
Your Censor is My Censor: Weaponizing
Censorship Infrastructure for Availability Attacks

Kevin Bock Pranav Bharadwaj Jasraj Singh Dave Levin

University of Maryland

Abstract—Nationwide Internet censorship threatens free and
open access to communication and information for millions of
users living inside of censoring regimes. In this paper, we show
that this poses an even greater threat to the Internet than
previously understood. We demonstrate an off-path attack that
exploits a little-studied but widespread feature of many censoring
infrastructures: residual censorship, in which a censor continues
blocking traffic between two end-hosts for some time after a
censorship event. Our attack sends spoofed packets with censored
content, keeping two victim end-hosts separated by a censor
from being able to communicate with one another. Although
conceptually simple, this attack has several challenges, which we
address. We demonstrate the feasibility of the attack through two
studies: one to capture the current state of residual censorship,
and another to actually launch the attack (against machines we
control). We show that the attack can be launched despite stateful
TCP tracking used by many censors, and that it also works
against those who censor by null-routing. We will be making our
code publicly available.

I. INTRODUCTION

Many nation-states around the world perform automated,
in-network censorship of the traffic traversing their borders.
Although the precise mechanisms vary from one censoring
regime to another, there are some similarities in how they
operate. Most of them look for specific keywords, domain
names, or protocols to censor, and they halt communication by
injecting connection tear-down packets (TCP RSTs), sending
block-pages, or simply dropping traffic. Collectively, Inter-
net censorship affects billions of people living within these
countries’ borders, and all users seeking to communicate with
them—ultimately threatening free and open communication on
the Internet.

In this paper, we show that censoring regimes pose an even
greater threat to the Internet than previously understood. In
particular, we show that attackers can weaponize censoring in-
frastructure to keep two end-hosts separated by that country’s
borders from being able to communicate with one another. The
attacker need not be within the censoring regime; it merely
needs the ability to source-spoof packets.

The attack makes use of a little-studied but widespread
feature of many censoring infrastructures: residual censorship.
After a given TCP connection triggers a censor (e.g., by
including a forbidden keyword in a plaintext HTTP GET
request), some censors not only tear down the connection, but
“residually censor” all future communication between the two
endhosts (on particular ports) for some period of time—even
if the subsequent traffic is completely innocuous.

Armed with this insight, our attack is relatively straight-
forward: the adversary spoofs the victim endhosts, sending
packets with censored content across the censor’s border,
thereby triggering censorship and blocking the victims from
communicating for some time.

Although conceptually simple, there are several challenging
aspects of this attack in practice. In particular, most censoring
middleboxes are stateful (they track connections across pack-
ets), and so it would seem that the attacker would have to fake
a TCP three-way handshake in order to be able to send a valid
censored packet in the first place. We show that, surprisingly,
the attack is indeed possible, even with a completely off-path
attacker.

Our central contributions of the paper are not just in demon-
strating the possibility of weaponizing residual censorship, but
also in performing two comprehensive feasibility studies for
the attack:

First, we perform active measurements to analyze the
current state of residual censorship around the world today:
what countries employ it, how it operates, how long it lasts,
and so on. Our results demonstrate a wide variety in the
implementation of residual censorship systems—even within a
given country, residual censorship can operate very differently
from one protocol to another.

Second, we analyze our attack’s success and feasibility by
launching it using (and targeting) hosts we control in three
censoring nation-states—China, Iran, and Kazakhstan—across
four protocols (HTTP, HTTPS+SNI, HTTPS+ESNI, and Iran’s
protocol filter [1]). This study sheds light on the limitations
of the attack—for instance, we find that the attacker generally
needs to be on the same side of the censor as the victim client.
It also shows several surprising strengths of the attack. For
example, Iran and Kazakhstan extend the duration of residual
censorship whenever the censor sees a matching packet—as
a result, once the attack is started, the victim’s own packets
help sustain the attack on themselves.

Our results show that even a low-resource attacker can
weaponize censoring nation-states to launch an effective avail-
ability attack. In China, a source-spoofing attacker needs to
send only four packets every three minutes to indefinitely
sustain blocking between a given pair of end-hosts on a given
destination port. An attacker that can sustain 1,093 packets per
second (about 600 kbps) can weaponize Kazakhstan’s censor,
or 728 packets per second (422 kbps) to weaponize Iran’s.
Collectively, our results show that censorship infrastructures

as they are deployed today have the potential to cause even
more harm to the Internet at large than previously understood.

The rest of this paper is organized as follows. In Section II,
we review related work and provide a background on nation-
state censorship, residual censorship, and availability attacks.
We describe our experiment methodology in Section III.
Section IV presents our study of the current state of residual
censorship, and Section V presents our feasibility study from
launching the attack against hosts under our control. We spec-
ulate about the breadth of the attack and discuss limitations in
Section VI, explore potential mitigations in VII, and present
ethical considerations in Section VIII. Finally, we conclude in
Section IX.

II. BACKGROUND & RELATED WORK

How censors operate There have been many measurement
studies to understand how various censoring infrastructures
work—far too many and varied to do full justice here. In-
stead, we highlight several key properties that are critical to
understanding our results.

In-network censors generally have two broad components:
a mechanism for determining whether to censor, and a set
of mechanisms for actually tearing down the offensive con-
nection. Determining whether to censor a connection has
been shown to depend on keywords (e.g., in HTTP GET
requests [2], [3]), domain names (e.g., in the Server Name
Indication (SNI) field during an HTTPS connection [4], [5],
[6]), or the very protocol being used [7], [1]. Our evaluation
spans different types of these.

To actually tear down a connection, censors often employ
one of two tactics: Some simply drop the offending user’s (or
connection’s) traffic. This is referred to as null routing, and
is obviously a very effective way of terminating a connection.
However, it is also costly for the censor, as it requires them
to have a box on the path between source and destination at
which they can drop the traffic. More commonly, censors are
deployed not as man-in-the-middle adversaries, but as man-on-
the-side: they sit just off of the path, and the ISPs send copies
of packets (in both directions) to the censor for processing.
For such deployments, the censor tears down the connection
not by dropping the offending traffic, but by injecting spoofed
TCP RSTs (or lemon DNS responses [8]) to both client and
server, causing them both to believe the other had terminated
the connection. In our experiments, we study both null-routing
and tear-down censors.

Residual censorship Residual censorship is a feature
observed in some censorship systems in which the censor
continues to block innocuous requests for a short period of
time after censoring a forbidden request. We are not the first to
observe this behavior; the Censored Planet datasets [9] report
on instances where innocuous queries are blocked shortly
after sending a censored query. It has also been noted in
the context of studying censorship in China [4], Iran [1], and
others [2] that, for some countries and some protocols, once
a connection triggers censorship, subsequent connections can

also be censored. However, to the best of our knowledge,
we are the first to systematically study residual censorship—
what precise protocols and ports it targets, for how long,
and whether innocuous traffic can keep residual censorship
in place—and how attackers can weaponize it.

An important facet of residual censorship is precisely what
the censor blocks after censorship is initially triggered. There
are three basic options available to an adversary: 2-tuple (client
IP, server IP), 3-tuple (client IP, server IP+port), or 4-tuple
(client IP+port, server IP+port)1. We are not aware of any
censors who use 2-tuple residual censorship. All prior work of
which we are aware that had identified some form of residual
censorship focused only on 3-tuple. To our knowledge, we
are the first to identify 4-tuple censorship, and yet, as we
will show, it is one of the most widespread forms of residual
censorship.

Weaponizing censors We are aware of only one instance
of coercing a censor into blocking someone else. In 2014, the
developers of VPN Gate realized that the Great Firewall of
China (GFW) had developed an active system for scraping the
IP addresses of their VPNs and automatically blocking them
without validating that these IP addresses were actually VPNs.
The researchers began to mix innocent IP addresses into their
published list of VPN servers and were able to control which
IP addresses were globally blocked by the GFW for two days
until the GFW added verification checks [10]. Our approach
differs considerably; in our setting, an attacker can trigger the
censorship, without needing the GFW to actively scan them.
Moreover, our attack appears to be more difficult for the GFW
to mitigate.

Recently, Bock et al. [11] demonstrated another way in
which censors can be weaponized. They showed that censoring
middleboxes can be exploited for TCP-based reflected amplifi-
cation attacks, with surprisingly high amplification factors—a
potentially powerful tool for volume-based denial of service
attacks. In this paper, we show that censors can also be
weaponized to launch availability attacks.

Off-path attacks Our work fits into a much broader
space of off-path attacks. Prior work has explored how to
adversely affect TCP connections between two end-hosts in
myriad ways, including TCP side channels [12] and data
injection [13]. Other work has shown that an off-path attacker
can weaponize network infrastructure to launch amplification
attacks [14], [15], [16]. Each of these prior attacks manipulate
the state at the end-hosts it targets. Our work broadens this
space by showing that attackers can manipulate the state of
middleboxes in the network itself to adversely affect end-hosts’
ability to communicate.

III. MEASUREMENT METHODOLOGY

As with all censorship measurement research, we are limited
by the vantage points we can access and the censorship we
can experience. For our experiments, we obtained four vantage

1It is also conceivable that a censor could block multiple IP addresses at a
time, such as a /24, but we did not study this.

Fig. 1: Vantage points in our experiments. The green dot is
our attacker running SP3 [17]; black dots represent victim
vantage points; and the red dots denote the location of the
servers inside the censoring regimes we studied: China, Iran,
and Kazakhstan (outlined in red). Note that some dots overlap.

points within censoring countries: two in China (Beijing),
one in Iran (Tehran), and one in Kazakhstan (Qaraghandy).
We also performed experiments from two vantage points
we obtained in India (Bangalore) and one vantage point we
obtained in Russia (Khabarovsk), but as we will see in the
next section, we were unable to identify residual censorship
in either location. We also obtained vantage points located in
geographically disparate locations around the world that do
not experience censorship: Australia (Sydney), India (Mum-
bai), Ireland (Dublin), Japan (Tokyo), United Arab Emirates
(Dubai), and the United States (Iowa, Colorado, and Virginia).
Figure 1 shows the locations of each of these vantage points,
along with the censoring regimes in which we validated our
attack.

To test for residual censorship, we issued queries that trigger
censorship followed by queries that do not trigger censorship
on their own and observed if the censor interferes. The specific
queries we issued for each protocol are as follows (for ease of
exposition, we will refer to HTTPS with SNI as simply “SNI”,
and HTTPS with ESNI as simply “ESNI”):

• SMTP: Sent an SMTP request with a forbidden email
address (such as “xiazai@upup.info” in China [6]) in the
MAIL FROM: field.

• DNS: Issued a DNS query (over both UDP and TCP) with
a forbidden question record (such as “facebook.com” in
China) both to real DNS resolvers and to resolvers we
controlled.

• HTTP: Issued a HTTP GET request with a forbidden
URL in the host header (such as Host: youporn.com),
or with a forbidden keyword as an HTTP parameter (such
as ?q=ultrasurf).

• HTTPS (SNI): Initiated a TLS handshake with a forbid-
den domain in the SNI field to servers we controlled.

• HTTPS (ESNI): Initiated a TLS handshake configured
with ESNI to servers we controlled.

• Protocol Filter (Iran)2: Sent two messages back to back
containing the message “test”. As this trivially does not
match any approved protocol, it triggers censorship [1].

We also tested different patterns of follow-up requests and
packets. To identify 3-tuple residual censorship, we issued
follow-up queries with the same protocol to the same des-
tination, containing an innocuous payload (such as “exam-
ple.com”). We also tested making innocuous queries of dif-
ferent protocols and malformed payloads that do not resemble
any protocol (such as just the string “test”). To identify 4-tuple
residual censorship, we sent follow-up packets with the same
source port to the same destination IP address and port (but
with an out-of-window TCP sequence and acknowledgment
number) and confirmed that our packets arrived at the desti-
nation correctly and without interference. We performed this
check with SYN packets, PSH packets, PSH+ACK packets, and
RST packets. We then repeated these experiments across many
ports to identify which ports were affected.

IV. STATE OF RESIDUAL CENSORSHIP

In this section, we present the results from our comprehen-
sive study of the current state of residual censorship in China,
Iran, and Kazakhstan. Table I provides a breakdown of all of
our results in this section.

Which countries employ residual censorship? We found
some form of residual censorship (3-tuple or 4-tuple) for
multiple protocols in China (SNI, ESNI, and HTTP), Iran
(HTTP, SNI, and its protocol filter), and Kazakhstan (HTTP
and SNI).

China and Iran in particular employ residual censorship for
only some of the protocols they censor. Neither have residual
censorship for any of their DNS censorship (DNS-over-UDP
or DNS-over-TCP)3. Further, China does not employ residual
censorship for their SMTP censorship.

Some countries we tested do not employ residual censorship
at all against our vantage points. Both of our vantage points
within the Airtel ISP in India experienced HTTP and SNI
censorship, but neither experienced residual censorship. We
were also unable to trigger censorship from our vantage point
in Russia to any of our destination vantage points, so we
exclude both of these from our analysis.

What types of residual censorship do censors employ? We
find that censors vary between 3-tuple and 4-tuple residual
censorship, depending on the protocol being censored.

China uses 3-tuple residual censorship for HTTP traffic
and censors by injecting TCP RST packets. This has been
observed in the past [19], [2]. Prior work has reported residual
censorship in China for SNI [4] by injecting RSTs, but neither
of our two vantage points experienced any SNI residual
censorship to any of our vantage destinations.

2In addition to its standard content filter, Iran uses a protocol filter, which
censors unrecognized protocols on monitored ports [1].

3In Iran, although some prior work has reported DNS-over-TCP censor-
ship [18], we are unable to trigger any DNS-over-TCP censorship at this time
(similar to what was reported in [6]).

Country Protocol Ports Type Duration Bidirectional Timer Reset Mechanism

China
HTTP Any 3-tuple 90s X 8 Injected RST
SNI Any 3-tuple 60s X Unknown Injected RST

ESNI Any 3 and 4-tuple 120-180s X 8 Null Routing

Kazakhstan HTTP Any 4-tuple 120s X X Null Routing
SNI Any 4-tuple 120s X X Null Routing

Iran
HTTP 53, 80, 443 4-tuple 180s X X Null Routing
SNI 53, 80, 443 4-tuple 180s* X X Null Routing

Protocol Filter 53, 80, 443 4-tuple 60s 8 X Null Routing

TABLE I: The current state of residual censorship, among the countries and protocols we tested (those that we tested but
are not in the table did not residually censor in our tests). We were unable to reproduce SNI censorship in China; in that
row, we report prior results [4]. *: Iran’s SNI residual censorship sometimes lasts longer than 180s; in a small number of our
experiments, we found it to last upwards of 5 minutes.

ESNI censorship in China presents a more complicated pic-
ture. Less than 1 second after the GFW sees a TLS ClientHello
containing the ESNI extension, it begins dropping all traffic
that matches the connection’s 4-tuple (note that the ESNI
packet itself reaches the server unaffected). This is 4-tuple
residual censorship. For approximately five seconds, the GFW
also drops all traffic that matches the connection’s 3-tuple: a
short window of 3-tuple residual censorship. But if the client
sends a second ESNI request with the same 3-tuple within the
next three minutes, the GFW will begin dropping all traffic
that matches the 3-tuple for three minutes: a long window of
3-tuple residual censorship. Unlike for HTTP and SNI, ESNI’s
residual censorship does not operate equally in both directions.
Researchers have hypothesized in the past that China censors
each protocol using a different set of middleboxes; the vast
disparity between residual censorship implementation across
our vantage points supports this hypothesis [6], [20].

In Iran and Kazakhstan, we find that the mechanism used for
residual censorship (null-routing) and type of residual censor-
ship (4-tuple) is consistent between protocols. As we will see
later in this section, however, there are other inconsistencies
in the implementations of the residual censorship for each
censored protocol within Iran and Kazakhstan, such as the
duration of censorship.

Does residual censorship use the same mechanisms as
the initial censorship? We find that residual censorship
is generally enforced using the same mechanism as the initial
censorship. For example, China injects RST packets to censor
HTTP normally, and injects RST packets for its residual censor-
ship (the same is also reported for China’s SNI censorship [4]).
China’s ESNI censorship operates with null-routing, as does
its residual censorship. The censorship mechanisms are also
consistent in Iran and Kazakhstan, with one exception.

We find that Iran censors HTTP using multiple methods
simultaneously: injecting a block page with a packet that
has the RST flag set while simultaneously null routing the
connection. Despite using three censorship mechanisms for
regular censorship, only 4-tuple null-routing continues for
residual censorship.

What ports are affected by residual censorship? We
tested this by issuing censored requests to vantage points we

controlled destined to all 65,535 ports and confirmed that
all were affected. We find that the ports affected by residual
censorship match the ports affected by the regular censorship
in each country we studied, but each country monitors a
different set of ports. In China (with HTTP and ESNI) and
Kazakhstan (with HTTP and SNI), we find that we can trigger
residual censorship on any arbitrary port, including ephemeral
ports. In Iran, however, both the protocol filter and the standard
censorship system only monitor ports 53, 80, and 443, and
therefore we can only trigger residual censorship to these
ports. Note that in Iran, residual censorship can be triggered
for any protocol on any of those three ports: for example, we
can trigger HTTP residual censorship to port 53.

Is residual censorship applied bidirectionally? Even within
the same country, residual censorship is not always applied
equally to connections entering the country as to those exiting
the country. Although we find that Iran’s standard censorship
system can be triggered bidirectionally, we confirm the find-
ings of [1] that the protocol filter (and by extension, its residual
censorship) only operates on flows leaving Iran. China’s ESNI
censorship operates bidirectionally, but it operates differently
(and more aggressively) against traffic entering the country
than exiting the country.

For every other censorship system we tested, we were able
to trigger censorship (and residual censorship) equally from
outside the country. Like all censorship research, our study is
limited by the vantage points we can access; it is possible that
there are other censorship systems that only employ residual
censorship on connections leaving the country that we cannot
study.

We find that the direction of subsequent traffic is important
in whether it is affected by residual censorship. If a client
within a censored regime makes a forbidden request to a server
outside, we find that only traffic sent by the client is affected
by residual censorship. This makes sense: traffic direction is
encoded in both 3-tuple and 4-tuple flow tracking. However,
this does impose an important limitation on attackers: an
attacker generally must be on the same side of the censor
as their victim.

What packets are affected by residual censorship? Which
packets are impacted by residual censorship changes de-

pending on the censorship mechanism used. China’s HTTP
residual censorship mechanism of injecting RST packets does
not initiate until after the client has sent a new request in a
PSH+ACK packet. None of the 3-way handshake is impacted;
it reaches the server without interference. However, China’s
ESNI residual censorship (both 3-tuple or 4-tuple) null-routes:
all packets leaving the client, including SYN packets are
affected by the residual censorship.

We find the same effect for the null-routing residual censor-
ship in Kazakhstan and Iran. Note that the direction of traffic
matters for every censor we studied: only packets from the
client are impacted. If a server sends packets in a connection
being null-routed, the packets will reach the client unaffected.

How long does residual censorship last? To determine the
duration of residual censorship, we performed an experiment
in which we varied the duration of time between triggering
censorship and making a follow-up request, and recorded
whether residual censorship took place.

We find the duration of residual censorship also varies
between countries and protocols, but is generally less than
three minutes in every country we studied. HTTP residual
censorship in China lasts approximately 90 seconds (as ob-
served in [19], [2]) and ESNI is residually censored for 120
seconds (as observed in [5]). We note that for ESNI censorship
in China, other researchers have reported both 120 and 180
seconds of residual censorship [5]. In Iran, while its protocol
filter residually censors for 60 seconds, its HTTP and SNI
censorship systems residually censor for 180 seconds (and in a
small number of our experiments, the SNI system continued to
residually censor requests up to approximately 5 minutes). In
Kazakhstan, both HTTP and SNI residual censorship systems
operate for 120 seconds.

We find that both Iran and Kazakhstan restarts their residual
censorship timer if the client sends a matching packet, thereby
extending the duration of time that the client is affected. Due
to TCP retransmissions, in practice this means that Iran and
Kazakhstan will drop traffic for much longer than their original
time. This is presumably done to make their censorship
systems more robust against TCP retransmissions. As we will
see in the next section, however, this timer reset makes our
attack easier to launch.

Does residual censorship require a full 3-way hand-
shake? No! We were able to trigger residual censorship
without a proper 3-way handshake for every censor we studied.
To discover this, we followed the methodology of Bock et
al. [11] to attempt subsets of the TCP 3-way handshake before
sending a PSH+ACK with a censored keyword.

The Airtel ISP in India enacted residual censorship with-
out any of the 3-way handshake (one needs only send the
PSH+ACK). Censorship of clients within this ISP appears to
maintain no TCP state for their censored system.

Other countries required a subset, but not the entirety, of
the TCP 3-way handshake. We sent a single SYN packet with
a decremented sequence number, followed by a PSH+ACK

containing the forbidden payload (we will refer to these

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

F
ra

c
ti

o
n

 o
f

in
n

o
c

u
o

u
s

re
q

u
e

s
ts

 c
e

n
s

o
re

d

Number of residual-censorship triggers

Fig. 2: The relationship between the number of times cen-
sorship is triggered and the reliability of HTTP residual
censorship, as measured from our Beijing 2 vantage point. As
the number of times residual censorship is triggered increases,
the reliability improves. (Error bars represent 95% confidence.)

two packets as the “censorship trigger”). This successfully
triggered censorship (and residual censorship) for every cen-
sorship system we studied.

How reliable is residual censorship? We define the
“reliability” of residual censorship as the fraction of follow-
up innocuous requests made within the residual censorship
window that are successfully censored. Note that this is distinct
from the reliability of censorship itself, which traditionally
refers to the fraction of forbidden requests a censor success-
fully censors [6].

We performed an experiment to measure residual censorship
reliability from each of our censored vantage points. We
triggered censorship and then made one innocuous request per
second and recorded how many requests were impacted; this
experiment was repeated 10 times, spaced evenly throughout
a 24 hour period. For every protocol in Iran and Kazakhstan
and for ESNI censorship in China, we find that 100% of
our requests were residually censored as expected. For HTTP
residual censorship in China, however, we find that only
approximately 50% of our requests are correctly residually
censored. We find this pattern holds bidirectionally.

We next explored if we could improve the reliability of
HTTP residual censorship. We performed an experiment in
which we varied the number of forbidden requests we made
before starting our test innocuous queries. From our Beijing 1
vantage point, we varied the number times we issued forbidden
requests between 1 and 9 times, and then made one innocuous
request per second for one minute. We randomized the order of
the trials, implemented 5 minutes of sleep between each, and
issued innocuous test queries before starting each experiment
to ensure that the experiments did not interfere with each other.
We repeated this experiment 6 times.

Figure 2 shows the average fraction of innocuous queries
that were censored as a function of the number of residual-
censorship triggers we send ahead of time. We find that as
we increase the number of forbidden queries, we improve the
reliability of residual censorship and after seven retries, the
success rate levels out.

We hypothesize that the GFW is internally load balancing
queries from this vantage point and that different middleboxes
within the GFW do not communicate with one another when
residual censorship starts. As we add additional queries, we
are more likely to trigger residual censorship with multiple
middleboxes, thereby increasing the likelihood that as future
requests are made, they will get routed through a middlebox
with active residual censorship.

V. RESIDUAL CENSORSHIP ATTACK

The results from our measurement of residual censorship
indicate that it would be possible for an off-path attacker
to get a victim’s connections residually censored. Because
censors do not look for the entire 3-way handshake, an
attacker could simply source-spoof the victim, send a censored
request, thereby residually censoring communication between
the victim and server.

In this section, we empirically evaluate the feasibility of this
attack by launching it against ourselves.

A. Launching the Attack

Since all of our vantage points employed egress filtering, we
cannot launch the attack directly from our censored vantage
points within China, Iran, or Kazakhstan.

Instead, we leverage a public deployment of SP3 (A Simple
Practical & Safe Packet Spoofing Protocol) [17] deployed at
the University of Washington, to ethically send source-spoofed
packets and thus act as our attacker. SP3 is a web server
that offers the ability to send spoofed packets, but mandates
that a client consent to receiving source-spoofed packets. A
client gives this consent by creating and holding open a
websocket connection to SP3. When the client connects, SP3

returns a UUID16 challenge string. As long as the websocket
connection is held open, other servers can connect to SP3 with
a websocket, supply the challenge code, and can give SP3

packets through binary frames to send to that client.
We launched the attack on ourselves as follows. We used

SP3 to send a sequence of packets to trigger residual cen-
sorship to a server that crosses the censor, with the source
addresses spoofed to be a test victim under our control. Recall
that traffic direction matters to residual censorship in each
of these three countries: the attacker must be on the same
side of the censor as the victim. Since SP3 is located in the
United States, this means we are launching the attack from
outside-in for each censoring country. Fortunately, as we saw
in Section IV, residual censorship is bidirectional for most of
the protocols we study. Our vantage points within each country
acted as the server; we launched the attack against all of our
geographically disparate vantage points around the world as
victims.

Then, we used our “victim” to make requests to the server,
and recorded if the connection succeeded or if it was impacted
by residual censorship. We varied our test request based on
the protocol and type of residual censorship. For 3-tuple
residual censorship, the client makes an innocuous request
with a different source port to the same server IP address

and port. For 4-tuple residual censorship, we ensure the client
uses the same source port as the attacker. Of course, in a
real attack scenario, the attacker cannot know the source
port a victim will use a priori. Therefore, to weaponize 4-
tuple residual censorship systems, the attacker would re-trigger
censorship for all 65,535 possible source ports. We investigate
the limitations imposed by this later in this section; for now
to demonstrate the attack, we allow the attacker to access the
source port.

We launched this attack against every uncensored vantage
point for every bidirectional, residually censored protocol to
each of our vantage points in China, with HTTP and ESNI,
in Kazakhstan, with HTTP and SNI, and in Iran, with HTTP
and SNI. Recall that Iran’s protocol filter censorship cannot
be triggered from outside the country, and therefore we omit
it from these experiments. To determine attack reliability, we
repeated each attack 20 times.

Before we launched each attack, we also record two tracer-
outes. First, we performed a regular traceroute between the
victim and the destination. Second, we performed a source-
spoofed traceroute using SP3. Our server (inside the censored
regime) connects to SP3 and consents to receive TCP SYN

packets with the TTL ranging from 1 to 30, with the source
address of the packets spoofed to be the victim. While SP3

sends these packets, the victim (a vantage outside of the
censored country) records TTL “Time Exceeded” messages.
This allows us to reconstruct the network path taken by the
packets spoofed by SP3, and compare it to the network path
taken by the victim’s test request.

B. Results

In every country we tested, we could successfully
weaponize the censorship infrastructure against every victim
vantage point at least once around the world. We find that the
attack is sensitive to the chosen protocol (for example, HTTPS
offers better results in Kazakhstan than HTTP). Table II
presents an overview of our results.

Collectively, our results suggest that there are many shared
paths through the censorship infrastructure of each country,
and an attacker that can access just one source spoofed capable
machine is capable of launching highly effective availability
attacks. A more well resourced attacker could likely get even
better results by choosing vantage points with even more
similar paths as their victims.

In the remainder of this section, we detail the results in each
of the countries we tested.

Kazakhstan In Kazakhstan, 100% of the attacks succeeded
if the attacker triggered residual censorship with SNI payloads.
However, we find that if a forbidden HTTP payload is used
instead, the success varies depending on the victim vantage
point, and this pattern persists irrespective of the port the
attacker uses.

First, we explored why the success of the HTTP attack
changes depending on the victim location. We hypothesize
the reason for this is that the network path of the packets

Destination Location
Kazakhstan Iran Beijing 1 Beijing 2

Victim Location HTTP HTTPS HTTP HTTPS HTTP ESNI HTTP ESNI
Australia Sydney X X X X 50% 10% 55% X

China Beijing 1 8 X X X N/A N/A N/A N/A
Beijing 2 8 X X X N/A N/A N/A N/A

India
Mumbai 8 X X X 8 8 8 30%

Bangalore 1 X X X X 50% 10% X X
Bangalore 2 X X X X 25% 10% X X

Iran Tehran X X N/A N/A 8 50% 75% X

Ireland Dublin 1 8 X X X 8 8 8 5%
Dublin 2 8 X X X 50% 8 8 8

Japan Tokyo X X X X 25% 8 8 X
Kazakhstan Qaraghandy N/A N/A X X 50% 8 20% 8

Russia Khabarovsk X X X X X 8 X 8

UAE Dubai 1 8 X X X 85% 8 95% 8
Dubai 2 8 X X X 8 10% 8 50%

USA
Colorado X X X X 8 8 X 8

Iowa 8 X X X 8 8 8 60%
Virginia X X X X 50% X 55% 8

TABLE II: Success rates in weaponizing each country’s censorship infrastructure against each victim vantage point from our
attacker in Seattle, WA. (X denotes 100%, 8 denotes 0%, and N/A denotes a location that does not cross the border of the
censor.) Note that the success rates are not always consistent, even to victims in the same country, or between censored protocols
in each censored regime. Iran is consistent and reliable; Kazakhstan is consistently unreliable for HTTP, but consistently reliable
for HTTPS. In China, however, the attack was not always consistent by protocol, victim location, or server location.

sent by the attacker and sent by the victim enter at different
ingress points within the censor’s infrastructure, and triggering
censorship at one ingress does not initiate residual censorship
at the other. To gain insight into this, we can compare the two
traceroutes taken before the attack is launched: one from the
attacker and one from the victim. Although both traceroutes
are performed with the same source IP address, since they
start from different geographic locations, the packets will
necessarily take (at least partially) different paths to reach the
server. By comparing the paths taken for each traceroute, we
can try to determine if the paths converged before the packets
reached the censor, or afterwards. If the paths converge after
the packets reach the censor, it is possible that the attacker’s
traffic and victim’s traffic will take different ingress points, and
therefore be processed by different censoring middleboxes. To
determine how many hops away the censor is from the server
inside the censoring regime, we send TTL-limited forbidden
queries until we initiate censorship. We find that our vantage
point inside Kazakhstan is 5 hops away from the censor.
Necessarily, this analysis will not be perfect; many routers
and middleboxes can simply choose not to send a TTL Time
Exceeded message and hide themselves from this analysis.

Nevertheless, for all victims for which the attack failed, we
find that paths do not converge until less than 5 hops away
from reaching the server.

Why then, even for victims with paths that do not converge,
does the attack succeed when HTTPS is used, even when the
same destination ports are used as in HTTP? Frankly, we do
not know. We hypothesize this could be due to Kazakhstan
having physically fewer HTTPS censoring middleboxes, and

therefore fewer internal paths for the attacker and victim’s
traffic to be split between.

What sending rate is required for an attacker to weaponize
Kazakhstan’s censor to block a 3-tuple (source IP address,
destination IP address, destination port)? Since both HTTP
and SNI residual censorship can be triggered on any port,
the attacker can choose to use whichever is more convenient.
Both are 4-tuple residual censorship systems, which means
the attacker must trigger censorship with the same source
port that the victim will use. Since the attacker cannot know
the victim’s source ports ahead of time, instead the attacker
will trigger censorship for all 65,535 possible source ports. It
requires 2 packets to trigger censorship (a SYN, followed by
a PSH+ACK with the forbidden payload), and once triggered,
residual censorship will last for 120 seconds. Therefore, an
attacker needs to send 2 × 65,535

120 = 1,093 packets per second
to sustain the attack indefinitely. The SYN packet is 54 bytes
long (including the Ethernet header), but the length of the
PSH+ACK will change depending on the protocol. Our HTTP
trigger payload is 91 bytes long (54 bytes of headers and 37
bytes for the HTTP request), and our HTTPS trigger payload
is 379 bytes long (54 bytes of headers and 325 bytes of TLS
ClientHello). To sustain the HTTP attack, an attacker must be
able to send (54 + 91) × 65,535

120 = 79,188 bytes per second, or
634 kbps. For HTTPS: (54 + 379) × 65,535

120 = 236,473 bytes
per second, or 1,892 kbps.

Recall that we found no difference in reliability between
HTTP and SNI, and therefore an attacker could opt to use
the smaller HTTP triggers and reduce the amount of required
bandwidth unless their victim was located in a geographically
disadvantageous location.

Would it be advantageous for an attacker to try to trigger
residual censorship with both protocols? We cannot be sure,
but an attacker likely does not need to. Since both censorship
systems reset the duration of their residual censorship anytime
a matching packet is encountered, once the attacker triggers
one censorship system, any packets sent to trigger the other
will reset the timer for the first. We also note that the effects of
censorship for HTTP and SNI are identical: for this reason, we
cannot be certain whether packets being residually censored
by one censorship system reach the other.

China The attack was inconsistent to both of our vantage
points in China. The success rate of the attack varied based
on multiple factors: the victim location, server location, and
the chosen residually censored protocol.

As in Kazakhstan, we consulted the traceroutes to examine
if the network paths could explain the lack of success for the
attack. We repeatedly sent TTL-limited forbidden requests to
determine how many hops both of our machines are away from
the GFW (6 hops and 9 hops respectively). We hypothesized
that the attack should succeed greater than 0% of the time if
the paths converge before it reaches the censor. Recall from
Section IV that in China, triggering HTTP residual censorship
once does not guarantee that all future requests that match the
3-tuple will be censored; therefore, even if the attacker’s and
victim’s paths converge before packets reach the GFW, we
cannot guarantee success. Nevertheless, the traceroutes do not
contradict our hypothesis: we find almost no path convergence
for every victim against which the attack frequently failed
(such as Ireland 1& 2).

Why are these success rates not either 100% or 0%, as
in Iran and Kazakhstan? Bock et al. observed a similar phe-
nomenon in [6] and posited that the GFW is a heterogeneous
deployment of many different middleboxes, all running in par-
allel. We hypothesize that fractional success rates are caused
by geographic variation in deployments of the GFW itself,
and load balancing between multiple middleboxes running in
parallel.

For an attacker, weaponizing the GFW poses an interesting
opportunity, as it offers both types of residual censorship (3-
tuple or 4-tuple) and multiple different censorship mechanisms
(null routing or injected RSTs). Attackers within the country
can choose to trigger ESNI residual censorship at either the
3-tuple or 4-tuple with null routing, or trigger 3-tuple HTTP
residual censorship to get injected RSTs. Outside the country,
ESNI censorship is limited to 4-tuple residual censorship, so
the attacker can choose whether to launch one or the other
depending on the location of their victim.

With 3-tuple censorship systems at an attackers disposal,
weaponizing the GFW to prevent a victim from communicat-
ing with a given destination IP address and port is trivial. An
attacker needs to trigger censorship only once to initiate the
residual censorship, and can trivially re-send the censorship
triggers to improve the reliability if needed. If 3-tuple residual
censorship is unavailable, the attacker can fall back to lever-
aging 4-tuple residual censorship, as we demonstrated in Iran

and Kazakhstan, which also lasts for 120 seconds. To trigger
ESNI’s 4-tuple residual censorship, the attacker must send a
SYN (54 bytes), followed by the PSH+ACK containing the ESNI
trigger (54 bytes for headers and 65 bytes of payload). An
attacker needs to send 2 × 65,535

120 = 1,093 packets per second,
equivalent to (54 + 119) × 65,535

120 = 94,480 bytes per second,
or 756 kbps to sustain the attack indefinitely.

Could an attacker simply try to invoke both censorship
systems simultaneously in an attempt to improve the reliability
of this attack? We find the answer is yes: the attacker can send
multiple back-to-back packet sequences to trigger censorship
using different protocols, as long as each source port is
different. For example, the attacker can trigger 3-tuple HTTP
residual censorship, followed by a trigger for 4-tuple ESNI
censorship with a different source port. We find that if both
triggers are sent with the same source port, only the first trigger
will be successful. The reason for this was posited by [6]: once
the HTTP censorship system sees the ESNI payload, it stops
paying attention to the connection. However, since the HTTP
residual censorship is 3-tuple, the attacker can use one source
port to trigger the HTTP residual censorship system and still
trigger 4-tuple residual censorship on all of the other source
ports.

With both censorship systems performing residual censor-
ship in parallel, which one affects a victim? We find the
answer is the ESNI censorship system: this is because the
ESNI residual censorship affects all packets, but the HTTP
residual censorship system does not teardown a connection
until after the 3-way handshake has completed. In our testing,
we did not see an improvement in reliability when combining
censorship triggers, but its utility may increase for victims in
other geographic locations.

Iran Our attack was most successful in Iran. Here, 100% of
the attacks succeeded using both forbidden HTTP and HTTPS
(SNI) against every victim we tested. Both of these protocols
are 4-tuple censored for a full 180 seconds, and both timers
reset in the presence of any matching packet.

What is required for an attacker to effectively block a victim
from communicating with a destination IP address and port
across the censor? The attacker requires 2 packets to trigger
censorship (a SYN, followed by a PSH+ACK with the forbidden
payload), and once triggered, residual censorship will last for
180 seconds. Therefore, an attacker needs to send 2 × 65,535

180 =
729 packets per second to sustain the attack indefinitely. The
triggers are the same for Iran as for Kazakhstan: the SYN packet
is 54 bytes long (including the Ethernet header), our HTTP
trigger payload is 91 bytes long (54 bytes of headers and 37
bytes for the HTTP request), and our HTTPS trigger payload
is 379 bytes long (54 bytes of headers and 325 bytes of TLS
ClientHello). To sustain the HTTP attack, an attacker must be
able to send (54 + 91) × 65,535

180 = 52,792 bytes per second, or
422 kbps. For HTTPS: (54 + 325) × 65,535

180 = 137,987 bytes
per second, or 1.1 Mbps—a modest amount.

The length of the payload required to trigger SNI censorship
is significantly larger than the payload required to trigger

HTTP censorship, and since each protocol worked equally well
for our attacker, there is no incentive to use the longer SNI
trigger. Of course, like in Kazakhstan, if the HTTP trigger fails
for a given victim location, A bandwidth constrained attacker
could opt to start with HTTP triggers and only switch to SNI
triggers if their victim is in a disadvantageous geographic area.

VI. ATTACK IMPACT

Here, we reason about the potential impact of this attack by
considering the potential breadth and limitations.

Breadth What is the true breadth of this attack? Unfortu-
nately, we are limited by our vantage points to answer this
definitively. Nevertheless, we can speculate about what other
systems could potentially be weaponized.

We restricted our analysis only to censoring countries in
which we could obtain vantage points that experienced residual
censorship. Although we were unable to test this attack in
India or Russia, prior work has found that other ISPs in
India (Vodafone and Idea [21]) and Russia [22] employ null
routing for censorship. Depending on how the null routing is
implemented, these ISPs may be vulnerable to this attack, but
we were unable to obtain vantage points within these systems
to confirm this.

Our analysis assumed that either the server or victim is
located physically inside a censoring regime. However, re-
searchers in the past have observed that traffic that simply
traverses the Internet borders of a censored regime can trigger
censorship, even if neither the client nor server are located
within the country [8]. Performing this attack against travers-
ing traffic is an interesting area of future work.

We can also speculate about the breadth of this attack by
examining the results of Quack, a powerful censorship scan-
ning tool from Censored Planet [23]. Every day, Quack sends
well-formed HTTP GET requests with potentially forbidden
domains in the Host: header to echo servers around the
world to identify interference. Quack records the cause of
censorship and also monitors for 3-tuple residual censorship
(called “stateful disruption”). In the December 27th, 2020
dataset, Quack had identified censoring middleboxes in 33
countries where 3-tuple stateful disruption was present and in
18 countries where null routing was used to censor. These
results suggest that this attack may be significantly more
broadly applicable.

Limitations Despite the potential breadth, there are limi-
tations to this attack. An attacker must be able to obtain a
vantage point (1) without egress filtering that (2) shares a
similar enough path with their victim and (3) the traffic crosses
a censor (4) with residual censorship (5) that can be triggered
statelessly.

Our experiments suggest that there are a surprisingly high
number of joint network paths, even for geographically dis-
parate victims (such as Australia and USA). Still, not every
attacking vantage point will be able to affect every victim, and
the attacker has no mechanism to confirm whether their attack
successfully blocked the victim.

Another potential limitation is that this attack may not work
for every IP address. Researchers have observed in the past
that some censorship systems vary their response based on the
destination [1]. We were unaffected by this for all of our victim
locations, but an interesting area of future work would be to
repeat this study across a very broad range of IP addresses.

Lastly, there are some limitations to how completely an
attacker could cut off two hosts. Could an attacker weaponize
these censorship systems to completely cut two hosts from
communicating? It depends on the type of residual censorship.
We believe it is infeasible for an attacker to use a 4-tuple cen-
sorship system to completely prevent two IP addresses from
communicating, as this would require triggering censorship for
all 232 possible combinations of source and destination ports.
However, for a 3-tuple residual censorship system, the attacker
could trigger residual censorship 65,535 times to all possible
destination ports and accomplish this.

Does this attack become infeasible if middleboxes start
properly tracking the 3-way handshake? Yes, but we believe
it would be difficult for censors to do so. Particularly at the
scale at which nation-state censors must operate, censors must
content with path asymmetry: the network path used by traffic
exiting the country may be different than the path used by
traffic entering the country, even for the same connection.
This makes properly tracking the 3-way handshake difficult:
different middleboxes may see the SYN packet from the client
than those that see the SYN+ACK packet from the server.

Can the attacker trigger residual censorship for UDP-based
protocols as well? In our experiments, we only identified
residual censorship for TCP-based protocols. However, this is
only a partial limitation, since all of the null-routing residual
censorship we studied affected both TCP and UDP traffic.
If an attacker wishes to interfere with UDP traffic, she can
simply trigger null-routing residual censorship over TCP and
the victim’s UDP traffic will be censored.

VII. MITIGATIONS

In this section, we discuss our recommendations to potential
victims and censoring regimes to mitigate this attack.

A. Censors

Null-routing should track sequence numbers, or should
not be used. All of the null-routing censorship systems
we study (Iran, Kazakhstan, and China’s ESNI censorship)
operate only at the 4-tuple, and do not do any validation
of the sequence or acknowledgment numbers of the packets
they drop. Unfortunately, this implementation of censorship
with null-routing is inherently flawed. TCP is designed to
be tolerant to packet loss, so most end-hosts will continue
to retry sending packets when confronted with null-routing.
This forces censors to maintain the flow’s null-routing for a
long enough period of time to exceed the duration of time that
network stacks will retransmit (or further reset their internal
timer when an offending packet is sent). Unfortunately, the
longer this window of time is, the easier it is for an attacker
to abuse null-routing to perform this attack. Therefore, to

eliminate 4-tuple residual censorship, we recommend that
middleboxes who use null-routing only drop packets with the
correct sequence and acknowledgment numbers, or to avoid
using null-routing entirely.

Eliminate (or modify) 3-tuple residual censorship. Pre-
sumably, 3-tuple residual censorship is designed as a deterrent
system: users who search for a forbidden term are “punished”
and forbidden from trying to communicate with the same
server again for a small period of time. Unlike 4-tuple residual
censorship, the effect of 3-tuple residual censorship is salient
to the user. However, we question the efficacy of this feature
as a deterrent, since there is no communication or information
to the end-user to alert them why they are continually being
censored in all countries we tested in (China, Iran, Kaza-
khstan). Consider a user in China that searches for a long
string of text containing a single verboten word. The GFW
only sends RST packets: it does not inform the user the cause
of censorship, and an uneducated user may be unaware that
censorship is the reason their subsequent connections continue
to fail. Worse, as we showed in Section IV, residual censorship
is not even always be effective, and can fail depending on the
users network route. For these reasons, we recommend that
middleboxes—particularly the GFW—remove their residual
censorship components altogether or modify their response
from null routing to sending a block page or some response
that indicates to the user who is being censored that they are
being “punished” for their search.

We also echo many of the suggestions made by Bock
et al. [11], as the root of our attack also stems from the
ability to trigger censorship systems without a proper 3-way
handshake.

B. Potential Victims

Unfortunately, once the attack is initiated, there is very
little a victim can do to stop it. Nevertheless, we make
recommendations here to mitigate or work around this attack.

Use a proxy. Since our availability attack is generally limited
by the 3-tuple or 4-tuple, changing the source IP address
that the censor sees is an effective way to bypass the attack.
Therefore, we recommend that an affected user switch to use
some proxying system, such as VPN, Tor, or an HTTP proxy.
Further, a victim can rapidly rotate between proxies in an
effort to stay ahead of an attacker. Unfortunately, this is only
a stopgap solution; if the path from the victim to the proxy’s
entry nodes also crosses the censor, an attacker can simply
switch to attacking the proxy itself.

Do not immediately try to reconnect. In some censorship
systems, the presence of additional matching traffic causes
the residual censorship timer to reset, thereby prolonging the
attack. Therefore, if a user is affected, they should not continue
trying to reconnect; instead, they should stop sending network
traffic and wait a few minutes.

VIII. ETHICAL CONSIDERATIONS

Experiment Design We took care in designing our experi-
ment to ensure that it would not involve or cause harm to any
other users. Our experiments do not induce any in-country
clients outside of our control to send forbidden requests; all
communication was strictly between hosts we fully controlled.
To the best of our knowledge, none of our vantage points
in-country were NATted with other hosts, making it unlikely
other users were affected.

Responsible Disclosure It is difficult to responsibly disclose
our findings, as the affected censorship systems have histori-
cally been unresponsive to similar issues [11] or unwilling to
intentionally weaken their censorship systems. Nevertheless,
we are in the process of contacting several country-level Com-
puter Emergency Readiness Teams (CERT) that coordinate
disclosure for their respective countries.

IX. CONCLUSION

In this work, we demonstrated that it is possible to
weaponize the censorship infrastructure in Iran, Kazakhstan,
and China to perform availability attacks. We launch this
attack against 17 different geographically disparate victims and
show that even a weak attacker (with access to a single low-
bandwidth source spoofer) can launch effective availability
attacks. Collectively, these results show that the negative
impact of censorship extends well beyond the censor’s borders,
and that they pose an even larger threat to the Internet writ
large.

ACKNOWLEDGMENTS

We thank our shepherd Kevin Borgolte and the anonymous
reviewers for their helpful feedback; Will Scott for his support
with SP3; and our collaborators from the OTF and OONI
communities for contributing insights and resources that made
this work possible. Also, we thank the anonymous Artifact
Evaluators for their diligent efforts. This research was sup-
ported in part by the Open Technology Fund and NSF grants
CNS-1816802 and CNS-1943240.

REFERENCES

[1] K. Bock, Y. Fax, K. Reese, J. Singh, and D. Levin, “Detecting and
evading censorship-in-depth: A case study of irans protocol whitelister,”
in USENIX Workshop on Free and Open Communications on the Internet
(FOCI), 2020.

[2] K. Bock, G. Hughey, X. Qiang, and D. Levin, “Geneva: Evolving
Censorship Evasion,” in ACM Conference on Computer and Commu-
nications Security (CCS), 2019.

[3] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall, “Analyzing the
Great Firewall of China Over Space and Time,” in Privacy Enhancing
Technologies Symposium (PETS), 2015.

[4] Z. Chai, A. Ghafari, and A. Houmansadr, “On the importance of
encrypted-sni (esni) to censorship circumvention,” in USENIX Workshop
on Free and Open Communications on the Internet (FOCI), 2019.

[5] K. Bock, iyouport, Anonymous, L.-H. Merino, D. Fifield,
A. Houmansadr, and D. Levin, “Exposing and circumventing china’s
censorship of esni,” 2020.

[6] K. Bock, G. Hughey, L.-H. Merino, T. Arya, D. Liscinsky, R. Pogosian,
and D. Levin, “Come as you are: Helping unmodified clients bypass
censorship with server-side evasion,” in ACM SIGCOMM, 2020.

[7] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson,
“Examining How the Great Firewall Discovers Hidden Circumvention
Servers,” in ACM Internet Measurement Conference (IMC), 2015.

[8] Anonymous, “The Collateral Damage of Internet Censorship,” ACM
SIGCOMM Computer Communication Review (CCR), vol. 42, no. 3,
pp. 21–27, 2012.

[9] R. Ensafi, “CensoredPlanet Raw Data,”
https://censoredplanet.org/data/raw.

[10] D. Nobori and Y. Shinjo, “VPN Gate: A Volunteer-Organized Public
VPN Relay System with Blocking Resistance for Bypassing Government
Censorship Firewalls,” in Symposium on Networked Systems Design and
Implementation (NSDI), 2014.

[11] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and D. Levin,
“Co-opting Middleboxes for TCP Reflected Amplification,” in USENIX
Security Symposium, 2021.

[12] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M. Mar-
vel, “Off-Path TCP Exploits: Global Rate Limit Considered Dangerous,”
in USENIX Security Symposium, 2016.

[13] Y. Gilad and A. Herzberg, “Off-Path Attacking the Web,” in USENIX
Workshop on Offensive Technologies (WOOT), 2012.

[14] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a Handshake:
Abusing TCP for Reflective Amplification DDoS Attacks,” in USENIX
Security Symposium, 2014.

[15] F. Adamsky, S. A. Khayam, R. Jäger, and M. Rajarajan, “P2P File-
Sharing in Hell: Exploiting BitTorrent Vulnerabilities to Launch Dis-
tributed Reflective DoS Attacks,” in USENIX Workshop on Offensive
Technologies (WOOT), 2015.

[16] J. Bushart, “Optimizing Recurrent Pulsing Attacks using Application-
Layer Amplification of Open DNS Resolvers,” in USENIX Workshop
on Offensive Technologies (WOOT), 2018.

[17] W. Scott, “A Secure, Practical & Safe Packet Spoofing Service,” in ACM
ASIA Conference on Computer and Communications Security (ASIA
CCS), 2017.

[18] S. Aryan, H. Aryan, and J. A. Halderman, “Internet Censorship in Iran:
A First Look,” in USENIX Workshop on Free and Open Communications
on the Internet (FOCI), 2013.

[19] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy, “Your State
is Not Mine: A Closer Look at Evading Stateful Internet Censorship,”
in ACM Internet Measurement Conference (IMC), 2017.

[20] J. Beznazwy and A. Houmansadr, “How china detects and blocks
shadowsocks,” in ACM Internet Measurement Conference (IMC), 2020.

[21] T. K. Yadav, A. Sinha, D. Gosain, P. K. Sharma, and S. Chakravarty,
“Where The Light Gets In: Analyzing Web Censorship Mechanisms in
India,” in ACM Internet Measurement Conference (IMC), 2018.

[22] R. Ramesh, R. S. Raman, M. Bernhard, V. Ongkowijaya, L. Evdokimov,
A. Edmundson, S. Sprecher, M. Ikram, and R. Ensafi, “Decentralized
control: A case study of russia,” in Network and Distributed System
Security Symposium (NDSS), 2020.

[23] B. VanderSloot, A. McDonald, W. Scott, J. A. Halderman, and R. Ensafi,
“Quack: Scalable Remote Measurement of Application-Layer Censor-
ship,” in USENIX Security Symposium, 2018.

APPENDIX

This appendix contains this work’s submission for artifact
evaluation, which received the Open Research Objects (ORO),
Research Objects Reviewed (ROR), and Results Reproduced
(ROR-R) badges4.

A. Artifact Abstract

Nationwide Internet censorship threatens free and open
access to communication and information for millions of users
living inside of censoring regimes. In this paper, we show
that this poses an even greater threat to the Internet than
previously understood. We demonstrate an attack that exploits
a little-studied but widespread feature of many censoring
infrastructures: what we call residual censorship, in which a
censor continues blocking traffic between two end-hosts for

4Note that the ROR-R badge implies ROR.

some time after a censorship event. Our attack sends spoofed
packets with censored content, keeping two victim end-hosts
separated by a censor from being able to communicate with
one another. Although conceptually simple, this attack has
several challenges, which we address. We demonstrate the
feasibility of the attack through two studies: one to capture
the current state of residual censorship, and another to actually
launch the attack (against machines we control). We show that
the attack can be launched despite stateful TCP tracking used
by many censors, and that it also works against those who
censor by null-routing. Our code is publicly available.

B. Disclaimer

These scripts will intentionally trigger censorship responses
with malformed or non-protocol-compliant packet sequences
that are detectable on the network. These scripts do not provide
any anonymity. Understand the risks of testing them before
doing so.

C. Try it

There are two scripts in this repository: one for triggering
and identifying residual censorship and a second to launch this
attack from a source spoofed attacker.

Note that to prevent abuse, this code is not useful to launch
this attack at scale: these scripts are for testing small-scale
attacks and to reproduce the results in our paper.

D. Set up

Just install the dependencies and you’re good to go.

python3 -m pip install -r requirements.txt

Before using the residual censorship scanner script, ensure
that outbound RST packets are being dropped. You can use
the drop_outbound_rsts.sh script for this.

E. Identifying Abuseable Residual Censorship

The residual censorship scanner.py script is used to iden-
tify abusable four-tuple residual censorship (null-routing). The
script is designed to be run from a client (located either inside
or outside a censored regime) to an echo server located on the
other side of the censor.

The script attempts to trigger censorship statelessly (without
properly completing a 3-way handshake), and then sends
various follow-up test packets and checks if the server gets
them. In total, it performs 6 tests; if all six pass, the censorship
system is likely abusable. If some tests fail, it is possible the
censorship system is not abuseable, or that the script is simply
running in an unexpected environment and needs modification.

The script is designed specifically for an echo server on one
side, and expects a censor that performs four-tuple null-routing
censorship.

Before running, ensure outbound RST packets are being
dropped, as they can interfere with the script. You can use the
provided drop_outbound_rsts.sh script for this.
Example:

$ sudo python3 residual_censorship_scanner.py

<ip address> 7 --host avaaz.org

...

Summary:

- 3-way handshake, tested with a well-formed

innocuous query on PSH+ACK packet, with

a good seqno/ackno: censored.

- 3-way handshake, tested with a malformed

innocuous query on PSH+ACK packet,

with a good seqno/ackno: censored.

- No 3-way handshake, tested with a well-formed

innocuous query on PSH+ACK packet, with

a good seqno/ackno: censored.

- 3-way handshake, tested with a SYN packet,

with a good seqno/ackno: censored.

- No 3-way handshake, tested with a SYN packet

with a good seqno/ackno: censored.

- No 3-way handshake, tested with a SYN packet,

with a different seqno/ackno: censored.

Abusable residual censorship detected.

This script can also be used to determine the duration of time
residual censorship lasts with --determine-duration.

F. Source IP Address Spoofing: Launching the Attack

To test launching the attack against yourself, you can use
sp3_send.py. This relies on a public instance of the amazing
SP3 project (see https://github.com/willscott/sp3).
SP3 is a service that allows a client to consent to receiving
spoofed traffic. If you set up a different SP3 server yourself,
you can override the default and use that; otherwise, you can
use the default public instance of SP3 located in the University
of Washington.

To use this script to test the attack, you must use it from
a machine located inside a censored regime (this is because
this attack relies on the attacker and victim being on the
same side of the censor, and SP3 is located in the United
States). When you run the script, that machine will connect
to SP3 with a websocket connection to consent to receiving
spoofed traffic and then give SP3 packets to send to it. By
controlling the source address of those packets to a machine
you control, you can ethically test if this attack could feasibly
block communication between your two IP addresses.

Note that to prevent abuse, this script will only
trigger censorship for a single given source port. To
test if the resulting four-tuple residual censorship is
affecting you, you can give SP3 a specific source port
and then use curl with --local-port, such as: curl

<ip-address-of-machine-in-censored-regime>:<port>

--local-port 22222.
The script supports four different payloads to send with: a

forbidden HTTP request, HTTPS request (youporn in the SNI
field), an ESNI request, and a series of malformed bytes.

$ python3 sp3_send.py --help

SP3 Spoofing Script

optional arguments:

--public-ip PUBLIC_IP

IP address of this computer

--victim-ip VICTIM_IP

IP address of victim computer

(who traffic should be spoofed as)

--protocol {http,https,malformed,esni}

payload protocol to send with.

--sport SPORT

source port to use

--perform-sp3-traceroute

instead of launching the attack,

perform an sp3 traceroute

--sp3 SP3

The URI IP:port of the sp3 server

	Introduction
	Background & Related Work
	Measurement Methodology
	State of Residual Censorship
	Residual Censorship Attack
	Launching the Attack
	Results

	Attack Impact
	Mitigations
	Censors
	Potential Victims

	Ethical Considerations
	Conclusion
	References
	Appendix
	Artifact Abstract
	Disclaimer
	Try it
	Set up
	Identifying Abuseable Residual Censorship
	Source IP Address Spoofing: Launching the Attack

