
Incompressible Flow & Iterative Solver Software (IFISS)
Installation & Software Guide 1

David J. Silvester2 Howard C. Elman3 Alison Ramage4

Version 3.5 | released 22 September 2016

1This project was supported in part by the U.S. National Science Foundation under grant DMS0208015,
the U.S. Department of Energy under grant DOEG0204ER25619, and the UK Engineering and Physical
Sciences Research Council under grant EP/C000528/1.

2School of Mathematics, University of Manchester, Manchester, UK.
3Department of Computer Science, University of Maryland, College Park, Maryland, USA.
4Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.

Contents

1.1 Background . 1

1.1.1 Installation . 1

1.1.2 Overview . 2

1.1.3 Sample Session . 3

1.1.4 Running jobs in batchmode . 13

2.1 Directory structure . 13

2.1.1 IFISS figures . 15

3.1 Generating new domains or model problems . 15

3.1.1 Introducing a new problem domain . 15

3.1.2 Changing PDE features or boundary conditions 17

0

IFISS 3.5 software guide 1

1.1 Background

This document is an overview of the IFISS software library that has been developed in conjunction
with the monograph [ESW2014]

Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics
Howard Elman, David Silvester and Andy Wathen

Oxford University Press, Second Edition, 2014.

The IFISS software library is “open-source” and is written in MATLAB.1 It can also be installed
and run using the freely available Octave package.2

IFISS can be downloaded from either of the following sites:

http://www.manchester.ac.uk/ifiss

http://www.cs.umd.edu/~elman/ifiss.html.

It can be distributed and/or modified under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the License, or any later version.
For precise details, see the file readme.m. The software is distributed in the hope that it will
be useful, but without any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose. See the GNU Lesser General Public License http://www.gnu.

org/licenses/lgpl.html for a definitive statement. The IFISS library may be freely copied as
long as the file readme.m is included. The current version of the software: IFISS 3.5 has been
tested using Windows, Unix and Mac OS X. Previous releases were developed using MATLAB
Versions 5.3 to 8.5. (If you are not sure which version of MATLAB you have running, just type
version at the system prompt.) The current release was developed and tested using MATLAB 9.1
(R2016b) and is fully compatible with Octave 4.0.3.

1.1.1 Installation

IFISS is downloaded in the form of a gzipped tar file (Linux/MacOS) or a zip file (Windows).
After unpacking the tar or zip file, installation is achieved by manually editing the scriptfile
gohome.m in the top level directory. This scriptfile identifies the “home” directory of the package
via a command of the form

cd(’<local directory>/ifiss3.5’), or cd(’<local directory>\ifiss3.5’),

when installing in a Linux/MacOS or Windows environment, respectively. After this has been
done, IFISS is set to run without additional user intervention.

Once IFISS is installed, for all subsequent uses the MATLAB path must include the IFISS home
directory. This requirement can be enforced each time MATLAB or Octave is initiated either by

1Copyright c© The MathWorks, software is available from http://www.mathworks.com/.
2See http://www.gnu.org/software/octave/.

https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb
http://www.manchester.ac.uk/ifiss
http://www.cs.umd.edu/~elman/ifiss.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.mathworks.com/
http://www.gnu.org/software/octave/

IFISS 3.5 software guide 2

typing setpath in response to the prompt, or by incorporating the functionality of the setpath

command into the user’s MATLAB startup file. Having run setpath at the MATLAB or Octave
prompt, simply type helpme to get started.

1.1.2 Overview

The IFISS package originally focussed on four specific partial differential equations (PDEs) that
arise in modelling steady-state phenomena: these are the Poisson equation, the convection-diffusion
equation, and the Stokes and Navier–Stokes equations. The first two of these equations are ubiq-
uitous in scientific computing, and the latter two constitute the basis for computational modelling
of the flow of an incompressible Newtonian fluid.

The latest release has a total of twenty eight built-in problems. A full description of these problems
can be found in [ESW2014]. Seventeen of these involve the Poisson equation and steady-state ver-
sions of the convection-diffusion equation, the Stokes equations and the Navier–Stokes equations. A
short summary of the associated test problems is given in the first Appendix. The remaining eleven
problems are associated with the heat equation (which models the evolution of the temperature of
a material), and time-dependent versions of the convection-diffusion equation, the Navier–Stokes
equations and their Boussinesq flow combination. A short summary of the unsteady test prob-
lems is given in the second Appendix. Another new feature of IFISS is the inclusion of examples
of optimisation problems subject to a PDE constraint. This topic is discussed in Chapter 5 of
[ESW2014].

The software package has two important components.3 The first component of IFISS concerns
problem specification and finite element discretisation. For each of the equations listed above,
IFISS offers a choice of two-dimensional domains on which the problem can be posed, along with
boundary conditions and other aspects of the problem, and a choice of finite element discretisations
on a quadrilateral element mesh. The package allows the study of accuracy of finite element
solutions, different choices of elements, and a posteriori error analysis. In addition, special features
associated with individual problems can be explored. These include the effects of boundary layers
on solution quality for the convection-diffusion equation, and the effects of discrete inf-sup stability
on accuracy for the Stokes and Navier–Stokes equations.

The second major feature of the package concerns iterative solution of the discrete algebraic systems
that arise: either at every time step when solving an unsteady problem, or in the generation of a
steady-state solution. The focus is on preconditioned Krylov subspace that are chosen to match the
underlying problem. For example, the discrete Poisson equation, which has a symmetric positive
definite coefficient matrix, can be treated by the conjugate gradient method (CG) whereas the
discrete convection-diffusion and Navier–Stokes equations require a method such as the generalized
minimum residual method (GMRES), which is designed for non-symmetric systems. The key for
fast solution lies in the choice of effective preconditioning strategies. The package offers a range
of options, including algebraic methods such as incomplete LU factorisations, as well as more
sophisticated and state-of-the-art multigrid methods designed to take advantage of the structure
of the discrete linearised Navier–Stokes equations.

3See the software review: “IFISS: A computational laboratory for investigating incompressible flow problems”
http://eprints.ma.man.ac.uk/1969/.

https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb
https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb
http://eprints.ma.man.ac.uk/1969/

IFISS 3.5 software guide 3

1.1.3 Sample Session

A sample IFISS session for test problem NS2 (see the Appendix), which models flow over a step is
reproduced below. The driver navier testproblem asks the user to choose the problem, the grid
resolution and the type of finite element discretisation to be used. The resulting nonlinear system
is then solved using a hybrid Picard/Newton solver and an estimate of the error is computed as
described in Chapter 8 of [ESW2014].

>> setpath

>> ifiss

This is IFISS version 3.5: released 20 September 2016

For help, type "helpme".

>> navier_testproblem

specification of reference Navier-Stokes problem.

choose specific example (default is cavity)

1 Channel domain

2 Flow over a backward facing step

3 Lid driven cavity

4 Flow over a plate

5 Flow around a square obstruction

6 Flow in a symmetric step channel

: 2

horizontal dimensions [-1,L]: L? (default L=5) : 5

Grid generation for backward-facing step domain.

grid parameter: 3 for underlying 8x24 grid (default is 4) : 5

grid stretch factor (default is 1) : 1.2

Grid generation for x-channel ...done.

outlet subdivision parameter set to 5

... associated uniform grid value is 8

Grid generation for x-channel ...done.

Merger of two x-channel grids

zip distance is 0.0000e+00 ... it should be close to zero!

All done.

Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) : 4

setting up Q2-P1 matrices... done

system matrices saved in step_stokes_nobc.mat ...

Incompressible flow problem on step domain ...

viscosity parameter (default 1/210) : 1/50

Picard/Newton/hybrid linearization 1/2/3 (default hybrid) :

number of Picard iterations (default 3) : 2

number of Newton iterations (default 5) : 5

nonlinear tolerance (default 1.1*eps) :

stokes system ...

https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb

IFISS 3.5 software guide 4

setting up Q2 convection matrix... done.

uniform/nonuniform streamlines 1/2 (default uniform) :

number of contour lines (default 50) : 75

initial nonlinear residual is 3.781416e+00

Stokes solution residual is 8.524251e-01

Picard iteration number 1

setting up Q2 convection matrix... done.

nonlinear residual is 9.933692e-03

velocity change is 3.986598e+00

Picard iteration number 2

setting up Q2 convection matrix... done.

nonlinear residual is 3.894324e-03

velocity change is 1.938277e+00

Newton iteration number 1

setting up Q2 Newton Jacobian matrices... done.

setting up Q2 convection matrix... done.

nonlinear residual is 5.551608e-04

velocity change is 1.453605e+00

Newton iteration number 2

setting up Q2 Newton Jacobian matrices... done.

setting up Q2 convection matrix... done.

nonlinear residual is 1.284289e-06

velocity change is 7.097577e-02

Newton iteration number 3

setting up Q2 Newton Jacobian matrices... done.

setting up Q2 convection matrix... done.

nonlinear residual is 3.441705e-11

velocity change is 3.025599e-04

Newton iteration number 4

setting up Q2 Newton Jacobian matrices... done.

setting up Q2 convection matrix... done.

nonlinear residual is 4.530095e-16

velocity change is 4.859822e-09

finished, nonlinear convergence test satisfied

Natural outflow on right hand vertical boundary ..

FAST Q2-P1 NS a posteriori error estimation

checking edge numbering and computing edge lengths ... done

IFISS 3.5 software guide 5

Q2-P1 local N-S error estimator ...

interior residual RHS assembly took 1.1257e-01 seconds

flux jump RHS assembly took 1.4966e-02 seconds

LDLT factorization took 4.4378e-03 seconds

triangular solves took 3.9028e-03 seconds

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 1.052721e-03

estimated energy error is 8.0507e-02

plotting element data... done

0.5
0

Pressure field

-0.5

-0.1

0

0 1 2 3

0.1

4

Streamlines: uniform

(a) Solution to problem NS2 with stabilised Q2–P1 approximation.

Estimated energy error

0 1 2 3 4

-0.5

0

0.5

0

1

0.02

0

0.04

4
2

0-1

(b) Estimated error in the computed solution.

Figure 1.1: Sample output from navier testproblem.

The computed solution and the estimated error are shown in Figure 1.1 (a) and (b).

IFISS 3.5 software guide 6

Once a problem has been set up in this way, the performance of iterative solution methods and
preconditioners can be explored using the driver it solve. Here, the chosen iterative method
is gmres with ideal pressure convection-diffusion preconditioning. As shown below the method
converges in 74 iterations, and the convergence curve is the blue line shown in Figure 1.2.

>> it_solve

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q2 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) :

stopping tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator (LSC)

4 modified pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is modified pressure convection-diffusion : 2

ideal / AMG iterated preconditioning? 1/2 (default ideal) :

setting up Q2-P1 pressure preconditioning matrices...

NonUniform grids are fine.

fixed pressure on inflow boundary

ideal pressure convection-diffusion preconditioning ...

GMRES iteration ...

convergence in 74 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.0244

2 -0.0255

3 -0.0578

4 -0.0878

.

.

.

73 -5.8587

74 -6.0021

Bingo!

2.5431e+00 seconds

use new (enter figno) or existing (0) figure, default is 0 : 1

colour (b,g,r,c,m,y,k): enter 1--7 (default 1) : 1

IFISS 3.5 software guide 7

0 20 40 60 80

iterations

10
-22

10
-21

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

 l
o

g
1

0
(r

e
s
id

u
a

l)

residual reduction

Figure 1.2: Sample output from it solve.

To produce the second (black) curve in Figure 1.2, it solve must be rerun using modified pressure
convection-diffusion preconditioning. This converges in fewer iterations, reducing the CPU time.

>> it_solve

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q2 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) :

stopping tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator (LSC)

4 modified pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is modified pressure convection-diffusion : 4

ideal / AMG iterated preconditioning? 1/2 (default ideal) :

setting up modified Q2-P1 pressure preconditioning matrices...

NonUniform grids are fine.

Robin pressure on inflow boundary

modified pressure convection-diffusion preconditioning ...

GMRES iteration ...

convergence in 54 iterations

IFISS 3.5 software guide 8

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.1350

2 -0.1771

3 -0.3148

4 -0.4667

.

.

.

53 -5.9844

54 -6.1137

Bingo!

1.8230e+00 seconds

use new (enter figno) or existing (0) figure, default is 0 :

figure number (default is current active figure) :

colour (b,g,r,c,m,y,k): enter 1--7 (default 1) : 7

To produce the third (red) curve in Figure 1.2, it solve must be run using modified pressure
convection-diffusion preconditioning, this time replacing the sparse direct solves in the precondi-
tioning step with an AMG V-cycle.4

>> it_solve

inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step

setting up Q2 Newton Jacobian matrices... done.

GMRES/Bicgstab(l)/IDR(s) 1/2/3 (default GMRES) :

stopping tolerance? (default 1e-6) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

1 unscaled least-squares commutator (BFBt)

2 pressure convection-diffusion (Fp)

3 least-squares commutator (LSC)

4 modified pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is modified pressure convection-diffusion : 4

ideal / AMG iterated preconditioning? 1/2 (default ideal) : 2

setting up modified Q2-P1 pressure preconditioning matrices...

NonUniform grids are fine.

Robin pressure on inflow boundary

4The number of iterations may not be the same in Octave however ...

IFISS 3.5 software guide 9

compute / load convection-diffusion AMG data? 1/2 (default 1) :

AMG grid coarsening ... 13 grid levels constructed.

AMG fine level smoothing strategy? PDJ/ILU 1/2 (default ILU) :

ILU smoothing on finest level..

AMG iterated PCD* preconditioning ...

AMG grid coarsening ... 8 grid levels constructed.

AMG setup of Ap done.

ILU smoothing on finest level..

GMRES iteration ...

convergence in 58 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.1359

2 -0.2053

3 -0.3203

4 -0.4195

.

.

.

57 -5.9924

58 -6.1471

Bingo!

3.6941e-01 seconds

use new (enter figno) or existing (0) figure, default is 0 :

figure number (default is current active figure) :

colour (b,g,r,c,m,y,k): enter 1--7 (default 1) : 3

Replacing the sparse solves by AMG we see that gmres converges in 58 rather than 54 iterations.
The CPU time is reduced by an additional factor of five however!

The same flow problem could also be solved by time stepping from a quiescent state to the final
steady state (problem T–NS2 in the Appendix). This is the approach in the session that is
reproduced below. The driver unsteady navier testproblem asks the user to choose the problem,
the spatial discretisation, the time of integration and an estimate of the required temporal accuracy.
The resulting system of differential algebraic equations is solved using the implicit AB2–TR time-
stepping algorithm that is described in Chapter 10 of [ESW2014].

>> save steadysol xns nnv % save the converged steady solution

>> unsteady_step_navier

Unsteady flow in a step domain ...

viscosity parameter (default 1/220) : 1/50

Discrete Saddle-Point DAE system ...

https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb

IFISS 3.5 software guide 10

target time? (default 1e8) : 1e14

accuracy tolerance? (default 3e-5) : 1e-4

number of Picard steps? (default 2) : 0

averaging frequency? (default 10) :

plot solution evolution? 1/0 : 0

Solving DAE system using stabilized TR ...

AxBhandle =@defaultAxB

initial nonlinear residual is 3.360822e-02

boundary change is 2.783973e-08

setting up Q2 convection matrix... done.

StabTR with no nonlinear corrections

step timestep time divresidual acceleration

1 1.000e-09 2.000e-09 0.000e+00 1.314e+01

2 1.000e-09 2.000e-09 2.533e-24 1.314e+01

3 1.602e-05 1.602e-05 4.607e-24 1.314e+01

4 3.914e-04 4.074e-04 4.334e-20 1.314e+01

5 4.036e-03 4.443e-03 1.092e-18 1.308e+01

6 4.593e-03 9.036e-03 1.122e-17 1.257e+01

7 5.281e-03 1.432e-02 1.891e-17 1.201e+01

8 6.888e-03 2.120e-02 2.887e-17 1.140e+01

9 8.243e-03 2.945e-02 4.709e-17 1.065e+01

10 9.533e-03 3.898e-02 5.735e-17 9.814e+00

10 4.767e-03 3.421e-02 --- Averaging step

11 1.004e-02 4.426e-02 2.685e-04 9.374e+00

12 7.428e-03 5.169e-02 8.813e-17 8.679e+00

.

.

180 1.290e+13 5.074e+13 2.982e-16 1.411e-17

180 6.452e+12 4.429e+13 --- Averaging step

181 1.453e+13 5.881e+13 2.588e-16 2.454e-19

182 4.119e+13 1.000e+14 3.154e-16 1.717e-19

finished in 182 steps!

Integration took 1.711e+01 seconds

use new (enter figno) or existing (0) figure, default is 0 : 17

183 timesteps

step 183 : final time is 1.000e+14

minimum energy is 1.31376e-08 and maximum is 1.50735

Sanity check: is the step symmmetric? enter 0/1 (yes) : 0

computing divergence of discrete velocity solution ... done

estimated velocity divergence error: 1.052722e-03

IFISS 3.5 software guide 11

>> snaptime=[50,70,130];

>> step_unsteadyflowref(qmethod,mv,U,time,A,By,Bx,G,xy,xyp,x,y,bound,snaptime,symm);

Plotting flow field snapshots ...

step time mean_vorticity min_phi max_phi

50 0.322 4.401e-05 0.00000 6.401e-01

70 1.080 7.798e-05 -0.00395 6.667e-01

130 196.045 -7.481e-04 -0.02829 6.667e-01

All done

>> ufinal=U(:,end); load steadysol % compare velocity solutions

>> fprintf(’difference in steady solutions is %6.2e\n’,norm(ufinal-xns(1:nnv),inf))

difference in steady solutions is 2.30e-06

If the display solution switch is enabled then a dynamic flow animation will be generated that
shows the computed vorticity and the magnitude of the velocity at each time step. As anticipated,
the unsteady solution goes to a steady state. Three snapshots of the stationary streamlines are
illustrated in Figure 1.3.

Stationary streamlines: time = 0.32

Stationary streamlines: time = 1.08

Stationary streamlines: time = 196.04

Figure 1.3: Sample output from step unsteadyflowref.

IFISS 3.5 software guide 12

Once a problem has been set up in this way, the performance of iterative solution methods and
preconditioners can be explored using the driver snapshot solveflow. Here, the chosen itera-
tive method is gmres with AMG modified PCD preconditioning. At the selected time step the
preconditioned iteration converges in 18 iterations.

>> snapshot_solveflow

Iterative solution of a SNAPSHOT linear system

Solution data available for 1e+14 seconds

Approximate time for the SNAPSHOT? (default is the end) : 10

Time step number 105

Constructing system at time 9.64368 seconds

current timestep is 0.485082 seconds

inflow/outflow (step) problem ...

stopping tolerance? (default 1e-8) :

maximum number of iterations? (default 100) :

preconditioner:

0 none

2 modified pressure convection-diffusion (Fp)

3 least-squares commutator

4 corrected pressure convection-diffusion (Fp*)

5 boundary-adjusted least-squares commutator (LSC*)

default is Fp* : 3

ideal / AMG iterated preconditioning? 1/2 (default ideal) :

ideal least-squares commutator preconditioning ...

GMRES iteration ...

convergence in 18 iterations

k log10(||r_k||/||r_0||)

0 0.0000

1 -0.0601

2 -0.4017

3 -1.0920

.

.

.

17 -7.6155

18 -8.0593

Bingo!

8.0041e-01 seconds

A good way to explore the capabilities of IFISS is to run the software demos in the /ifissdemos/

directory: type help ifissdemos for a list. The demos are generated by running IFISS in batch
mode. Details are given in the next section.

IFISS 3.5 software guide 13

1.1.4 Running jobs in batchmode

IFISS contains a batchmode facility enabling data to be input from a pre-prepared file rather than
directly from the terminal. The specific parameters that need to be input will of course vary
from problem to problem, and the input file must be prepared accordingly. Sample input files for
each of the model problems are provided (located in the appropriate test problems subdirectory,
see later) and can be easily modified by the user for a particular run. The names of these input
files must have the form “* batch.m” where “*” begins with one of “P”, “CD”, “S” or “NS” for
the Poisson, convection-diffusion, Stokes or Navier–Stokes equations, respectively. For example,
typing the command

batchmode(’P2’)

uses the file P2 batch.m to generate and solve the discrete Poisson equation on an L-shaped domain
without interactive input. The results of the run are stored in the file batchrun in the datafiles

subdirectory.

A similar batchmode facility is available for running the driver it solve without interactive in-
put after a discrete system has been generated in batchmode. Input files must have the names
itsolve* batch.m. A template, itsolve batch.m, which applies multigrid preconditioned CG to
the discrete Poisson equation, is available in the solvers subdirectory:

batchmode(’itsolve’)

This file would have to be modified by the user to contain the appropriate parameter values for
other problems. The list of parameters required in each case can be generated by carrying out an
initial run in interactive mode. For further details, type help batchmode.

2.1 Directory structure

As already noted, IFISS comprises functions which generate finite element approximations of the
following PDE problems that arise in incompressible flow modelling:

• the Poisson equation: directory /ifiss/diffusion/

• the convection-diffusion equation: directory /ifiss/convection/

• the Stokes equations: directory /ifiss/stokes flow/

• the Navier-Stokes equations: directory /ifiss/navier flow/

The temporal discretization functions associated with unsteady versions of the above PDEs can
be found in a separate directory:

• /ifiss/timestepping/

IFISS 3.5 software guide 14

The Boussinesq flow functions are in the following directory:

• /ifiss/boussinesq flow/

Each of these directories has a subdirectory /test problems/. These contain the boundary and
coefficient function files associated with the PDE reference problems described in [ESW2014]. The
functions associated with the domain geometry and grid generation are independent of the PDE
being solved. These functions are located in a separate directory:

• /ifiss/grids/

The computed solutions are visualized using the three-dimensional plotting functions that are
built into MATLAB. The functions that generate this visual output are also located in a separate
directory:

• /ifiss/graphs/

For each class of discrete problem we provide specialized fast iterative solvers. The associated
functions are contained in two directories:

• /ifiss/solvers/ ; /ifiss/stokes minres/

The PDE optimization functionality is also contained in the separate directory:

• /ifiss/pde control/

Type helpme poissoncontrol to get further information. Finally, there are two directories that
are used for storing intermediate data (for example, finite element matrices and multigrid data)
and plot files:

• data (.mat) files : directory /ifiss/datafiles/

• plot (.pdf) files : directory /ifiss/plotfiles/

Help for the package is integrated into the MATLAB help facility. The command help ifiss

gives a pointer to the IFISS general help command helpme. Typing help 〈directory name〉 lists
the files in that directory that users may want to look at more closely. Using MATLAB version 7,
the function names are “clickable” to give additional information.

The IFISS package consists of over 400 MATLAB functions and script files. Simply type help

<file-name> for further information on any of these. For a complete list of functions and scripts
in a specific directory type help <directory-name>.

https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb

IFISS 3.5 software guide 15

2.1.1 IFISS figures

As is evident from the sample runs described above, several figures are “preallocated” within IFISS.
That is, particular figures are always used for generating specific graphical output. A list of these
figures is given below.

Figure Description
10 grid plot (diffusion or convection-diffusion)
11 diffusion problem solution & error plot (Q1)
12 diffusion problem solution & error plot (Q2)
19 heat equation temperature evolution
20 convective wind
22 convection-diffusion solution & error plot (Q1)
29 unsteady convection-diffusion problem temperature evolution
30 grid plot (Stokes or Navier-Stokes flow problem)
33 Stokes flow solution plot
34 Stokes flow solution error plot (Q1–P0, Q1–Q1, Q2–Q1, Q2–P−1)
66 Navier-Stokes flow solution plot
67 Navier-Stokes flow solution error plot (Q1–P0, Q2–Q1, Q2–P−1)
167 unsteady Navier-Stokes flow solution evolution

3.1 Generating new domains or model problems

For each PDE problem that is treated, IFISS contains a number of built-in model problems. It
is also straightforward to adapt the code to include different domains, PDE features or boundary
conditions. The way to achieve this is outlined below.

3.1.1 Introducing a new problem domain

The first task in setting up a different PDE domain is the grid generation, which should be done by
a function <newproblem> domain.m analogous to those in the /grids/ directory (see Section 2.1
for details of the directory structure). This function should generate grid information (specifically,
node point coordinates and element connectivity information), which will also serve to define the
domain. The results should be saved in a data file called /datafiles/<newproblem> grid.mat.

The grid information should be organized into a collection of MATLAB arrays specified as follows.

• A nodal coordinate matrix (xy) of size (# of nodes)×2, in which the first column contains
the x-coordinates of the nodes and the second column contains the y-coordinates.

• A matrix (mv) of size (# of macroelements)×9 containing the so-called “macroelement map-
ping”. For biquadratic Q2 approximation this is simply the connectivity array of the grid,
i.e. entry mv(nel,nv) contains the global node number of node nv on element nel. The PDE
problem drivers in IFISS tacitly assume that the same nine-node data structure is used in

IFISS 3.5 software guide 16

the case of bilinear Q1 approximation. This means that the associated subdivision is formed
from macroelements each consisting of four elements. This concept is explained in more
detail below.

• A boundary vertex vector (bound) containing a list of nodes on the Dirichlet part of the
boundary.

• A macroelement boundary edge matrix (mbound) of size (# of macroedges)×4. For each
macroelement having an edge on the Dirichlet part of the boundary, the first column is a
pointer to the macroelement number and the second is an integer 1, 2, 3 or 4, which uniquely
defines the orientation of the edge (bottom, right, top or left).

• Two vectors x and y. These are used solely for plotting purposes (MATLAB assumes a
rectangular matrix of values when calling mesh and contour plotting functions). The default
choice is to match the data in x and y to the nodal coordinate data in xy. For a cartesian
product grid this enables generation of mesh plots showing the underlying element structure.
For general quadrilateral grids the data in x and y determine the interpolation points used
in generating the solution plots.

After a grid is created by the grid generator, the data can be visually checked using the function
macrogridplot. This facility is illustrated in the sample IFISS session below, which produces a
nonrectangular domain and a nonrectangular grid.

>> quad_domain % generates the datafile quad_grid.mat

Grid generation for quadrilateral domain.

grid parameter: 3 for underlying 8x8 grid (default is 16x16) : 3

aspect ratio (x:1) (default is 4:1) : 1

height contraction ratio (default is 4) : 2

outflow boundary: natural/prescribed 1/2 (default is natural) :

plotting grid points ...

>> load quad_grid

>> macrogridplot(xy,mv,bound,mbound);

Subdivision logistics ..

81 nodes

16 (2x2 macro)elements

25 nodes on Dirichlet boundary

12 macroelement edges on Dirichlet boundary

>> disp(mv)

1 19 21 3 10 20 12 2 11

3 21 23 5 12 22 14 4 13

5 23 25 7 14 24 16 6 15

...

59 77 79 61 68 78 70 60 69

61 79 81 63 70 80 72 62 71

IFISS 3.5 software guide 17

>> [ev,ebound]=q1grid(xy,mv,bound,mbound);

>> gridplot(xy,ev,bound,ebound);

Grid logistics ..

81 nodes

64 elements

25 nodes on Dirichlet boundary

24 element edges on Dirichlet boundary

The graphical output from macrogridplot is shown in Figure 3.4. The macroelement connectivity
matrix mv can be correlated with the numbered nodes in the figure. The macroelement boundaries
are distinguished from the internal element boundaries by their darker colour and represent the
actual grid lines if biquadratic approximation is employed. In the example above, the call to q1grid

is used to generate a bilinear approximation, for which the underlying grid is that represented by
the union of the light and dark blue boundaries. This function generates the element connectivity
matrix ev and the element boundary edge matrix ebound. This information can also be visualized
by calling the function gridplot (graphical output not shown).

In addition to the grid generator, the other requirement is to write the PDE driver. Templates for
this are the function quad diff (solving Poisson’s equation) and the function quad stokes (which
sets up matrices for subsequent solution using solve stokes or solve navier).

3.1.2 Changing PDE features or boundary conditions

Information on PDE attributes and boundary conditions are held in specific m-files in the di-
rectory associated with each PDE. For example, for Navier-Stokes flow problems these are the
two files /stokes flow/specific flow.m and /stokes flow/stream bc.m. These specify the
velocity boundary conditions and stream-function boundary conditions, respectively. To define
a different Navier-Stokes flow problem on the same domain one simply needs to edit these two
m-files. Further information can be obtained by using helpme.

IFISS 3.5 software guide 18

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

(a) Indices of nodes of the macroelement grid.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(b) Indices of nodes on the Dirichlet boundary.

Figure 3.4: Sample output from macrogridplot.

Appendix A

Steady-state problems

In this appendix we give a brief description of the seventeen test problems currently implemented
in IFISS. A fuller description can be found in [ESW2014]. Each problem can be generated by
running the appropriate driver routine (as identified below) and is based on one of the following
physical domains:

Ω : the square (−1, 1)× (−1, 1);

Ω : the L-shaped region generated by taking the complement in (−1, L)×(−1, 1) of the quadrant
(−1, 0]× (−1, 0];

Ω : the rectangular region (−1, 5)× (−1, 1), with a slit along the line where 0 ≤ x ≤ 5 and y = 0.

Ω : a disconnected rectangular region (0, 8)×(−1, 1) generated by deleting the square (7/4, 9/4)×
(−1/4, 1/4).

The Poisson equation: diff testproblem

P1 The domain is Ω , the source is the constant function f(x, y) = 1, and zero Dirichlet conditions
are applied on all boundaries. This represents a simple diffusion model for the temperature
distribution u(x, y) in a square plate, with uniform heating of the plate whose edges are kept
at an ice-cold temperature.

P2 The source function and boundary conditions are the same as above but here the domain is
Ω . As a result, the underlying solution to the Poisson problem has a singularity at the origin.

P3 The domain is Ω and the source function f is identically zero. The boundary conditions are
chosen so that the problem has the exact analytic solution

u(x, y) =
2(1 + y)

(3 + x)2 + (1 + y)2
.

19

https://global.oup.com/academic/product/finite-elements-and-fast-iterative-solvers-9780199678808?lang=en&cc=gb

IFISS 3.5 software guide 20

P4 This is a second analytic test problem, which is associated with the singular solution of problem
P2 given by

u(r, θ) = r2/3 sin

(
2θ + π

3

)
,

where r represents the radial distance from the origin, and θ is the angle with the vertical
axis.

The convection-diffusion equation: cd testproblem

All of these reference problems are posed on the square domain Ω with convective velocity of
order unity, that is, ‖~w‖∞ = O(1).

CD1 For constant convective velocity vector ~w = (0, 1), the function

u(x, y) = x

(
1− e

y−1
ε

1− e− 2
ε

)

satisfies the convection-diffusion equation exactly. For this problem, Dirichlet conditions on
the boundary are determined by this solution, and satisfy

u(x,−1) = x, u(x, 1) = 0, u(−1, y) ≈ −1, u(1, y) ≈ 1,

where the latter two approximations hold except near y = 1. The dramatic change in the
value of u near y = 1 constitutes an exponential boundary layer. This problem also has an
option for applying a natural (Neumann) boundary condition on the outflow (top) boundary.

CD2 Here ~w = (0, 1 + (x + 1)2/4), so the wind is again vertical but increases in strength from
left to right across the domain. The function u is set to unity on the inflow boundary and
decreases to zero quadratically on the right wall and cubically on the left wall. On the outflow
(top) boundary, either a Dirichlet or Neumann condition can be applied (both homogeneous).
The fixed values on the side boundaries generate characteristic boundary layers.

CD3 For this problem, ~w =
(
− sin π

6 , cos π6
)
, that is, the wind is still constant but is now at

an angle of 30◦ to the left of vertical. The Dirichlet boundary conditions are zero on the
left and top boundaries and unity on the right boundary, with a jump discontinuity (from
0 to 1) on the bottom boundary at the point (0,−1). The resulting discontinuity in the
solution is smeared by the presence of diffusion, producing an internal layer. There is also
an exponential boundary layer near the top boundary y = 1.

CD4 This is a simple model for the temperature distribution in a cavity with a ‘hot’ external
wall. The wind ~w = (2y(1−x2), −2x(1−y2)) determines a recirculating flow. The Dirichlet
boundary conditions imposed have value one on the right-hand (hot) wall and zero every-
where else. There are therefore discontinuities at the two corners of the hot wall, x = 1,
y = ±1, which lead to boundary layers near these corners.

IFISS 3.5 software guide 21

The Stokes equations: stokes testproblem

S1 This problem represents steady horizontal flow in a channel driven by a pressure difference
between the two ends, or Poiseuille flow. Here a solution is computed numerically on Ω
using the velocity ~u = (1 − y2, 0) to define a Dirichlet condition on the inflow boundary
x = −1. The no-flow Dirichlet condition ~u = ~0 is applied on the characteristic boundaries
y = −1 and y = 1. At the outflow boundary (x = 1,−1 < y < 1), there is a choice of
applying a Neumann or a Dirichlet condition.

S2 This example represents slow flow in a rectangular duct with a sudden expansion, or flow over
a step. The domain is Ω with L = 5. A Poiseuille flow profile is imposed on the inflow
boundary (x = −1; 0 ≤ y ≤ 1), and a no-flow (zero velocity) condition is imposed on the top
and bottom walls. A Neumann condition is applied at the outflow boundary which automat-
ically sets the mean outflow pressure to zero.

S3 This is a classical test problem used in fluid dynamics, known as driven-cavity flow. It is a
model of the flow in a square cavity (the domain is Ω) with the lid moving from left to right.
A Dirichlet no-flow condition is applied on the side and bottom boundaries. Different choices
of the nonzero horizontal velocity on the lid give rise to different computational models:

{y = 1;−1 ≤ x ≤ 1|ux = 1}, a leaky cavity;
{y = 1;−1 < x < 1|ux = 1}, a watertight cavity;
{y = 1;−1 ≤ x ≤ 1|ux = 1− x4}, a regularised cavity.

S4 This is a simple model of colliding flow. It is an analytic test problem on Ω associated with
the solution of the Stokes equations given by

~u = (20xy3, 5x4 − 5y4), p = 60x2y − 20y3 + constant.

The interpolant of ~u is used to specify Dirichlet conditions everywhere on the boundary.

Navier-Stokes equations: navier testproblem

The first three of these test problems are fast-flowing analogues of the first three Stokes flow prob-
lems.

NS1 The Poiseuille channel flow solution ~u = (1−y2, 0), p = −2νx is also an analytic solution of
the Navier-Stokes equations, since the convection term ~u · ∇~u is identically zero. The only
difference is that here the pressure gradient is proportional to the viscosity parameter. As
for the analogous Stokes problem S1, at the outflow boundary (x = 1,−1 < y < 1) there is
a choice of Neumann or Dirichlet boundary conditions.

NS2 This example represents flow over a step of length L (the domain is Ω with L chosen by the
user). For high Reynolds number flow, longer steps are required in order to allow the flow
to fully develop (unlike in problem S2, where L = 5 is sufficient). The boundary conditions
are identical to those in problem S2.

IFISS 3.5 software guide 22

NS3 This problem again models flow in a cavity Ω . The boundary conditions are the same as
in problem S3, with the choice of a leaky, watertight or regularised lid boundary condition.

NS4 This is a classical problem in fluid dynamics which is referred to as Blasius flow: the objective
is to compute the steady flow over a flat plate moving at a constant speed through a fluid
that is at rest. The flow domain is Ω . The ‘parallel flow’ Dirichlet condition ~u = (1, 0) is
imposed at the inflow boundary (x = −1;−1 ≤ y ≤ 1) and also on the top and bottom of
the channel (−1 ≤ x ≤ 5; y = ±1), representing walls moving from left to right with speed
unity. A no-flow condition is imposed on the internal boundary (0 ≤ x ≤ 5; y = 0), and a
Neumann condition is applied at the outflow boundary (x = 5;−1 < y < 1).

NS5 This is another classical problem. The domain is Ω and is associated with modelling flow in
a rectangular channel with a square cylindrical obstruction. A Poiseuille profile is imposed on
the inflow boundary (x = 0;−1 ≤ y ≤ 1), and a no-flow (zero velocity) condition is imposed
on the obstruction and on the top and bottom walls. A Neumann condition is applied at the
outflow boundary which automatically sets the mean outflow pressure to zero.

Appendix B

Time-dependent problems

In this appendix we describe the eleven unsteady test problems that are currently implemented
in IFISS. Each problem can be generated by running the appropriate driver routine (as identified
below) and is based on one of the following four physical domains:

Ω : the square (−1, 1)× (−1, 1);

Ω� : the rectangle (0, L)× (0, H);

Ω : the L-shaped region generated by taking the complement in (−1, L)×(−1, 1) of the quadrant
(−1, 0]× (−1, 0];

Ω : a disconnected rectangular region (0, 8)×(−1, 1) generated by deleting the square (7/4, 9/4)×
(−1/4, 1/4).

In all cases a slow “start-up” from zero to a steady-state Dirichlet temperature/horizontal velocity
u∞ is achieved via the time-dependent boundary condition

u∗(t) = u∞(1− e−10t).

The heat equation: heat testproblem

H1 The heat equation is solved on the rectangular domain Ω� with L = 1 and with the vertical
edges heated/cooled to values of ±1/2. Either a zero Dirichlet or a zero Neumann condition
can be specified on the horizontal edges. In the latter case the solution tends to a steady
state with a linear temperature variation in the x-direction.

H2 The heat equation is solved on the L-shaped domain Ω with L = 1. A zero Dirichlet condition
is imposed at all points on the boundary except for the vertical edge x = −1 and the point
value (1, 0) which are forced to a constant temperature of unity.

H3 The heat equation is solved on the backward-facing step domain Ω . A Dirichlet condition is
imposed on the top and bottom walls to give a vertical temperature differential (the bottom
edge is hot and the top is cold). A zero Neumann condition is applied on the left and right
vertical boundaries.

23

IFISS 3.5 software guide 24

The convection-diffusion equation: unsteady cd testproblem

These reference problems are posed on the square domain Ω and the convective wind is indepen-
dent of time.

T–CD2 This is the unsteady analogue of CD2. The convective field ~w = (0, 1 + (x + 1)2/4),
so the wind is vertical but increases in strength from left to right across the domain. The
temperature u is forced to unity on the inflow boundary but decreases to zero quadratically
on the right wall and cubically on the left wall. On the outflow (top) boundary, either a
Dirichlet or Neumann condition can be applied (both homogeneous). The wind pushes a hot
‘wave’ through the domain which exits in 2–3 time units. The steady-state solution can be
compared with that given by solving CD2.

T–CD4 This is the unsteady analogue of CD4. This is a model for the development of the temper-
ature distribution in a cavity with a ‘hot’ external wall. The wind ~w = (2y(1−x2), −2x(1−
y2)) determines a recirculating flow. The Dirichlet boundary conditions imposed have value
one on the right-hand (hot) wall and zero everywhere else. There are therefore discontinuities
at the two corners of the hot wall, x = 1, y = ±1, which lead to boundary layers near these
corners. The steady-state solution can be compared with that given by solving CD4.

Navier-Stokes equations: unsteady navier testproblem

T–NS2 This is the unsteady analogue of NS2. This example models the development of flow over
a step of length L (the domain is Ω with L chosen by the user). The boundary conditions
ultimately tend to those in NS2. If the viscosity parameter is sufficiently large (ν ≥ 1/600)
and L is sufficiently long L ∼ 40 the flow solution tends to a steady state. In this case the
steady-state solution can be compared with that given by solving NS2.
For high Reynolds number flow, the steady state is not stable and the flow is forever unsteady.

T–NS3 This is the unsteady analogue of NS3. This problem models “spin-up” flow in a cavity
Ω . The boundary conditions are the same as in S3, with the choice of a leaky, watertight
or regularised lid boundary condition. If the viscosity parameter is sufficiently large (ν ≥
1/1500) the flow solution ultimately tends to a steady state.

T–NS5 This is the unsteady analogue of NS5. The critical value of the viscosity parameter
(associated a bifurcation from a symmetric steady flow to unsymmetric vortex shedding) is
relatively large in this case. For example, a periodic shedding solution can be computed for
ν = 1/400 using Q2–P−1 approximation.

Boussinesq flow equations: unsteady bouss testproblem

B–NS0 This problem models buoyancy driven flow in a rectangular cavity with a vertical tem-
perature profile. Steady Rayleigh–Bénard convection rolls can be computed if the cavity
is long and thin (e.g., has aspect ratio 8:1) and the Rayleigh and Prandtl numbers are set
appropriately. An specific example is given in the batchfile B-NS42 batch.m.

IFISS 3.5 software guide 25

B–NS1 This problem models buoyancy driven flow in a rectangular cavity with a horizontal tem-
perature profile (the temperature boundary conditions problem are as in H1). Time periodic
solutions can be computed both for a horizontal orientation (aspect ratio 4:1) and for a verti-
cal orientation (aspect ratio 1:8) if the Rayleigh and Prandtl numbers are set appropriately.
Examples are given in the batchfiles B-NS41 batch.m and B-NS43 batch.m respectively.

B–NS2 This is the thermally driven analogue of T-NS2. This example models the development
of flow over a step of length L (the domain is Ω with L chosen by the user). The temperature
boundary conditions are as in H3. An example which gives slow evolution to a steady state
is provided in the batchfile B-NS2 batch.m.

	Background
	Installation
	Overview
	Sample Session
	Running jobs in batchmode

	Directory structure
	IFISS figures

	Generating new domains or model problems
	Introducing a new problem domain
	Changing PDE features or boundary conditions

