Homework 4, MORALLY Due Feb 26

- 1. (30 points-15 points each)
 - (a) Show that if $x \equiv 0 \pmod{21}$ and $y \equiv 0 \pmod{24}$ then $x + y \equiv 0 \pmod{3}$.
 - (b) Make a conjecture and prove it of the form If $x \equiv 0 \pmod{m}$ and $y \equiv 0 \pmod{n}$ then $x+y \equiv 0 \pmod{BLANK}$

- 2. (30 points-10 points for the a,b,c and then 0 for d)
 - (a) Compute the following MOD 23 and spot a pattern.

$$7^0, 7^1, 7^2, \ldots$$

.

The pattern should be of the form $7^n \equiv 7^{n+a} \equiv 7^{n+2a} \equiv \cdots$ (mod 23). You need to find the *a*.

Give us that pattern.

- (b) Use that pattern to compute $7^{1000} \pmod{23}$.
- (c) (In this problem we guide you through doing $7^{1000} \pmod{23}$ the way we did it in class.)

IN THIS PROBLEM ALL CALCULATIONS ARE MOD 23.

- i. Write 1000 as a sum of powers of 2.
- ii. Fill in the following table: $7^{2^0} \equiv X$ $7^{2^1} \equiv (7^{2^0})^2 \equiv X$ $7^{2^2} \equiv (7^{2^1})^2 \equiv X$:
 - Until you get the last power of 2 that you need.
- iii. Use the last two parts to get $7^{1000} \pmod{23}$.
- (d) Did you prefer going this by looking for a pattern OR by the class method? Why?

3. Before we get to the problem I will tell two theorems with proofs and where we are going with this.

Theorem 1 For all $a \in \mathsf{Z}$, $a^5 \equiv a \pmod{5}$

Proof: We do this with 5 cases depending on $a \pmod{5}$.

- (a) $a \equiv 0 \pmod{5}$. Need $0^5 \equiv 0 \pmod{5}$ which is $0 \equiv 0 \pmod{5}$, TRUE.
- (b) $a \equiv 1 \pmod{5}$. Need $1^5 \equiv 1 \pmod{5}$ which is $1 \equiv 1 \pmod{5}$, TRUE.
- (c) $a \equiv 2 \pmod{5}$. Need $2^5 \equiv 2 \pmod{5}$ which is $32 \equiv 2 \pmod{5}$, TRUE.
- (d) $a \equiv 3 \pmod{5}$. Need $3^5 \equiv 3 \pmod{5}$. I DO THIS by HAND WITH SHORTCUTS: $3 \times 3 \equiv 9 \equiv -1$. SO $(3 \times 3) \times (3 \times 3) \times 3 \equiv -1 \times -1 \times 3 \equiv 3$. so TRUE.
- (e) $a \equiv 4 \pmod{5}$. Need $4^5 \equiv 4 \pmod{5}$. I DO THIS BY HAND WITH SHORTCUTS $4 \equiv -1$. SO $(4 \times 4) \times (4 \times 4) \times 4 \equiv 4 \equiv (-1 \times -1) \times (-1 \times -1) \times 4 \equiv 4$. so TRUE.

END OF PROOF

Next Page for Theorem 2

Theorem 2 There exists $a \in \mathsf{Z}$, $a^4 \not\equiv a \pmod{4}$

Proof: We do this with by TRYING to prove the opposite and seeing where we fail.

- (a) $a \equiv 0 \pmod{4}$. Need $0^4 \equiv 0 \pmod{4}$ which is $0 \equiv 0 \pmod{4}$, TRUE.
- (b) $a \equiv 1 \pmod{4}$. Need $1^4 \equiv 1 \pmod{4}$ which is $1 \equiv 1 \pmod{4}$, TRUE.
- (c) $a \equiv 2 \pmod{4}$. Need $2^4 \equiv 2 \pmod{5}$ which is $0 \equiv 2 \pmod{4}$. STOP. THIS IS NOT TRUE.

So take a = 2 (or any number that is $\equiv 2 \pmod{4}$ for the a in the Theorem.

End of Proof

Next Page for the Assignment

Here is our question:

For which m is it the case that $(\forall a \in \mathsf{Z})[a^m \equiv a \pmod{m}]$?

- (a) (0 points but you will need it for the next part) Write a program that will, on input a, m, compute $a^m \pmod{m}$. (If Python has a library for exponentiation mod m, you should use it.)
- (b) (0 points but you will need it for the next part) Write a program that will do the following: given $m \in \mathbb{N}, m \ge 2$, determine if $(\forall a \in \mathbb{Z})[a^m \equiv a \pmod{m}].$

The basic idea of the program is to determine for $0 \leq a \leq m-1$ if you ALWAYS get

 $a^m \equiv a \pmod{m}$.

If you do, then GREAT the statement is true. If NOT then there is a counterexample. The program should report TRUE or FALSE, and if FALSE then supply the counterexample.

Email all code to Emily (Ekaplitz@umd.edu). Just send the .py file with both programs in it. This will allow me to give partial credit if your code spits something out weird.

(c) (40 points) Produce a table of the following form; however, the table below only goes up to 4 and yours should go up to 200.

m	T or F	Counterexample if exists
2	T	
3	T	
4	F	$2^4 \not\equiv 2 \pmod{4}$
5	T	

(d) (0 points but you have to do it) Based on your data make a conjecture of the following form:

 $(\forall a \in \mathsf{Z})[a^m \equiv a \pmod{m}].$ iff BLANK(m)

You need to fill in the BLANK.