Homework 9, MORALLY Due 10:00AM April 22

1. (30 points) Recall the BEE sequence.

 $a_1 = 1$

 $(\forall n \ge 2)[a_n = a_{n-1} + a_{\lfloor n/2 \rfloor}]$

Try to prove the following:

There are an infinite number of n such that $a_n \equiv 0 \pmod{9}$.

You will do this by following the proof for moe 7. Show where the proof breaks down.

(Recall that the statement $(\exists^{\infty} n)[a_n \equiv 0 \pmod{9}]$ is not known to be true or false, though empirical evidece suggests that its true. Our approach did not work; however, some other approach might.) 2. (30 points) Recall that $|SPS(1,...,n)| = \frac{n(n+1)}{2} + 1$. Assume *n* is large. What is $|SPS(1,...,n-1,2^n)|$? 3. (40 points) Recall that the AM-GM inequality is

For all $n \geq 2$, for all $x_1, \ldots, x_n \in \mathsf{R}^+$

$$\frac{x_1 + \dots + x_n}{n} \ge (x_1 \cdots x_n)^{1/n}.$$

with equality iff $x_1 = \cdots = x_n$.

We are wondering: When are the Arithmetic Mean and the Geometric Mean the furthest apart?

- (a) Write a program that will do the following:
 - i. Input n, N
 - ii. For all subsets $\{x_1 < \cdots < x_n\}$ of $\{1, \ldots, N\}$ of size n compute $A = \frac{x_1 + \cdots + x_n}{n}$, $G = (x_1 \cdots x_n)^{1/n}$, D = A G
 - iii. Then print out the top n values of D and which $x_1 < \cdots < x_n$ lead to them.
 - iv. Send Code to Emily: ekaplitz@umd.edu
- (b) (30 points) Run the program for (n, N) = (5, 10) and present the results.
- (c) (10 points) Run the program for $1 \le n \le 20$ and $n \le N \le 20$. Make a conjecture about what types of $x_1 < \cdots < x_n$ lead to large values of D.