Homework 4, MORALLY Due Feb 26

1. (30 points-15 points each)
(a) Show that if $x \equiv 0 \quad(\bmod 21)$ and $y \equiv 0 \quad(\bmod 24)$ then $x+y \equiv$ $0(\bmod 3)$.
(b) Make a conjecture and prove it of the form

If $x \equiv 0 \quad(\bmod m)$ and $y \equiv 0 \quad(\bmod n)$ then $x+y \equiv 0 \quad(\bmod B L A N K)$
2. (30 points- 10 points for the a, b, c and then 0 for d)
(a) Compute the following MOD 23 and spot a pattern.

$$
7^{0}, 7^{1}, 7^{2}, \ldots
$$

The pattern should be of the form $7^{n} \equiv 7^{n+a} \equiv 7^{n+2 a} \equiv \cdots$ $(\bmod 23)$. You need to find the a.
Give us that pattern.
(b) Use that pattern to compute $7^{1000}(\bmod 23)$.
(c) (In this problem we guide you through doing $7^{1000}(\bmod 23)$ the way we did it in class.)
IN THIS PROBLEM ALL CALCULATIONS ARE MOD
23.
i. Write 1000 as a sum of powers of 2 .
ii. Fill in the following table:

$$
7^{2^{0}} \equiv X
$$

$7^{2^{1}} \equiv\left(7^{2^{0}}\right)^{2} \equiv X$
$7^{2^{2}} \equiv\left(7^{2^{1}}\right)^{2} \equiv X$
\vdots
Until you get the last power of 2 that you need.
iii. Use the last two parts to get $7^{1000}(\bmod 23)$.
(d) Did you prefer going this by looking for a pattern OR by the class method? Why?
3. Before we get to the problem I will tell two theorems with proofs and where we are going with this.

Theorem 1 For all $a \in \mathrm{Z}, a^{5} \equiv a(\bmod 5)$
Proof: We do this with 5 cases depending on $a(\bmod 5)$.
(a) $a \equiv 0 \quad(\bmod 5)$. Need $0^{5} \equiv 0 \quad(\bmod 5)$ which is $0 \equiv 0 \quad(\bmod 5)$, TRUE.
(b) $a \equiv 1 \quad(\bmod 5)$. Need $1^{5} \equiv 1 \quad(\bmod 5)$ which is $1 \equiv 1 \quad(\bmod 5)$, TRUE.
(c) $a \equiv 2 \quad(\bmod 5)$. Need $2^{5} \equiv 2 \quad(\bmod 5)$ which is $32 \equiv 2(\bmod 5)$, TRUE.
(d) $a \equiv 3 \quad(\bmod 5)$. Need $3^{5} \equiv 3 \quad(\bmod 5)$. I DO THIS by HAND WITH SHORTCUTS:
$3 \times 3 \equiv 9 \equiv-1$. SO $(3 \times 3) \times(3 \times 3) \times 3 \equiv-1 \times-1 \times 3 \equiv 3$.
so TRUE.
(e) $a \equiv 4 \quad(\bmod 5)$. Need $4^{5} \equiv 4 \quad(\bmod 5)$. I DO THIS BY HAND WITH SHORTCUTS
$4 \equiv-1 . \operatorname{SO}(4 \times 4) \times(4 \times 4) \times 4 \equiv 4 \equiv(-1 \times-1) \times(-1 \times-1) \times 4 \equiv 4$. so TRUE.

END OF PROOF

Theorem 2 There exists $a \in \mathbf{Z}, a^{4} \not \equiv a(\bmod 4)$
Proof: We do this with by TRYING to prove the opposite and seeing where we fail.
(a) $a \equiv 0 \quad(\bmod 4)$. Need $0^{4} \equiv 0 \quad(\bmod 4)$ which is $0 \equiv 0 \quad(\bmod 4)$, TRUE.
(b) $a \equiv 1 \quad(\bmod 4)$. Need $1^{4} \equiv 1 \quad(\bmod 4)$ which is $1 \equiv 1 \quad(\bmod 4)$, TRUE.
(c) $a \equiv 2 \quad(\bmod 4)$. Need $2^{4} \equiv 2 \quad(\bmod 5)$ which is $0 \equiv 2 \quad(\bmod 4)$. STOP. THIS IS NOT TRUE.

So take $a=2($ or any number that is $\equiv 2(\bmod 4))$ for the a in the Theorem.

End of Proof

Next Page for the Assignment

Here is our question:
For which m is it the case that $(\forall a \in \mathbf{Z})\left[a^{m} \equiv a \quad(\bmod m)\right]$?
(a) (0 points but you will need it for the next part) Write a program that will, on input a, m, compute $a^{m}(\bmod m)$. (If Python has a library for exponentiation $\bmod m$, you should use it.)
(b) (0 points but you will need it for the next part) Write a program that will do the following: given $m \in \mathrm{~N}, m \geq 2$, determine if

$$
(\forall a \in \mathbf{Z})\left[a^{m} \equiv a \quad(\bmod m)\right]
$$

The basic idea of the program is to determine for $0 \leq a \leq m-1$ if you ALWAYS get

$$
a^{m} \equiv a \quad(\bmod m) .
$$

If you do, then GREAT the statement is true. If NOT then there is a counterexample. The program should report TRUE or FALSE, and if FALSE then supply the counterexample.

Email all code to Emily (Ekaplitz@umd.edu). Just send the .py file with both programs in it. This will allow me to give partial credit if your code spits something out weird.
(c) (40 points) Produce a table of the following form; however, the table below only goes up to 4 and yours should go up to 200 .

m	T or F	Counterexample if exists	
2	T		
3	T		
4	F	$2^{4} \not \equiv 2 \quad(\bmod 4)$	
5	T		

(d) (0 points but you have to do it) Based on your data make a conjecture of the following form:

$$
\begin{gathered}
(\forall a \in \mathrm{Z})\left[a^{m} \equiv a \quad(\bmod m)\right] . \\
\operatorname{iff} \\
\operatorname{BLANK}(m)
\end{gathered}
$$

You need to fill in the BLANK.

