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Abstract

Let {p1, . . . , pn} ⊆ Rd. We think of d ≤ n. How big is the largest subset X of points
such that all of the distances determined by elements of

(
X
2

)
are different? We show

that X is at least Ω((n1/(6d)(log n)1/3)/d1/3). Assume that no three of the original
points are collinear. How big is the largest subset X of points such that all of the
areas determined by elements of

(
X
3

)
are different? We show that, if d = 2 then X is

at least Ω((log log n)1/2901), and if d = 3 then X is at least Ω((log log n)1/27804). All of
our results use variants of the canonical Ramsey theorem and some geometric lemmas.

1 Introduction

Let {p1, . . . , pn} ⊆ Rd. We think of d ≤ n. How big is the largest subset X of points such
that all of the distances determined by elements of

(
X
2

)
are different? Assume that no three

of the original points are collinear. How big is the largest subset X of points such that all
of the areas determined by elements of

(
X
3

)
are different?

Def 1.1 Let a ≥ 1. Let ha,d(n) be the largest integer so that if p1, . . . , pn are any set of n
distinct points in Rd, no a in the same (a− 2)-dimensional space, then there exists a subset
X of ha,d(n) points for which all of the volumes determined by elements of

(
X
a

)
are different.

The ha,d(n) problem is the problem of establishing upper and lower bounds on ha,d(n).

There does not seem to be much known about ha,d(n). Below we summarize all of the
references we found.
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1. Erdős considered the ha,d(n) problem 1957 [6] and 1970 [7]. The former paper is
in Hungarian and not available online so we do not know what is in it. In the latter
paper he notes that h2,2(7) = 3 [9] and h2,3(9) = 3 [3]. Erdős conjectured that h2,1(n) =
(1 + o(n))n1/2 and notes that h2,1(n) ≤ (1 + o(n))n1/2 [13].

2. Erdős considered the ha,d(n) problem in 1986 [8]. He states It is easy to see that
h2,d(n) > nεd but the best possible value of εd is not known. ε1 = 1

2
follows from a result

of Ajtai, Komlos, Sulyok and Szemeredi [19].

3. Erdős and Purdy [10] commented on the ha,d(n) problem in 1995; however, they do
not state anything that was not already known in 1986.

4. Erdős [5] showed that the number of distinct differences in the
√

n ×
√

n grid is ≤

O( n√
log n

). Therefore h2,2(n) ≤ O

(√
n√
log n

)
. For a ≥ 3 We do not know of any

nontrivial upper bounds on ha,d (Note that the n1/d×· · ·×n1/d, which yields has three
(actually many) points collinear and hence cannot be used to obtain an upper bound.)

Note 1.2 The problem of h2,2 is similar to but distinct from the Erdős Distance Problem:
give a set of n points in the plane how many distinct distances are guaranteed. For more on
this problem see [15, 16]. The problem of h3,2 is similar to but distinct from the problem of
determining, given n points in the plane no three collinear, how many distinct triangle-areas
are obtained (see [4] and references therein). We do not know of any reference to a higher
dimensional analog of these problems.

In this paper we show

• h2,d(n) ≥ Ω((n1/(6d)(log n)1/3)/d1/3).

• h3,2(n) ≥ Ω((log log n)1/2901).

• h3,3(n) ≥ Ω((log log n)1/27804).

Our proof has two ingredients: (1) upper bounds on variants of the canonical Ramsey
numbers, and (2) geometric lemmas about points in Rd.

In Section 2,3, and 4 we define terms, prove lemmas, and finally prove an upper bound
on a variant of the canonical Ramsey Theorem. Our proof uses some ideas from the upper
bound on the standard canonical Ramsey number, ER(k, k), due to Lefmann and Rodl [21].
In Section 5 we prove a geometric lemma about points in Rd. In Section 6 we use our upper
bound and our geometric lemma to prove lower bounds on h2,d(n). In Section 7 we show
lower bounds on h3,2(n) and h3,3(n). In Section 8 we speculate about lower bounds for ha,d

for a ≥ 4. In Section 9 we list open problems.
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2 Variants of the Canonical Ramsey Theorem

Notation 2.1 Let n ∈ N.

1. [n] is the set {1, . . . , n}.

2. If A is a set and 0 ≤ a ≤ |A| then
(

A
a

)
is the set of all a-sized subsets of A.

3. Kn is the graph (V, E) where
V = [n]

E =
(
[n]
2

)
We will identify

(
[n]
2

)
with Kn. We may refer to vertices and edges of

(
[n]
2

)
.

We define terms and then state the canonical Ramsey theorem (for graphs). It was first
proven by Erdős and Rado [11]. The best known upper bounds on the canonical Ramsey
numbers are due to Lefmann and Rodl [21].

Def 2.2 Let COL :
(
[n]
2

)
→ ω. Let V ⊆ [n].

1. The set V is homogenous (henceforth homog) if every edge in
(

V
2

)
is colored the same.

2. The set V is min-homogenous (henceforth min-homog) if for all a < b and c < d

COL(a, b) = COL(c, d) iff a = c.

3. The set V is max-homogenous (henceforth max-homog) if for all a < b and c < d

COL(a, b) = COL(c, d) iff b = d.

4. The set V is rainbow if every edge in
(

V
2

)
is colored differently.

Notation 2.3 We will state many results in terms of functions from
(
[n]
a

)
to ω. When we

use these results we will actually use functions from
(
[n]
a

)
to R. The change in our results to

accommodate this is only a change of notation.

Theorem 2.4 For all k there exists n such that, for all colorings of
(
[n]
2

)
there is either a

homog set of size k, a min-homog set of size k, a max-homog set of size k, or a rainbow set
of size k. We denote the least value of n that works by ER(k, k).

We now state the asymmetric canonical Ramsey Theorem.

Theorem 2.5 For all k1, k2 there exists n such that, for all colorings of
(
[n]
2

)
, there is either

a homog set of size k1, a min-homog set of size k1, a max-homog set of size k1, or a rainbow
set of size k2. We denote the least value of n that works by ER(k1, k2).
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We will actually need a variant of the asymmetric canonical Ramsey Theorem which is
weaker but gives better upper bounds.

Def 2.6 Let COL :
(
[n]
2

)
→ ω. Let V ⊆ [n]. The set V is weakly homogenous (henceforth

whomog) if there is a way to linear order V (not necessarily the numerical order),

V = {x1, x2, . . . , xL},

such that, for all for all 1 ≤ a ≤ L− 3, for all a < b < c ≤ L,

COL(xa, xb) = COL(xa, xc).

Informally, the color of (xi, xj), where i < j, depends only on i. (We intentionally have
1 ≤ a ≤ L− 3. We do not care if COL(xL−2, xL−1) = COL((xL−2, xL).)

Note 2.7 When presenting a whomog set we will also present the needed linear order.

The following theorem follows from 2.5.

Theorem 2.8 For all k1, k2 there exists n such that, for all colorings of
(
[n]
2

)
there is either

a whomog set of size k1, or a rainbow set of size k2. We denote the least value of n that
works by WER(k1, k2).

In Theorem 4.1 we will show

WER(k1, k2) ≤
(Ck2)

6k1−18

(log k2)2k1−6
.

3 Lemma to Help Obtain Rainbow Sets

The next definition and lemmas gives a way to get a rainbow set under some conditions.

Def 3.1 Let COL :
(
[m]
2

)
→ ω. If c is a color and v ∈ [m] then degc(v) is the number of

c-colored edges with an endpoint in v.

The following result is due to Alon, Lefmann, and Rodl [1].

Lemma 3.2 Let m ≥ 3.

1. Let COL :
(
[m]
2

)
→ ω such that, for all v ∈ [m] and all colors c, degc(v) ≤ 1. Then

there exists a rainbow set of size ≥ Ω((m log m)1/3).

2. There exists a coloring of
(
[m]
2

)
such that for all v ∈ [m] and all colors c, degc(v) ≤ 1

and all rainbow sets are of size ≤ O((m log m)1/3).
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The following easily follows:

Lemma 3.3 Let m ≥ 3. Let COL :
(
[m]
2

)
→ ω such that, for all v ∈ [m] and all colors c,

degc(v) ≤ 1. If m = Ω( k3

log k
) then there exists a rainbow set of size k.

The following definitions and lemmas will be used to achieve the premise of Lemma 3.3

Def 3.4 Let COL :
(
[m]
2

)
→ ω. Let c be a color and let x ∈ [m].

1. degc(x) is the number of c-colored edges (x, y).

2. A bad triple is a triple a, b, c such that a, b, c does not form a rainbow K3.

The next two lemmas show us how to, in some cases, reduce the number of bad triples.

Lemma 3.5 Let COL :
(
[m]
2

)
→ ω such that, for every color c and vertex v, degc(v) ≤ d.

Then the number of bad triples is less than dm2

2
.

Proof: We assume that d divides m− 1. We leave the minor adjustment needed in case
d does not divide m− 1 to the reader.

Let b be the number of bad triples. We upper bound b by summing over all v that are
the point of the triple with two same-colored edges coming out of it.

b ≤
∑

v∈[m]

∑
c∈N Num of bad triples {v, u1, u2} with COL(v, u1) = COL(v, u2) = c

≤
∑

v∈[m]

∑
c∈N

(
degc(v)

2

)
Note that we are not assuming v < u1, u2. Also note that this upper bound may be an

overcount since there could be a homog K3.
We bound the inner summation. Since v is of degree m− 1 we can renumber the colors

as 1, 2, . . . ,m − 1. Note that
∑m−1

c=1 degc(v) = m − 1 and (∀c)[degc(v) ≤ d]. This sum is
maximized when d = deg1(v) = deg2(v) = · · · = deg(m−1)/d(v) and the rest of the degc(v)’s
are 0. Hence we have

b ≤
∑
v∈[m]

m−1∑
c=1

(
degc(v)

2

)
≤

∑
v∈[m]

m− 1

d

(
d

2

)
< m

m

d

d2

2
=

dm2

2
.

Lemma 3.6 Let COL :
(
[m]
2

)
→ ω that has b bad triples. Let 1 ≤ m′ ≤ m. There exists an

m′-sized set of vertices with ≤ b
(

m′

m

)3
bad triples.
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Proof: Pick a set X of size m′ at random. Let E be the expected number of bad triples.
Note that

E =
∑

{v1,v2,v3} bad

Prob that {v1, v2, v3} ⊆ X .

Let {v1, v2, v3} be a bad triple. The probability that all three nodes are in X is bounded
by (

m−3
m′−3

)(
m
m′

) ≤ m′(m′ − 1)(m′ − 2)

m(m− 1)(m− 2)
≤

(
m′

m

)3

.

Hence the expected number of bad triples is ≤ b(m′

m
)3. Therefore there must exist some

X that has ≤ b(m′

m
)3 bad triples.

Note 3.7 The above theorem presents the user with an interesting tradeoff. She wants a
large set with few bad triples. If m′ is large then you get a large set, but it will have many
bad triples. If m′ is small then you won’t have many bad triples, but m′ is small. We will
need a Goldilocks-m′ that is just right.

4 The Asymmetric Weak Canonical Ramsey Theorem

Theorem 4.1 There exists C such that, for all k1, k2,

WER(k1, k2) ≤
(Ck2)

6k1−18

(log k2)2k1−6
.

Proof:
Let n, m,m′, m′′, δ be parameters to be determined later. They will be functions of k1, k2.

Let COL :
(
[n]
2

)
→ ω.

Intuition: In the usual proofs of Ramsey’s Theorem (for two colors) we take a vertex v and
see which of degRED(v) or degBLUE(v) is large. One of them must be at least half of the size
of the vertices still in play. Here we change this up:

• Instead of taking a particular vertex v we ask if there is any v and any color c such
that degc(v) is large.

• What is large? Similar to the proof of Ramsey’s theorem it will be a fraction of what
is left, a fraction δ which we will pick later. Unlike the proof of Ramsey’s theorem δ
will depend on k2.

• In the proof of Ramsey’s theorem we were guaranteed that one of degRED(v) or
degBLUE(v) is large. Here we have no such guarantee. We may fail. In that case
something else happens and leads to a rainbow set!
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CONSTRUCTION
Phase 1:
Stage 0:

1. V0 = ∅. The set V0 will be vertices such that the edges from them to all vertices
remaining are the same color.

2. N0 = [n].

3. COL′ is not defined on any points.

Stage i: Assume that Vi−1, and Ni−1 are already defined.
If there exists x ∈ Ni−1 and c a color such that degc(x) ≥ δNi−1 then do the following:

Vi = Vi−1 ∪ {x}
Ni = {v ∈ Ni−1 : COL(x, v) = c}
xi = x

COL′(xi) = c

Note that |Ni| ≥ δ|Ni−1| and |Vi| = i. If i = k1 − 3 then goto Phase 2.
If no such x, c exist then goto Phase 3.

End of Phase 1

Phase 2: Since we are in Phase 2 we have V = Vk1−3. Let

V = {x1, x2, . . . , xk1−3}.

(This is the order the elements came into V, not the numeric order.) By construction V is a
whomog set of size k1 − 3. Note that for all elements x ∈ Nk1−3, COL(xi, x) = ci.

We will need |Nk1−3| ≥ 3. Since |Nk1−3| ≥ δk1−3n we have the constraint

n ≥ 3

δk1−3
.

Let xk1−2, xk1−1, and xk1 be three points from Nk1−3. Let H be (in this order)

H = {x1, x2, . . . , xk1−3, xk1−2, xk1−1, xk1}.
H is clearly whomog. (Recall that in a whomog set of size k1 we do not care if COL(xk1−2, xk1−1) =
COL(xk1−2, xk1).)
End of Phase 2

Phase 3: Let i be the stage where you entered Phase 3. Clearly |Ni| ≥ δin. We will need
that |Ni| ≥ m. Since i ≤ k1−4 we have the constraint m ≤ δk1−4n. We satisfy it by insisting
that

n ≥ m

δk1−4
.
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Recall that we also want n ≥ 3
δk1−3 . In order for the n ≥ m

δk1−4 to imply the inequality
n ≥ 3

δk1−3 we have the constraint

m ≥ 3

δ
.

Combining n ≥ m
δk1−4 and m ≥ 3

δ
we obtain

n ≥ 3

δk1−3
.

Let |N | = m0. Let COL be the coloring restricted to
(

N
2

)
. We can assume the colors are

a subset of {1, . . . ,
(

m0

2

)
}.

Since we are in Phase 3 we know that, for all v ∈ N , for all colors c, degc(v) ≤ δm0.
Note also that, for any vertex v ∈ N ,

m0 − 1 =

(m0
2 )∑

c=1

degc(v) ≤
(m0

2 )∑
c=1

δm ≤ δm2
0m.

Hence we need

δ >
m0 − 1

m2
0m

.

Since m0 ≥ m the constraint m ≥ 3
δ

already implies this.

Note that COL is a coloring of
(

N
2

)
such that for every v ∈ N and color c, degc(v) ≤ δm0.

Hence, by Lemma 3.5, there are at most

δm0 ×m2
0

2
≤ δm3

0

bad triples (we ignore the denominator of 2 since it makes later calculations easier and only
affects the constant).

By Lemma 3.6 there exists X ⊆ N of size m′ that has

b < δm3
0 ×

(
m′

m0

)3

= δ(m′)3

bad triples. Note also that this number is independent of m0 which will enable us to pick
our parameters without knowing m0.

We set m′ such that the number of bad triples is so small that we can just remove one
point from each. We will have a set X of size m′′ with no bad triples.

Recall that the number of bad triples is δ(m′)3. Hence we want

m′ − δ(m′)3 ≥ m′′

so we have the constraint
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δ ≤ m′ −m′′

(m′)3
.

We will now set the parameters. Since we will use Lemma 3.3 it would be difficult to
optimize the parameters. Hence we pick parameters that are easy to work with.

We will use Lemma 3.3 on X to obtain a rainbow set of size k2. Hence we take

m′′ =
Ak3

2

log k2

where A is chosen to (1) make m′′ large enough to satisfy the premise of Lemma 3.3, (2)
make m′′ an integer, and (3) make m′, m, n, which will be functions of m′′, integers.

We take

m′ = 1.5m′′. This is the value that minimize δ though this does not matter .

δ =
m′ −m′′

(m′′)3
=

1

B(m′′)2

where B is an appropriate constant.

m =
3

δ

n =
3

δk1−3
= 3(Bm′′)2(k1−3) =

(Ck2)
6k1−18

(log k2)2k1−6

where C is an appropriate constant.

5 Lemmas from Geometry

Def 5.1 Let d ∈ N.

1. If p, q ∈ Rd then let |p− q| be the Euclidean distance between p and q.

2. Let p1, . . . , pn be points in Rd. (p1, . . . , pn) is a cool sequence if for all 1 ≤ i ≤ n − 3,
for all i < j ≤ n |pi − pj| is determined solely by pi. (Formally: for all 1 ≤ i ≤ n − 3
there exists Li such that, for all i + 1 ≤ j ≤ n, |pi − pj| = Li.) We intentionally have
1 ≤ i ≤ L− 3. We do not care if |pn−2 − pn−1| = |pn−2 − pn|.

3. The sphere with center x ∈ Rd+1 and radius r ∈ R+ is the set

{y ∈ Rd+1 : |x− y| = r}.

If the sphere is completely contained in an (n + 1)-dimensional plane then the sphere
is called an n-sphere.
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Note that if (p1, . . . , pn) is cool then (p2, . . . , pn) is cool. We use this implicitly without
mention.

The following lemma is well known.

Lemma 5.2 Let S be an n-sphere. Let x ∈ S and r ∈ R+. The set

{y ∈ S : |x− y| = r}

is either an (n− 1)-sphere or is empty.

Lemma 5.3 Let d ∈ N and let n < d. There does not exist a cool sequence p1, . . . , pn+3 on
an n-sphere.

Proof: We prove this by induction on n.
Base Case n = 0: Assume, by way of contradiction, that (p1, p2, p3) form a cool sequence
on a 0-sphere. A 0-sphere is a set of two points, hence this is impossible. (Note that being
a cool sequence did not constraint (p1, p2, p3) at all.)
Induction Hypothesis: The theorem holds for n− 1 and n ≥ 2.
Induction Step: We prove the theorem for n. Assume, by way of contradiction, that
(p1, . . . , pn+2) form a cool sequence on an n-sphere. Since |p1 − p2| = |p1 − p3| = · · · =
|p1 − pn+2| we know, by Lemma 5.2, that p2, p3, . . . , pn+2 are on an (n − 1)-sphere. Since
p2, . . . , pn+2 is a cool sequence this is impossible by the induction hypothesis.

Note 5.4 The following related statement seems to be well known: if there are d + 2 points
in Rd then it is not the case that all

(
d+2
2

)
distances are the same. We have not been able to

locate this result in an old fashion journal (perhaps its behind a paywall); however, there is
a proof at mathoverflow.net here:
http://mathoverflow.net/questions/30270/

maximum-number-of-mutually-equidistant-points-

in-an-n-dimensional-euclidean-space

Notation Warning: The n we use in the next lemma is not connected to the n we used in
the definitions or lemma above.

Lemma 5.5 Let d ∈ N. Let p1, . . . , pn be points in Rd. Color
(
[n]
2

)
via COL(i, j) = |pi− pj|.

This coloring has no whomog set of size d + 3.

Proof: Assume, by way of contradiction, that there exists a whomog set of size d + 3.
By renumbering we can assume the whomog set is {1, . . . , d + 3}. Clearly p1, . . . , pd+3 form
a cool sequence. Note that our not-caring about COL(d + 1, d + 2) = COL(d + 1, d + 3) is
reflected in our not-caring about |pd+1 − pd+2| = |pd+1 − pd+3|.

Since |p1 − p2| = |p1 − p3| = · · · = |p1 − pd+3|, p2, . . . , pd+3 are on the (d − 1)-sphere
(centered at p1). This contradicts Lemma 5.3.
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6 Lower Bound on h2,d(n)

Theorem 6.1 For all d ≥ 1, h2,d(n) = Ω((n1/(6d)(log n)1/3)/d1/3).

Proof: Let P = {p1, . . . , pn} be n points in Rd. Let COL :
(
[n]
2

)
→ R defined by

COL(i, j) = |pi − pj|.
Let k be the largest integer such that n ≥ WER(k, d + 3). By Theorem 4.1 there is

either a whomog set of size d + 3 or a rainbow set of size k. By Lemma 5.5 there cannot be
a whomog set of size d + 3, hence must be a rainbow set of size k. This is the set we seek.

How big does k have to be? Rewrite Theorem 4.1 as

WER(k1, k2) ≤
(

Ck3
2

log k2

)2k1−6

.

We need

n ≤
(

Ck3

log k

)2d

to guarantee a rainbow set of size k or a whomog set of size d + 3 (which can’t happen).
Clearly k = Ω((n1/(6d)(log n)1/3)/d1/3) suffices.

7 Lower Bounds on h3,2 and h3,3

For the problem of h2,d we used (1) upper bounds on the asymmetric weak canonical Ramsey
Theorem and (2) a geometric lemma. Here we will use (1) upper bounds on the standard
asymmetric canonical Ramsey Theorem and (2) a geometric lemma. This is because we have
not been able to get other versions of the canonical Ramsey theorem to yield better bounds.

7.1 The Asymmetric 3-ary Canonical Ramsey Theorem

Def 7.1 Let COL :
(
[n]
a.

)
→ ω. Let V ⊆ [n].

1. Let I ⊆ {1, . . . , a}. The set V is I-homogenous (henceforth I-homog) if for all x1 <
· · · < xa ∈

(
[n]
a

)
and y1 < · · · < ya ∈

(
[n]
a

)
,

(∀i ∈ I)[xi = yi] iff COL(x1, . . . , xa) = COL(y1, . . . , ya).

Informally, the color of an element of
(
[n]
a

)
depends exactly on the coordinates in I.

2. The set V is rainbow if every edge in
(

V
a

)
is colored differently. Note that this is just

an I-homog set where I = {1, . . . , a}.
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We will need the asymmetric hypergraph Ramsey numbers and a-ary Erdős-Rado num-
bers.

Def 7.2 Let a ≥ 1. Let k1, k2, . . . , kc ≥ 1.

1. Let COL :
(
[n]
a

)
→ [c]. (Note that there is a bound on the number of colors.) Let

V ⊆ [n]. The set V is homog with color i if COL restricted to
(

V
a

)
always returns i.

2. Ra(k1, k2, . . . , kc) is the least n such that, for all COL :
(
[n]
a

)
→ [c], there exists 1 ≤ i ≤ c

and a homog set of size ki with color i. Ra(k1, k2, . . . , kc) is known to exist by the
hypergraph Ramsey Theorem.

3. ERa(k1, k2) is the least n such that, for all COL :
(
[n]
a

)
→ ω, there exists either (1) an

I ⊂ [a] and an I-homog set of size k1, or (2) a rainbow set of size k2. ERa(k1, k2) is
known to exist by the a-ary canonical Ramsey theorem.

Lemma 7.3 Let a ≥ 3, c ≥ 2, and k1, . . . , kc ≥ 1. Let P = k1 · · · kc−1 and S = k1+· · ·+kc−1.

1. Ra(k1, k2, . . . , kc) ≤ cRa−1(k1−1,k2−1,...,kc−1)a−1
.

2.

ER3(k1, k2) ≤ R4(6, 6, 6, 6, k1, k1, k1, k1,

⌈
k3

1

4

⌉
,

⌈
k3

1

4

⌉
, 2k3

1,

⌈
k5

2

36

⌉
).

3. Let
Z = {σ ∈ [c]∗ : for all i ∈ [c], σ contains at most ki − 1 i’s }.

Then

∑
σ∈Z

|σ| ≤ P (kc + S)S+2.

4. R3(k1, . . . , kc) ≤ cP (kc+S)S+2
.

5. R4(k1, . . . , kc) ≤ cc3P (kc+S−c)S+2−c

.

6. For almost all k, ER3(e, k) ≤ 22k12.5e3+20e+81

.

Proof:
1) Erdős-Rado [12, 17, 18] showed that Ra(k, k) ≤ 2(Ra−1(k−1,k−1)+1

a−1 ) + a − 2. This can be
modified to show

Ra(k1, k2, . . . , kc) ≤ c(
Ra−1(k1−1,...,kc−1)

a−1 )+a−2.

Our result easily follows.
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2) Lefmann and Rodl [20] obtained a bound on ER3(k, k) in terms of 4-hypergraph Ramsey
numbers. Our result is obtained by a straightforward analysis and modification of their
proof.

3) Clearly

∑
σ∈Z |σ| =

∑k1−1
j1=0 · · ·

∑kc−1
jc=0 (j1 + . . . + jc)

(j1+...+jc)!
j1!···jc!

≤
∑k1−1

j1=0 · · ·
∑kc−1

jc=0 (kc + S) (kc+S)!
kc!

≤ P
∑kc−1

jc=0 (kc + S)S+1 ≤ Pkc(kc + S)S+1 ≤ P (kc + S)S+2

4) Conlon, Fox, and Sudakov [2] have the best known upper bounds on R3(k, k). Gasarch,
Parrish, Sandow [17] have done a straightforward analysis of their proof to extend it to c
colors. A modification of that proof yields

R3(k1, . . . , kc) ≤ c
P

σ∈Z |σ|.

Our result follows.
5) This follows from parts 1 and 4. We could obtain a better result by replacing P by
(k1 − 1) · · · (kc − 1) but that would not help us later.
6) Note that, using dxe ≤ x + 1,

6 + 6 + 6 + 6 + e + e + e + e +

⌈
e3

4

⌉
+

⌈
e3

4

⌉
+ 2e3 ≤ 2.5e3 + 4e + 26

Let s(e) = 2.5e3 + 4e + 26. Let p(e) be the product of these terms. By parts 2 and 5, for k
large, we have the following.

ER3(e, k) ≤ 12123p(e)(k5+s(e)−12)s(e)−10

≤ 12123p(e)(2k5)s(e)−10

≤ 1212(6p(e)k5)s(e)−10

≤ 22(36p(e)k5)s(e)−10

Let f(e) = (36p(e))s(e)−10. Then we have

ER3(e, k) ≤ 22f(e)k5s(e)−50

≤ 22k5s(e)−49

≤ 22k12.5e3+20e+81

.

7.2 Geometric Lemmas

Def 7.4 Let d ∈ N. If p, q, r ∈ Rd then let AREA(p, q, r) be the area of the triangle with
vertices p, q, r.

We will need Lemma 4 of [4] whose proof is in the appendix of that paper. They
credit [14], which is unavailable, with the proof.

Lemma 7.5 Let C1, C2, C3 be three cylinders with no pair of parallel axis in Then C1∩C2∩C3

consists of at most 8 points.
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Lemma 7.6

1. Let p1, . . . , pn be points in R2, no three collinear. Color
(
[n]
3

)
via COL(i, j, k) =

AREA(pi, pj, pk). If I ⊂ {1, 2, 3} then this coloring has no I-homog set of size 6.

2. Let p1, . . . , pn be points in R3, no three collinear. Color
(
[n]
3

)
via COL(i, j, k) =

AREA(pi, pj, pk). If I ⊂ {1, 2, 3} then this coloring has no I-homog set of size 13.

Proof:
1) Assume, by way of contradiction, there exists an I-homog set of size 6. By renumbering
we can assume the I-homog set is {1, 2, 3, 4, 5, 6}.

Case 1: I = {1}, {1, 2}, or {2}.
We have AREA(p1, p2, p4) = AREA(p1, p2, p5). Thus p4 and p5 are either on a line

parallel to p1p2 or are on different sides of p1p2. In the later case the midpoint of p4p5 is on
p1p2.

We have AREA(p1, p3, p4) = AREA(p1, p3, p5). Thus p4 and p5 are either on a line
parallel to p1p3 or are on different sides of p1p3. In the later case the midpoint of p4p5 is on
p1p3.

We have AREA(p2, p3, p4) = AREA(p2, p3, p5). Thus p4 and p5 are either on a line
parallel to p2p3 or are on different sides of p2p3. In the later case the midpoint of p4p5 is on
p2p3.

One of the following must happen.

• Two of these cases have p4, p5 on the same side of the line. We can assume that p4, p5

are on a line parallel to both p1p2 and p1p3. Since p1, p2, p3 are not collinear there is
no such line.

• Two of these cases have p4, p5 on opposite sides of the line. We can assume that the
midpoint of p4p5 is on both p1p2 and p1p3. Since p1, p2, p3 are not collinear the only
point on both p1p2 and p1p3 is p1. So the midpoint of p4, p5 is p1. Thus p4, p1, p5 are
collinear which is a contradiction.

Note that for I = {1}, {1, 2}, or {2} we used the line-point pairs

{p1p2, p1p3, p2p3} × {p4, p5}.

For the rest of the cases we will just specify which line-point pairs to use.

Case 2: I = {3} or {2, 3}. Use

{p4p5, p3p5, p3p4} × {p1, p2}.

Case 3: I = {1, 3} Use
{p1p4, p1p5, p1p6} × {p2, p3}.

14



This is the only case that needs 6 points.

2) Assume, by way of contradiction, that there exists an I-homog set of size 13. By renum-
bering we can assume the I-homog set is {1, . . . , 13}.
Case 1: I = {1}, {1, 2}, or {2}.

We have AREA(p1, p2, p4) = AREA(p1, p2, p5) = · · · = AREA(p1, p2, p12). Hence
p4, . . . , p12 are all on a cylinder with axis p1p2.

We have AREA(p1, p3, p4) = AREA(p1, p3, p5) = · · · = AREA(p1, p3, p12). Hence
p4, . . . , p12 are all on a cylinder with axis p1p3.

We have AREA(p2, p3, p4) = AREA(p2, p3, p5) = · · · = AREA(p2, p3, p12). Hence
p4, . . . , p12 are all on a cylinder with axis p2p3.

Since p1, p2, p3 are not collinear the three cylinders mentioned above satisfy the premise
of Lemma 7.5. By that lemma there are at most 8 points in the intersection of the three
cylinders. However, we just showed there are 9 such points. Contradiction.

Note that for I = {1}, {1, 2}, or {2} we used the line-point pairs

{p1p2, p1p3, p2p3} × {p4, . . . , p12}.

For the rest of the cases we will just specify which line-point pairs to use.

Case 2: I = {3} or {2, 3}. Use

{p11p12, p10p12, p10p11} × {p1, . . . , p9}.

Case 3: I = {1, 3} Use

{p1p11, p1p12, p1p13} × {p2, . . . , p10}.

This is the only case that needs 13 points.

7.3 Lower Bounds on h3,2(n) and h3,3(n)

Theorem 7.7

1. h3,2(n) ≥ Ω((log log n)1/2901).

2. h3,3n) ≥ Ω((log log n)1/27804).

Proof:
a) Let P = {p1, . . . , pn} be n points in R2. Let COL be the coloring of

(
[n]
3

)
defined by

COL(i, j, k) = AREA(pi, pj, pk).
Let k be the largest integer such that

n ≥ ER3(6, k).
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By Lemma 7.3 it will suffice to take k = Ω((log log n)1/2901). By the definition of ER3(6, k)
there is either a I-homog set, with I ⊂ {1, 2, 3}, of size 6 or a rainbow set of size k. By
Lemma 7.6.a there cannot be such an I-homog set, hence must be a rainbow set of size k.

b) Let P = {p1, . . . , pn} be n points in R3. Let COL be the coloring of
(
[n]
3

)
defined by

COL(i, j, k) = AREA(pi, pj, pk).
Let k be the largest integer such that

n ≥ ER3(13, k).

By Lemma 7.3 it will suffice to take k = Ω((log log n)1/27804). By the definition of ER3(13, k)
there is either a I-homog set, with I ⊂ {1, 2, 3}, of size 13 or a rainbow set of size k. By
Lemma 7.6.b there cannot be such an I-homog set, hence must be a rainbow set of size k.

Note 7.8 A more careful analysis of the bound on ER3(k) from [20], perhaps using some
weak version, may lead to larger exponents in the lower bounds for h3,2 and h3,3; however,
such an analysis will not lead to an improvement from log log n to log n.

To obtain similar bounds on h3,d(n) we have the needed bounds on the asymmetric
canonical Ramsey numbers but do not have the needed geometric lemmas. We make the
following conjecture.

1. There exists a function f(d) such that the following is true: Let p1, . . . , pn be points in
Rd, no three collinear. Color

(
[n]
3

)
via COL(i, j, k) = AREA(pi, pj, pk). If I ⊂ {1, 2, 3}

then this coloring has no I-homog set of size f(d).

2. There exists a function ε(d) such that, for all d, h3,d(n) ≥ Ω((log log n)ε(d)). (This
follows from the conjecture above.)

8 Speculation about Higher Dimensions

To get lower bounds on ha,d(n) using our approach you need the following:

• Upper bounds on ERa(k1, k2). The upper bound on ERa(k, k) involves R2a−1 which
lead to a tower of height 2a − 1. The bound on ER(k1, k2) (if k1 � k2 which is our
case) leads to a tower of height 2a − 2. So this ingredient is already known though
perhaps could be improved upon.

• The following geometric lemma: There exists a function f(a, d) such that the following
is true: Let p1, . . . , pn be points in Rd, no a in the same (a − 2)-dimensional space.
Color

(
[n]
a

)
via COL(i1, . . . , ia) = V OLUME(pi1 , . . . , pia). If I ⊂ {1, . . . , a} then this

coloring has no I-homog set of size f(a, d).
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We conjecture that the geometric lemma needed is true. If that is the case then the
following is true: For all a, d there is a constant εa,d such that

(∀a ≥ 4)[ha,d(n) = Ω((log(2a−2) n)εa,d)].

Our results on h2,d (called h2,d throughout this paper) and h3,d are much better than the
conjecture. There are several reasons for this. We explain them and speculate on which ones
can be used for ha,d.

1. There are already very good bounds on ER2(k, k) and ER3(k, k). Hence whatever
modifications we did had a good starting point. For a ≥ 4, the best bound for ERa(k, k)
involves R2a−1. Finding better bounds on ERa(k, k) for a ≥ 4 seems like a hard
problem.

2. For h2,d we looked at WER(k1, k2). There are two aspects to WER(k1, k2) that made
for better bounds.

(a) The definition of WER(k1, k2) only had the implication about the coloring going
in one direction. This modification of the definition of ERa may lead to better
bounds, perhaps replacing R2a−1 with Ra+c for some constant c.

(b) The definition of WER(k1, k2) used a different definition of homog. We doubt
this can be adapted to the a-ary case even for a = 3.

The upshot is that looking at a definition of WERa(k1, k2) that involves only one side
of the coloring implication may lead to better bounds. However, the geometric lemmas are
also needed.

9 Open Questions

1. The upper and lower bounds for h2,d, h3,2, h3,3 are very far apart. Close the gap!

2. We obtain h2,1(n) = Ω(n1/6(log n)1/3). The known result, h2,1(n) = Θ(n1/2), has a
rather difficult proof. It would be of interest to obtain an easier proof of either the
known result or a weaker version of it that is stronger than what we have. An easy
probabilistic argument yields h2,1(n) = Ω(n1/4).

3. Obtain the geometric lemmas needed to get nontrivial lower bounds on (1) h3,d for
d ≥ 4, and (2) ha,d for d ≥ 4, and a ≥ d. Combining this with known results would

get lower bounds of the form Ω((log(2a−1)(n))εa,d). Obtain upper bounds on some weak
version of canonical Ramsey numbers that will lead to less iterated logs in the final
result. See Section 8 for more thoughts on this.

4. Look at a variants of ha,d(n) with different metrics on Rd or in other metric spaces
entirely.
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5. Look at a variant of ha,d(n), which we call h′
a,d, where the only condition on the points

is that they are not all on the same (a−2)-dimensional space. Using the n1/d×· · ·×n1/d

grid it is easy to show that, for a, d � n, h′
a,d(n) ≤ O(n(a−1)/a).
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