Homework 3, MORALLY Due Feb 19

1. (30 points- 6 points each) In this problem the domain is \mathbf{N}.
(a) Express the following statements using quantifiers. There exist an (x, y, z), with $x, y, z \geq 2$ all distinct, such that $x^{2}+y^{2}=z^{2}$.
SOL TO 1a
$(\exists x, y, z)\left[(x \geq 2) \wedge(y \geq 2) \wedge(z \geq 2) \wedge(x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge x^{2}+y^{2}=z^{2}.\right]$
END OF SOL TO 1a
(b) The statement in 1 a is TRUE. Give 5 examples of (x, y, z) that satisfy it.
SOL TO 1b
We give an infinite number of (x, y, z).
$(3,4,5)$
$(9,12,15)$
More generally, for $k \in \mathbf{N},(3 k, 4 k, 5 k)$
END OF SOL TO 1b
(c) Express the following statements using quantifies. There exist an INFINITE NUMBER of (x, y, z), with $x, y, z \geq 2$ and all distinct, such that $x^{2}+y^{2}=z^{2}$. (This happens to be TRUE but you do not need that for this problem.)

SOL TO 1c

Let $(\exists x, y, z)[\phi(x, y, z)]$ be the formula for problem 1a.
We need to say that there are an infinite number of (x, y, z).
If it was just an infinite number of x I would say
$(\forall w)(\exists x)[x \geq w]$.
But how do I do this for a triple of numbers?
If there was an infinite number of triples
$\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots$
then there is an infinite subsequence where the SUM increases.
SO
$(\forall w)(\exists x, y, z)[x+y+z \geq w \wedge \phi(x, y, z)]$
END OF SOL TO 1c
(d) Express the following statements using quantifies. There is NO x, y, z, n with $x, y, z \geq 2$ and $n \geq 3$ such that $x^{n}+y^{n}=z^{n}$.
SOL TO 1d
$(\forall x, y, z, n)$

$$
\left[\left((x \geq 2) \wedge(y \geq 2) \wedge(z \geq 2) \wedge(n \geq 3) \Rightarrow x^{n}+y^{n} \neq z^{n} .\right]\right.
$$

END OF SOL TO 1d
(e) The statement in Part d is TRUE. It is called Fermat's Last Theorem. Look it up and write a paragraph about it including who proved it, when, and how long it was open for.

SOL TO 1e

Solution Omitted.
END OF SOL TO 1e
2. (30 points- 15 points each) In this problem the domain is R.
(a) Express the following statements using quantifies. Every polynomial with real coefficients, of degree 3, has a real solution.
SOL TO 2a
$\left(\forall a_{0}, a_{1}, a_{2}, a_{3}\right)(\exists x)\left[a_{3} \neq 0 \Rightarrow a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0\right]$
END OF SOL TO 2a
(b) The statement in Part a is TRUE! Give a proof (it can be informal, this is NOT Math 410).

SOL TO 2b

Let $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$.
Assume $a_{3}>0$.
As $x \Rightarrow \infty$ then $f(x) \Rightarrow \infty$ since $a_{3} x^{3}$ becomes the dominant term.
As $x \Rightarrow-\infty$ then $f(x) \Rightarrow-\infty$ since $a_{3} x^{3}$ becomes the dominant term.
Since $f(x)$ takes on both positive and negative values, it must also take on 0 .
Similar for $a_{3}<0$.
END OF SOL TO 2b
3. (40 points-8 points each)

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Rightarrow(\exists z)[x<z<y]]$.
A domain has a min element if $(\exists x)(\forall y)[x \leq y]$.
A domain has a max element if $(\exists x)(\forall y)[y \leq x]$.
In this problem we list conditions on a domain. EITHER give a domain that satisfies the conditions OR state that there is NO such domain (no proof required).
(a) D is finite and dense.

SOL TO 3a

There are two such domains:
$D=\emptyset$ is finite. Its dense vacuously.
$D=\{1\}$ is finite. Its dense vacuously.
END OF SOL TO 3a
(b) D is finite and dense and has ≥ 2 elements.

SOL TO 3b

There are no such domains:
Let $x, y \in D$.
There is an elements z in between x, y so
$x<z<y$
There is an element between x and z, and between z and y.
Etc. Hence there is an infinite number of elements in D.
END OF SOL to 3b
(c) D is infinite and not dense

SOL TO 3c
Z
END OF SOL TO 3c
(d) D is infinite, has a min element, has a max element, and is dense.

SOL TO 3d
$[0,1] \cap Q$ or $[0,1] \cap R$.
END OF SOL TO 3d
(e) D is infinite, has a min element, has a max element, and is NOT dense.
SOL TO 3e

$$
\left\{-1,-\frac{1}{2},-\frac{1}{3}, \ldots\right\} \cup\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\} .
$$

END OF SOL TO 3e

