Homework 11, MORALLY Due 10:00AM May 6

- 1. (30 points- 5 points each) After Emily gets her PhD she works for a casino. She has the following dyslexic idea: Rather than have 13 ranks and 4 suites, lets have 13 suites and 4 ranks! She also changes the number of cards in a hand to 4 so that a straight is possible.
 - (a) How many poker hands are there?
 - (b) What is the probability of getting a straight flush?
 - (c) What is the probability of getting a straight that is not a straight flush?
 - (d) What is the probability of getting a flush that is not a straight flush?
 - (e) What is the probability of getting 4-of-a-kind?
 - (f) What is the probability of getting 3-of-a-kind that is NOT 4-of-a-kind?

- 2. (25 points) Bill is looking at three dice. Bill will pick up one die and roll it.
 - Dice 1 has 3 sides labelled 1,2,3. The probabilities are: prob(1)=0.3, prob(2)=0.3, prob(3)=0.4.
 Bill picks up this die with probability 0.5
 - Dice 2 has 4 sides labelled 1,2,3,4. The probabilities are: prob(1)=0.3, prob(2)=0.3, prob(3)=0.2, prob(4)=0.2. Bill picks up this die with probability 0.3
 - Dice 3 has 5 sides labelled 1,2,3,4,5. The probabilities are: prob(1)=prob(2)=prob(3)=prob(4)=prob(5)=0.2.
 Bill picks up this die with probability 0.2
 - (a) (10 points) What is the probability that Bill rolls a 3? Show your work.
 - (b) (15 points) (You will probably want to write a program for this one.) Give a table like the one below (the numbers in it are WRONG, yours should be right).

Number	Prob
1	0.3
2	0.2
3	0.1
4	0.2
5	0.2

3. (20 points) (This problem was inspired by a comment Soren made.) Let E(k, n) be the number of solutions in N to

$$x_1 + \dots + x_k = n.$$

In class we showed that $E(k,n) = \binom{n+k-1}{n}$.

- (a) (10 points) Pretend that you do not know the formula for E(k, n). But you (actually Soren) have the following idea! EITHER $x_k = 0$ OR $x_k = 1$ OR $x_k = 2$ OR $\cdots x_k = n$. Use this to get a recurrence for E(k, n). Also make sure to have a base case (perhaps more than one) that makes sense.
- (b) (10 points) From Part 1 you have a recurrence for E(k, n). Now use the fact that you DO know $E(k, n) = \binom{n+k-1}{n}$ to get a combinatorial identity.

4. (25 points) Fill in the f(c) below and then prove your statement: For any c-coloring of the $(c + 1) \times f(c)$ grid there is a monochromatic rectangle.