Homework 2, MORALLY Due Feb 12

- 1. (28 points-7 points each)
 - (a) Consider the formula

$$(x_{11} \lor x_{12}) \land (x_{21} \lor x_{22}) \land (x_{31} \lor x_{32}) \land (x_{41} \lor x_{42}).$$

How many satisfying assignments does this formula have? Justify!

(b) Let $n \in \mathsf{N}$ with $n \ge 3$. Consider the formula

$$(x_{11} \vee x_{12}) \wedge (x_{21} \vee x_{22}) \wedge \cdots \wedge (x_{n1} \vee x_{n2}).$$

How many satisfying assignments does this formula have? Justify! (Note that it may be a function of n.)

(c) Consider the formula

$$(x_1 \vee \neg x_2) \wedge (x_2 \vee \neg x_3) \wedge (x_3 \vee \neg x_4) \wedge (x_4 \vee \neg x_1).$$

How many satisfying assignments does this formula have? Justify! (Do not use a truth table.)

(d) Give an example of a 2CNF formula which uses 4 variables and is NOT satisfiable.

- 2. (20 points) Let $n \in \mathbb{N}$. Two formulas ϕ_1 and ϕ_2 are *n*-Equiv if their truth tables DIFFER on exactly *n* rows. Note that logical equivalence is 0-Equiv.
 - (a) (10 points) Give an example of two formulas ϕ_1, ϕ_2 , each on 3 variables, that are 1-Equiv. (Hint: This is easier if you make them in DNF form.)
 - (b) (10 points) Give an example of three formulas ϕ_1, ϕ_2, ϕ_3 , each on 3 variables, such that the following hold:
 - i. ϕ_1 and ϕ_2 are 1-Equiv.
 - ii. ϕ_2 and ϕ_3 are 1-Equiv.
 - iii. ϕ_1 and ϕ_3 are 2-Equiv.

- 3. (20 points 5 points each) For each of the following statements write the negation without using any negations signs.
 - (a) $x \neq 4$
 - (b) $(x_1 \le x_2) \land (x_1 \le x_3)$
 - (c) $(x \le 5) \lor (x \ge 15)$
 - (d) x < y < z

4. (32 points-8 points each) You are designing an algorithm for CNFSAT. I will incompletely describe some short cuts you can take. Fill in the BLANK

The input is of the form

 $C_1 \wedge \cdots \wedge C_m$

where each C_i is an OR of literals (a literal is a var or its negation).

- (a) If $C_1 = (x_3)$ then you can do $BLANK_1$.
- (b) If x_4 appears in the formula but $\neg x_4$ never appears then you can do $BLANK_2$.
- (c) If $C_2 = (x_8)$ and $C_3 = (x_9)$ and $C_4 = (\neg x_8 \lor \neg x_9)$ then you can do $BLANK_3$.
- (d) If $C_4 = (x_{10} \lor \neg x_{11} \lor x_{12} \lor \neg x_{12})$ then you can do $BLANK_4$.

5. (0 point- For FUN and just EMAIL Bill your answer) Contradiction in real life: There are songs where what people *think* the song is about is in contradiction to what the song is really about if you listen to they lyrics carefully. Bill had a blog post on this (Bill has been a blogger on complexity theory since 2008 or so) here)

READ the blog post.

EMAIL Bill your thoughts on the post- which song you particular liked, something you learned, some other song that has that property, whatever you want.