Homework 9, MORALLY Due 10:00AM April 22

1. (30 points) Recall the BEE sequence.
$a_{1}=1$
$(\forall n \geq 2)\left[a_{n}=a_{n-1}+a_{\lfloor n / 2\rfloor}\right]$
Try to prove the following:
There are an infinite number of n such that $a_{n} \equiv 0(\bmod 9)$.
You will do this by following the proof for moe 7. Show where the proof breaks down.
(Recall that the the statement $\left(\exists^{\infty} n\right)\left[a_{n} \equiv 0(\bmod 9)\right]$ is not known to be true or false, though empirical evidece suggests that its true. Our approach did not work; however, some other approach might.)
2. (30 points) Recall that $|\operatorname{SPS}(1, \ldots, n)|=\frac{n(n+1)}{2}+1$.

Assume n is large. What is $\left|\operatorname{SPS}\left(1, \ldots, n-1,2^{n}\right)\right|$?
3. (40 points) Recall that the AM-GM inequality is

For all $n \geq 2$, for all $x_{1}, \ldots, x_{n} \in \mathrm{R}^{+}$

$$
\frac{x_{1}+\cdots+x_{n}}{n} \geq\left(x_{1} \cdots x_{n}\right)^{1 / n} .
$$

with equality iff $x_{1}=\cdots=x_{n}$.
We are wondering: When are the Arithmetic Mean and the Geometric Mean the furthest apart?
(a) Write a program that will do the following:
i. Input n, N
ii. For all subsets $\left\{x_{1}<\cdots<x_{n}\right\}$ of $\{1, \ldots, N\}$ of size n compute $A=\frac{x_{1}+\cdots+x_{n}}{n}, G=\left(x_{1} \cdots x_{n}\right)^{1 / n}, D=A-G$
iii. Then print out the top n values of D and which $x_{1}<\cdots<x_{n}$ lead to them.
iv. Send Code to Emily: ekaplitz@umd.edu
(b) (30 points) Run the program for $(n, N)=(5,10)$ and present the results.
(c) (10 points) Run the program for $1 \leq n \leq 20$ and $n \leq N \leq 20$. Make a conjecture about what types of $x_{1}<\cdots<x_{n}$ lead to large values of D.

