Homework 3, MORALLY Due Feb 19

1. (30 points-6 points each) In this problem the domain is \mathbf{N}.
(a) Express the following statements using quantifiers. There exist an (x, y, z), with $x, y, z \geq 2$ all distinct, such that $x^{2}+y^{2}=z^{2}$.
(b) Express the following statements using quantifies. There exist an INFINITE NUMBER of (x, y, z), with $x, y, z \geq 2$ and all distinct, such that $x^{2}+y^{2}=z^{2}$. (This happens to be TRUE but you do not need that for this problem.)
(c) Express the following statements using quantifies. There is NO x, y, z, n with $x, y, z \geq 2$ and $n \geq 3$ such that $x^{n}+y^{n}=z^{n}$.
(d) The statement in Part d is TRUE. It is called Fermat's Last Theorem. Look it up and write a paragraph about it including who proved it, when, and how long it was open for.
2. (30 points- 15 points each) In this problem the domain is R.
(a) Express the following statements using quantifies. Every polynomial with real coefficients, of degree 3, has a real solution.
(b) The statement in Part a is TRUE! Give a proof (it can be informal, this is NOT Math 410).
3. (40 points- 8 points each)

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Rightarrow(\exists z)[x<z<y]]$.
A domain has a min element if $(\exists x)(\forall y)[x \leq y]$.
A domain has a max element if $(\exists x)(\forall y)[y \leq x]$.
In this problem we list conditions on a domain. EITHER give a domain that satisfies the conditions OR state that there is NO such domain (no proof required).
(a) D is finite and dense.
(b) D is finite and dense and has ≥ 2 elements.
(c) D is infinite and not dense
(d) D is infinite, has a min element, has a max element, and is dense.
(e) D is infinite, has a min element, has a max element, and is NOT dense.

