance of IPv6 addresses’ IIDs have only the least
signi�cant bytes set (“Low Byte”). But in our NTP dataset, the
majority of active IIDs are in fact high-entropy. We believe that
the Low Byte are more likely to be routing infrastructure; it is
far easier for a network operator to manually set, read (e.g., in
logs), and remember an IID with few bytes set (e.g., ::100) than
random ones. Indeed, because the IPv6 Hitlist relies heavily on
traceroute-like techniques, we suspect it comprises many such
routers. Nevertheless, the reality of the IPv6 Internet is that the
majority of addresses are randomly set by clients: precisely the
kinds of addresses that our prior results show are impractical for
active measurements to obtain at scale.

Summary This example application of our NTP-derived dataset
shows that larger, more client-rich hitlists stand to improve future
network measurement studies. The push for larger hitlists is justi�ed,
at least from a measurement perspective. In the next section, we
turn to whether larger hitlists come at increased security cost.

5 PRIVACY ISSUES OF LARGER HITLISTS
In this section, we perform what is, to our knowledge, the �rst
empirical analysis of the privacy leakages in large, public hitlist
datasets. We study two sources of privacy leakage: tracking via
EUI-64, and geolocation by matching MAC addresses to geolocated
BSSIDs (Basic Service Set Identi�er, the MAC address of a WiFi
access point), as in Rye and Beverly [63]. Our analysis here shows
the potential harms inherent in larger hitlists.

5.1 Prevalence of EUI-64 IIDs
Both of the techniques we use to track and geolocate users make use
of EUI-64 IIDs. EUI-64 IPv6 addresses have long been considered
privacy vulnerability and have recently been studied extensively in
CPE devices [63, 64] and in tra�c from an ISP [66]. As our corpus
consists primarily of client devices (§4) from a global network of
NTP server vantage points, we were optimistic that EUI-64 IPv6
address prevalence would be low. Unfortunately, this was not the
case.

Our dataset contains 238,281,703 EUI-64 IPv6 addresses: 3% of
our corpus and more than the total number of all IPv6 addresses re-
ported in our comparison datasets (see Table 1). Moreover, we can be
certain that these are not randomly-generated addresses that appear
to be EUI-64 due to 0xFF 0xFE in the fourth and �fth bytes of the
IID. The probability that a randomly-generated IID matches those
bytes is 2�16. Therefore, we would expect 7,914,066,999

65,536 randomly-
generated apparent EUI-64 IPv6 addresses, which is less than 121,000.

Among the EUI-64 IPv6 addresses present in our corpus, we �nd
171,611,786 unique embedded MAC addresses. MAC addresses can
appear in multiple di�erent IPv6 addresses for several reasons. First,
when a device that uses EUI-64 addresses changes networks (e.g.,
due to mobility or a pre�x rotation), its address will change but its
EUI-64 will remain the same. Second, some device manufacturers
have reused MAC address space, or assign common patterns (e.g.,
00:00:00:00:00:00), which then appear in EUI-64 IPv6 addresses
for multiple devices.

To better understand the types of devices using EUI-64 addresses
in our corpus, we �rst resolve the OUI from the MAC address
extracted from the EUI-64 IID to the manufacturer listed in the
IEEE’s OUI database. We do this by removing the 0xFF 0xFE from
bytes four and �ve of the IID, and then inverting the Universal/Local
bit of the resulting MAC address (the second-least signi�cant bit
of the �rst byte) if it is set. Table 2 contains the 10 most frequently
observed manufacturers.

Surprisingly, the most common OUI we observe (126,789,603
MAC addresses, or 73.9% of all observed MACs in our dataset) is
“Unlisted”—that is, they could not be resolved to a manufacturer at
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(a) Lifetime of observed EUI-64 IIDs during the seven months of our
study (x -axis logscale).

(b) CCDF of EUI-64 IIDs depicting the number of /64s each EUI-64
IID appears in.

Figure 6: EUI-64 IIDs permit long-term tracking of devices as they transition between network pre�xes.

all. These are not merely random addresses; recall that we would ex-
pect fewer than 121,000 random IIDs to look like EUI-64. Moreover,
manually inspecting the “Unlisted” addresses, we see signi�cant
MAC address counts in OUIs that are not in the IEEE OUI database.
For instance, the most common “Unlisted” OUI is F0:02:20, with
52,218 distinct MACs embedded in EUI-64 addresses. The frequency
with which this OUI appears in EUI-64 addresses makes it unlikely
that these MAC addresses appear through a random process. On
the other hand, 42,901 OUIs we classify as “Unlisted” appear in only
one MAC address embedded in an EUI-64 address; we believe these
are the randomly generated IIDs that appear to be EUI-64.

Included among the other nine most common manufacturers are
makers of popular mobile, smart home, and IoT devices.

5.2 Tracking EUI-64 IIDs
Here, we evaluate the extent to which the EUI-64 IIDs in our dataset
could be potentially used for tracking users.

Figure 6(a) depicts a CDF of the lifetime of all EUI-64 IIDs over
the seven months of our study. While this generally tracks with
all IIDs (see Figure 2(b)) EUI-64 IIDs are less likely to be observed
only once (⇠55% compared to 60–70%) and exhibit the same long,
fat tail that low-entropy IIDs do. This is due to the fact that when
devices using EUI-64 change networks, they continue to use the
same EUI-64 IID.

The lengthy observation window we observe for many EUI-64
IIDs demonstrates that a passive adversary can leverage a large,
longitudinal hitlist to track an unsuspecting user’s device. Because
many service providers frequently “rotate” pre�xes delegated to
customers, often on timescales on the order of days or weeks, the
ability to track a device by EUI-64 passively o�ers amajor advantage
over active techniques.

Figure 6(b) displays a CCDF of the number of /64s each EUI-64 in
our corpus appears in. While most EUI-64 IIDs appear in only one
/64 pre�x, many appear in dozens, hundreds, or even thousands of
/64s during the seven months of our study.

To determine which of the EUI-64 IIDs could be trackable users,
we apply the following heuristics-based approach. We compute,
for each EUI-64 IID: (1) The number of ASes it appears in; if more
than 1, then we call it “high,” otherwise “low.” (2) The number
of countries it appears in; if more than 1, then we call it “high,”
otherwise “low.” (3) The number of transitions between di�erent
/64s it makes; if more than 10, then we call it “high,” otherwise “low.”
If a device never changes its /64, then we consider it not trackable;
of the 171,611,786 EUI-64 MAC addresses we observed, 14,943,429
(8.7%) of them appear in at least two /64s.

Using this heuristic, we classify EUI-64 IIDs into �ve categories
as to the likely explanation for their re-occurrence:

Mostly static hosts The most common classi�cation (12,853,055
of 14,943,429, or 86%) is EUI-64 IID that are labelled “low” across all
three categories. These IIDs stay within the same AS and country
throughout our observation period of them, and if they change /64s,
they do so relatively rarely.

Likely pre�x reassignment The second-most common classi-
�cation (1,215,400 or 8%) appear in only one AS and one country,
but /64 transitions is “high.” One potential cause of this is service
providers periodically reassigning new delegated pre�xes to their
customers Because this behavior is often based on provider policy,
we observe it occurring more frequently in some providers than
others. Figure 7(a) displays an exemplar of this behavior.

Likely MAC reuse In some instances (2,320 or 0.01%), we detect
a single EUI-64 IID in a large number of ASes and countries, accom-
panied by a high number of transitions between /64. In these cases,
we believe that are observing instances of MAC address reuse by a
manufacturer, and that we are detecting several devices within dif-
ferent networks simultaneously. Figure 7(b) depicts a MAC address
from EUI-64 IIDs that appear in a “high” number of countries and
ASes.

Changing providers We observe 5% of devices in multiple ASes
within the same country that transition a “low” number of times
between /64s. This behavior could arise from a static IoT or CPE

913



�	
���
��




�	
��
�#�




�	
��"
#�




�	
��
�%
�



�	
��$
 �




�	
��$
��




�	
��$
��





�����

����	������


�����

����	������


�����

����
������ ��� ��� ��!��������
�

(a) A MAC from an unregistered OUI (A8:AA:20) is frequently renum-
bered within the same AS.
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(b) A single MAC address appears in EUI-64 IPv6 addresses in 70 dif-
ferent ASes.
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(c) A device changing service between two Brazilian providers.
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(d) A Huawei MAC address frequently moves between multiple Chi-
nese ASes.

Figure 7: A variety of EUI-64 IID tracking situations arise through the use of EUI-64 IPv6 addresses.

device changing service providers. Figure 7(c) displays an example
of an EUI-64 IID seen transitioning between one AS to another. For
the �rst month and a half of our study, the device appeared only
in Telefonica Brasil’s network. Mid-March and later, however, the
device appeared only in Nova Santos Telecom.

Likely user movement Finally, 66,187 (0.44%) EUI-64 IIDs are
observed in a high number of ASes within the same country that
are also classi�ed as “high” in /64 transitions. One possible cause
of this behavior is a mobile device using EUI-64 addressing; as it
transitions from a home WiFi network to a cellular network, it
appears in multiple ASes and frequently changes /64s. Figure 7(d)
depicts a Huawei MAC address that moves between three Chinese
networks frequently over time. We believe that these are indicative
of addresses that permit user tracking over time, and thus pose
a risk to users’ PII. While low in percentage, the raw number of
potential user-tracking events this permits is large and concerning.

5.3 Geolocation
Recently, Rye and Beverly [63] described a technique for geolo-
cating CPE routers by linking MAC addresses seen in EUI-64 IIDs
with BSSIDs in publicly available wardriving datasets. Here, we
apply their technique to all of our EUI-64 addresses. Whereas their
initial analysis relied on active scanning and thus comprised mostly
CPE routers, our dataset allows us to also consider IoT and mobile
devices within customers’ LANs (see Table 2).

We query geolocation databases (e.g. WiGLE [71] and Apple and
Google’s WiFi Location APIs [7, 29]) for WiFi BSSIDs in the same
OUIs as the 171,611,786 MAC addresses we derive from EUI-64
IIDs. This produces 2,692,307 distinct WiFi BSSIDs with associated
geolocation data. Next, we use our EUI-64 MAC addresses and
wireless geolocation data to infer the o�sets between wired and
wireless MAC addresses in the same OUI. For each MAC address
embedded in an EUI-64 IID, we compare it to each wireless BSSID in
the same OUI from our dataset, recording the o�sets between each
pair of two identi�ers. We then tally the most common positive and
negative o�sets from the wired MAC to a geolocated BSSID, and
select the o�set with the largest number of MAC-to-BSSID matches
as the “correct” o�set. In this manner, we generate wired-to-wireless
o�sets for 117 OUIs with at least 500 wired MAC-to-BSSID pairs.
Finally, we used these o�sets to determine how many of the EUI-64
MAC addresses we could match with WiFi BSSIDs and therefore
geolocate.

All together, our methodology links 225,354 unique MAC ad-
dresses from our collectedNTP dataset with geolocatedWiFi BSSIDs.
Although we do not have ground truth for the geolocations of these
EUI-64 IPv6 addresses, we note that prior work validated the e�-
cacy of this technique with a large US residential ISP [63].

Our geolocations resolve to 140 di�erent countries. However,
a large majority (174,155 or 75%) of the geolocated EUI-64 IPv6
addresses are from Germany. Mexico (7%), India (4%), France (3%),
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and Luxembourg (2%) round out the top �ve countries of the geolo-
cated EUI-64 IPv6 addresses. The over-representation of Germany
and neighboring countries is due to the preponderance of AVM
GmbH, the maker of the popular Fritz!Box router, MAC addresses
in our geolocated EUI-64 IPv6 address set. AVM MAC addresses
are responsible for 180,727 (80%) of the geolocated EUI-64 IPv6 ad-
dresses. Prior communication with AVM product security personnel
con�rmed this geolocation vector exists, and Fritz!OS version 7.50
eliminated EUI-64 WAN addresses support in December 2022.

Due to the prevalence of client addresses in our passive NTP
corpus, using Rye and Beverly’s CPE router geolocation technique
permits fewer EUI-64 IPv6 geolocations than did their original
study [63]. That work speci�cally targeted CPE with active mea-
surements. However, we demonstrate that our NTP dataset contains
some number of CPE routers that visit the NTP Pool for time that
are susceptible to this privacy attack. Further, it is entirely passive.
The only defense from this form of geolocation and tracking is to
sever the linkage between the MAC addresses that appear in an
EUI-64 IPv6 address and the BSSIDs that the WiFi access points
use. Due to the potential for device tracking detailed earlier in this
section, we recommend the use of random IPv6 addresses.

6 CONCLUSIONS
In this work, we accumulated the largest hitlist of IPv6 addresses
solely through publicly-available means, without the aid of a CDN
or ISP. We collected 7.9 billion unique addresses from a distributed
set of 27 NTP servers located in cloud providers around the world.
In addition to containing orders of magnitude more live addresses
than existing hitlists, our dataset di�ers from current lists in that
it contains di�erent types of addresses. The addresses we obtain
are highly entropic and ephemeral. They often come from client
devices, as the OUIs of the embedded MAC addresses in EUI-64
IPv6 addresses show. And, crucially, these addresses are almost
entirely absent in state-of-the-art hitlists today, which biases these
hitlists toward addresses that can easily be discovered with active
measurements or the DNS, like infrastructure devices and servers.

The ability to capture massive numbers of active client devices
raises ethical questions not previously raised by active measure-
ments. Since many of these addresses are highly random and eph-
emeral, they are likely uniquely associated with a single device or
individual at a speci�c moment in time. Because of this uniqueness,
we believe that these addresses deserve a special level of care in
handling. As such, we will release our dataset truncated to the /48
level.

Finally, we repeat a plea for manufacturers to discontinue the
use of EUI-64 IPv6 addresses. Our results show that EUI-64 address-
ing is not uncommon among NTP clients, and is implemented by
popular manufacturers of IoT and smart home products. The use of
these addresses permits, in some cases, tracking of devices across
networks, as well as �ne-grained geolocation through correlation
with wireless identi�ers.
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