Homework 10, MORALLY Due 10:00AM April 29

1. (25 points) Bill makes his Gnilrad lunch that consists of the following:

- Sandwich: Egg Salad OR Tuna Fish OR Cheese.
- Fruit: Apple OR Orange OR Grapes OR Blueberries OR Strawberries.
- Desert: Apple Sauce OR Cookie.

For the questions below show your work but also give us an actual number like 10 and not just the notation like $\binom{5}{3}$.
(a) (5 points) How many ways can Bill make lunch for his Gnilrad? NOTE: She has ONE sandwitch, ONE fruit and ONE desert.
(b) (10 points) One day she complains: I don't want to have my Fruit be an apple, and my desert be Applesauce at the same time, though I am okay with having one or the other. Bill obeys her wishes. NOW how many ways can Bill make lunch for her? NOTE: Examples: Darling is happy with Eggsalad-Apple-Cookie but NOT with Eggssalad-Apple-Applesauce.)
(c) (10 points) One day she complains: (1) I don't want to have my an apple and applesauce at the same time, AND (2) I want 2 different Sandwiches AND (3) I want 3 different Fruits AND (4) I still just want one Desert. Bill obeys her wishes. NOW how many ways can Bill make lunch for her?
(d) (0 points but you must answer it) Why does Bill call her Gnilrad?
(25 points) On the last slide of the lecture The Law of Inclusion and Exclusion is the law for $A_{1}, A_{2}, A_{3}, A_{4}$. Its complicated!
(a) (10 points) What if the following hold

- Each A_{i} has x_{1} elements.
- Each intersection of TWO sets has x_{2} elements.
- Each intersection of THREE sets has x_{3} elements.
- Each intersection of FOUR sets has x_{4} elements.

Give an expression for $\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|$ in terms of $x_{1}, x_{2}, x_{3}, x_{4}$. It should be much simpler then the general law.
(b) (15 points) Let A_{1}, \ldots, A_{n} be sets. Assume that, for $1 \leq i \leq n$, the intersection of i of these sets has size x_{i}. Give an expression for $\left|A_{1} \cup \cdots \cup A_{n}\right|$ in terms of x_{1}, \ldots, x_{n}. You CANNOT use DOT DOT DOT. You can and should use a summation sign.
2. (25 points) How many solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=100
$$

with $x_{1} \geq 1, x_{2} \geq 2, x_{3} \geq 3$, and $x_{4} \geq 4$.
3. (25 points) Read or re-read the slides on the Horse Numbers. The numbers $H(n)$ will come up in this problem.

For $n \geq 2$. Let $I(n)$ be the number of ways that n horses, x_{1}, \ldots, x_{n}, can finish a race (so orderings with equalities allowed) that have $x_{1}<$ x_{n}.
(a) (0 points but you should do it or convince yourself that you could). What is $I(2), I(3), I(4)$. Do $I(4)$ in such a way that it can be generalized to $I(n)$.
(b) (25 points) Give a recurrence for $I(n)$. It may also involve $H(n)$. For example, it could be (but its NOT) $I(n)=I(n-1)+I(n-$ $4)+H(n) H(n-3)$.

