Homework 10, MORALLY Due 10:00AM April 29

- 1. (25 points) Bill makes his Gnilrad lunch that consists of the following:
 - Sandwich: Egg Salad OR Tuna Fish OR Cheese.
 - Fruit: Apple OR Orange OR Grapes OR Blueberries OR Strawberries.
 - Desert: Apple Sauce OR Cookie.

For the questions below show your work but also give us an actual number like 10 and not just the notation like $\binom{5}{3}$.

- (a) (5 points) How many ways can Bill make lunch for his Gnilrad? NOTE: She has ONE sandwitch, ONE fruit and ONE desert.
- (b) (10 points) One day she complains: I don't want to have my Fruit be an apple, and my desert be Applesauce at the same time, though I am okay with having one or the other. Bill obeys her wishes. NOW how many ways can Bill make lunch for her? NOTE: Examples: Darling is happy with Eggsalad-Apple-Cookie but NOT with Eggssalad-Apple-Applesauce.)
- (c) (10 points) One day she complains: (1) I don't want to have my an apple and applesauce at the same time, AND (2) I want 2 different Sandwiches AND (3) I want 3 different Fruits AND (4) I still just want one Desert. Bill obeys her wishes. NOW how many ways can Bill make lunch for her?
- (d) (0 points but you must answer it) Why does Bill call her *Gnilrad*?

(25 points) On the last slide of the lecture The Law of Inclusion and Exclusion is the law for A_1, A_2, A_3, A_4 . Its complicated!

- (a) (10 points) What if the following hold
 - Each A_i has x_1 elements.
 - Each intersection of TWO sets has x_2 elements.
 - Each intersection of THREE sets has x_3 elements.
 - Each intersection of FOUR sets has x_4 elements.

Give an expression for $|A_1 \cup A_2 \cup A_3 \cup A_4|$ in terms of x_1, x_2, x_3, x_4 . It should be much simpler than the general law.

(b) (15 points) Let A_1, \ldots, A_n be sets. Assume that, for $1 \le i \le n$, the intersection of *i* of these sets has size x_i . Give an expression for $|A_1 \cup \cdots \cup A_n|$ in terms of x_1, \ldots, x_n . You CANNOT use DOT DOT DOT. You can and should use a summation sign.

2. (25 points) How many solutions are there to the equation $\mathbf{1}$

$$x_1 + x_2 + x_3 + x_4 = 100$$

with $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3$, and $x_4 \ge 4$.

3. (25 points) Read or re-read the slides on the Horse Numbers. The numbers H(n) will come up in this problem.

For $n \geq 2$. Let I(n) be the number of ways that n horses, x_1, \ldots, x_n , can finish a race (so orderings with equalities allowed) that have $x_1 < x_n$.

- (a) (0 points but you should do it or convince yourself that you could). What is I(2), I(3), I(4). Do I(4) in such a way that it can be generalized to I(n).
- (b) (25 points) Give a recurrence for I(n). It may also involve H(n). For example, it could be (but its NOT) I(n) = I(n-1) + I(n-4) + H(n)H(n-3).