Homework 7, MORALLY Due March 25

Recall: Spring Break is March 18-22

1. (30 points-10 points each) Write the following sequences in closed form: For example, if the sequence was

$$
1,1,2,2,3,3, \ldots
$$

(So $a_{1}=1, a_{2}=1, a_{3}=2, a_{4}=2, \ldots$)
then the answer is

$$
a_{n}=\left\{\begin{array}{lll}
(n+1) / 2 & \text { if } n \equiv 1 & (\bmod 2) \tag{1}\\
n / 2 & \text { if } n \equiv 0 & (\bmod 2)
\end{array}\right.
$$

(a) $2,5,10,17,26, \ldots$.
(b) $1,1,1,2,2,2,3,3,3, \ldots$
(c) $1,-4,9,-16, \ldots$
2. (25 points) We define a sequence as follows: $a_{1}=1$. For all $n \geq 2, a_{n}=a_{n-1}+a_{\lfloor n / 2\rfloor}$.
(a) (0 points but you will need it for the next part.) Write a program that will, given n, find the following:
i. - For $1 \leq i \leq n$,

$$
\frac{\text { The number of } a_{i} \equiv 0 \quad(\bmod 2)}{n}
$$

- For $1 \leq i \leq n$,
$\frac{\text { The number of } a_{i} \equiv 1 \quad(\bmod 2)}{n}$
ii. - For $1 \leq i \leq n$,

$$
\frac{\text { The number of } a_{i} \equiv 0 \quad(\bmod 3)}{n}
$$

- For $1 \leq i \leq n$,

$$
\frac{\text { The number of } a_{i} \equiv 1 \quad(\bmod 3)}{n}
$$

- For $1 \leq i \leq n$,

$$
\frac{\text { The number of } a_{i} \equiv 2 \quad(\bmod 3)}{n}
$$

iii. Similar for $\bmod 5,7,11,13,17,19$.
(There is more to this problem on the next page)
(b) (15 points) Run your program with $\mathrm{n}=1000$. Report the results neatly.
(c) (10 points) Based on your data give conjectures about the following
i. Is $a_{n} \equiv 0(\bmod 2)$ infinitely often? Do the cases $a_{n} \equiv 0$ $(\bmod 2)$ and Do the cases $a_{n} \equiv 1(\bmod 2)$ occur about the same amount of time?
ii. Similar for Mod 3,5,7,11, 13, 17,19.
3. (25 points) In this problem we guide you through a proof that number of the form $4^{n}(8 k+7)$ cannot be written as the sum of 3 squares.
(a) (0 points but you will need this for later) Find the following set

$$
X=\left\{x^{2} \quad(\bmod 8): x \in\{0,1,2,3,4,5,6,7\}\right\}
$$

(b) (7 points) Show that if $x \equiv 7(\bmod 8)$ then x is NOT the sum of three squares.
(Hint: Show that any three elements of X from Part a can never sum to $7 \bmod 8$.)
(c) (8 points) Prove that if $x^{2}+y^{2}+z^{2} \equiv 0(\bmod 4)$ then x, y, z are all even. (Hint: Look at what happens when:
1 of $\{x, y, z\}$ is odd,
2 of $\{x, y, z\}$ is odd,
3 of $\{x, y, z\}$ is odd.
)
(d) (9 points) Prove the following by induction on n.

Theorem Let $n \geq 0$. Let $k \in \mathrm{~N}$. Show that $4^{n}(8 k+7)$ cannot be written as the sum of 3 squares.
4. (20 points) On HW 4 problem 3 you were asked for a conjecture of the form

$$
(\forall a \in \mathbf{Z})\left[a^{m} \equiv a \quad(\bmod m)\right] \text { iff } \operatorname{BLANK}(m)
$$

You based your conjecture on a program that you wrote and ran up to 200.

ALL of your had the answer $\operatorname{BLANK}(m)$ is m is prime.
Run your program up to 1000 .
Did you find any value m such that:

- $(\forall a \in \mathbf{Z})\left[a^{m} \equiv a(\bmod m)\right]$
- m is NOT prime.

If you DID then output the smallest such m.
If you DID NOT then state a Theorem in Mathematics, it can be a little one, that proves your conjecture.

