Homework 8, MORALLY Due April 1

1. (30 points) Recall what induction is:

From

- $P(0)$
- $(\forall n \geq 0)[P(n) \Rightarrow P(n+1)]$

You have

$(\forall n)[P(n)]$.

Induction is great for proving theorems of the form $(\forall n \in \mathrm{~N})[P(n)]$.
We want to prove theorems of the form

$$
(\forall z \in \mathrm{Z})[P(z)] .
$$

Give a scheme similar to the one above that will have the conclusion $(\forall z \in \mathbf{Z})[P(z)]$.
2. (35 points) Consider the recurrence
$T(1)=10$
$T(2)=30$.

$$
(\forall n \geq 3)\left[T(n)=T\left(\left\lfloor\frac{n}{a}\right\rfloor\right)+T\left(\left\lfloor\frac{n}{b}\right\rfloor\right)+c n\right] .
$$

Find an infinite number of triples (a, b, c) of POSITIVE rationals such that

$$
(\forall n \geq 1)[T(n) \leq 100 n] .
$$

3. (35 point) Consider the following recurrence:
$T(0)=1$
$T(1)=6$
$T(2)=21$
$(\forall n \geq 3)[T(n)=2 T(n-1)+4 T(\lfloor\sqrt{n}\rfloor)+5 n$.
Show that, for all $n \geq 1, T(n) \equiv 1(\bmod 5)$.
Hint: Use Strong Induction.
