Homework 11, MORALLY Due 10:00AM May 6

1. (30 points- 5 points each) After Emily gets her PhD she works for a casino. She has the following dyslexic idea: Rather than have 13 ranks and 4 suites, lets have 13 suites and 4 ranks! She also changes the number of cards in a hand to 4 so that a straight is possible.
(a) How many poker hands are there?
(b) What is the probability of getting a straight flush?
(c) What is the probability of getting a straight that is not a straight flush?
(d) What is the probability of getting a flush that is not a straight flush?
(e) What is the probability of getting 4-of-a-kind?
(f) What is the probability of getting 3-of-a-kind that is NOT 4-of-akind?
2. (25 points) Bill is looking at three dice. Bill will pick up one die and roll it.

- Dice 1 has 3 sides labelled $1,2,3$. The probabilities are:
$\operatorname{prob}(1)=0.3, \operatorname{prob}(2)=0.3, \operatorname{prob}(3)=0.4$.
Bill picks up this die with probability 0.5
- Dice 2 has 4 sides labelled $1,2,3,4$. The probabilities are:
$\operatorname{prob}(1)=0.3, \operatorname{prob}(2)=0.3, \operatorname{prob}(3)=0.2, \operatorname{prob}(4)=0.2$.
Bill picks up this die with probability 0.3
- Dice 3 has 5 sides labelled $1,2,3,4,5$. The probabilities are:
$\operatorname{prob}(1)=\operatorname{prob}(2)=\operatorname{prob}(3)=\operatorname{prob}(4)=\operatorname{prob}(5)=0.2$.
Bill picks up this die with probability 0.2
(a) (10 points) What is the probability that Bill rolls a 3? Show your work.
(b) (15 points) (You will probably want to write a program for this one.) Give a table like the one below (the numbers in it are WRONG, yours should be right).

Number	Prob
1	0.3
2	0.2
3	0.1
4	0.2
5	0.2

3. (20 points) (This problem was inspired by a comment Soren made.) Let $E(k, n)$ be the number of solutions in N to

$$
x_{1}+\cdots+x_{k}=n .
$$

In class we showed that $E(k, n)=\binom{n+k-1}{n}$.
(a) (10 points) Pretend that you do not know the formula for $E(k, n)$.

But you (actually Soren) have the following idea!
EITHER $x_{k}=0$ OR $x_{k}=1$ OR $x_{k}=2$ OR $\cdots x_{k}=n$.
Use this to get a recurrence for $E(k, n)$. Also make sure to have a base case (perhaps more than one) that makes sense.
(b) (10 points) From Part 1 you have a recurrence for $E(k, n)$. Now use the fact that you DO know $E(k, n)=\binom{n+k-1}{n}$ to get a combinatorial identity.
4. (25 points) Fill in the $f(c)$ below and then prove your statement: For any c-coloring of the $(c+1) \times f(c)$ grid there is a monochromatic rectangle.

