Homework 6, MORALLY Due March 11

1. (50 points) In this program we will look at primes of the form $x^{2}+5 y^{2}$. Send your code to Emily, so that if you get wrong answers, I can give you partial credit.
(a) (0 points but you will need this later)

Write a program that will, given p, determines if there exists x, y such that

$$
p=x^{2}+5 y^{2} .
$$

(b) (30 points) For all primes $p \in \mathrm{~N}$ such that are $7 \leq p \leq 1000$ run the above program. Produce a table of primes $p \in \mathbf{N}$, such that $7 \leq p \leq 1000$, of the following form. You must put the table in your pdf. You can either copy and paste it into your latex doc, or take a screenshot.

p	sum of $x^{2}+5 y^{2} ?$	$x^{2}+5 y^{2}$
7	N	
11	N	
13	N	
17	N	
19	N	
23	N	
29	Y	$3^{2}+5 \times 2^{2}$

(c) (20 points) Give a conjecture of the following form:

Let p be an odd prime such that $p \geq 7$. Then
p is a sum of the form $x^{2}+5 y^{2}$ iff BLANK.
2. (50 points) On the untimed midterm1 you wrote two programs to find, given n, a way to write n as a sum of squares. The first one we call GREEDY the second one we call OPTIMAL.
(a) (0 points but you need to do this for a later part) Let $f(n)$ be

$$
\max \{\operatorname{GREEDY}(1), \operatorname{GREEDY}(2), \cdots, \operatorname{GREEDY}(n)\}
$$

Write a program that, given n, computes

$$
f(1), \ldots, f(n)
$$

(b) (0 points but you need to do it for the later parts) Run this program on $n=1000$.
(c) (20 points) Make a conjecture about what $f(n)$ looks like. (For example: $f(n)$ is ROUGHLY \sqrt{n}.)
(d) (15 points) Let $X_{1}=\{n: n \equiv 7(\bmod 8)\}$. On the untimed midterm1, problem 1 g , you probably found that, from your data,

$$
n \in X_{1} \Rightarrow \operatorname{OPTIMAL}(n)=4
$$

Find an infinite set X_{2} such that $X_{1} \cap X_{2}=\emptyset$ and, according to your data,

$$
n \in X_{2} \Rightarrow \operatorname{OPTIMAL}(n)=4
$$

(e) (15 points) Make a conjecture about exactly which numbers n have $\operatorname{OPTIMAL}(n)=4$.

