Homework 3, MORALLY Due Feb 19

- 1. (30 points–6 points each) In this problem the domain is N.
 - (a) Express the following statements using quantifiers. There exist an (x, y, z), with $x, y, z \ge 2$ all distinct, such that $x^2 + y^2 = z^2$.
 - (b) Express the following statements using quantifies. There exist an INFINITE NUMBER of (x, y, z), with $x, y, z \ge 2$ and all distinct, such that $x^2 + y^2 = z^2$. (This happens to be TRUE but you do not need that for this problem.)
 - (c) Express the following statements using quantifies. There is NO x, y, z, n with $x, y, z \ge 2$ and $n \ge 3$ such that $x^n + y^n = z^n$.
 - (d) The statement in Part d is TRUE. It is called *Fermat's Last Theorem*. Look it up and write a paragraph about it including who proved it, when, and how long it was open for.

- 2. (30 points–15 points each) In this problem the domain is R.
 - (a) Express the following statements using quantifies. Every polynomial with real coefficients, of degree 3, has a real solution.
 - (b) The statement in Part a is TRUE! Give a proof (it can be informal, this is NOT Math 410).

3. (40 points–8 points each)

For this problem we use the following standard terminology:

A domain is dense if $(\forall x, y)[x < y \Rightarrow (\exists z)[x < z < y]]$.

A domain has a *min element* if $(\exists x)(\forall y)[x \leq y]$.

A domain has a max element if $(\exists x)(\forall y)[y \leq x]$.

In this problem we list conditions on a domain. EITHER give a domain that satisfies the conditions OR state that there is NO such domain (no proof required).

- (a) D is finite and dense.
- (b) D is finite and dense and has ≥ 2 elements.
- (c) D is infinite and not dense
- (d) D is infinite, has a min element, has a max element, and is dense.
- (e) D is infinite, has a min element, has a max element, and is NOT dense.