250 Untimed Midterm 2
Morally Due Monday April 8

1 An Interesting Sum (7 points)

For this problem you may approximate

$$
(n-1)^{11}
$$

by

$$
n^{11}-11 n^{10}
$$

any time it appears.
Consider the sum

$$
\sum_{i=100}^{n} i^{10}
$$

(NOTE that the summation starts at 100, so the base case will be $n=$ 100.)

We are NOT going to ask you to get a closed form for it (there is one but its a mess). BY CONSTRUCTIVE INDUCTION find a constant A such that

$$
(\forall n \geq 100)\left[\sum_{i=100}^{n} i^{10} \leq A n^{11}\right]
$$

Try to make A as small as possible.
(NOTE- There are other ways to do this but I want a proof by
CONSTRUCTIVE INDUCTION.
DO NOT be that guy who does it a different way and claims that its right. That wastes my time and yours.)
(NOTE- Problem 2 implies Problem 1. DO NOT be that guy who just does Problem 2 and claims he did Problem 1. JUST DO BOTH PROBLEMS.)

2 A Generalization of an Interesting Sum (8 points)

In this problem you may approximate

$$
(n-1)^{a}
$$

by

$$
n^{a}-a n^{a-1}
$$

any time it appears,
Let $a \in \mathrm{~N}$ be such that $a \geq 11$.
Consider the sum

$$
\sum_{i=100}^{n} i^{a}
$$

BY CONSTRUCTIVE INDUCTION find a constant B such that

$$
(\forall n \geq 100)\left[\sum_{i=100}^{n} i^{a} \leq B n^{a+1}\right]
$$

(NOTE- There are other ways to do this but I want a proof by CONSTRUCTIVE INDUCTION.
DO NOT be that guy who does it a different way and claims that its right. That wastes my time and yours.)

3 A Coin Problem (15 points)

The Daleks only have two coins:

- a 10 -cent coin, and
- a 13-cent coin.

Note that there are some amounts they cannot create. For example Davros cannot give Emily 22 cents. However, there is a $C \in \mathrm{~N}$ such that

- $C-1$ cannot be written as $10 x+13 y$ where $x, y \in \mathrm{~N}$, and
- $(\forall n \geq C)(\exists x, y \in \mathrm{~N})[n=10 x+13 y]$.

And now finally the problem which will guide you to finding C.

1. Write a program that will, given $N \in \mathrm{~N}$, determine, for all $1 \leq n \leq N$ if n can be written as the sum of 10 's and 13's.
2. Run the program on $N=1000$.
3. Based on your numbers make a conjecture for what C is.
4. Prove your conjecture by induction.

4 Sums of Squares (20 points)

In this problem we guide you through a proof that number of the form $16^{n}(16 k+15)$ cannot be written as the sum of 14 fourth-powers.

1. (0 points but you will need it later) Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\} .
$$

2. (3 points) Show that if $x \equiv 15(\bmod 16)$ then x is NOT the sum of 14 fourth-powers.
(Hint: Show that any 14 elements of X from Part a can never sum to $15 \bmod 16$.
3. (3 points) Show that if x is odd then $x^{4} \equiv 1(\bmod 16)$.

Hints

- Begin the proof by letting $x=2 k+1$.
- Look up the Binomial Theorem. You will need it.
- Note that, for all $k \in \mathrm{~N}, k(k+1)$ is even. You will need this fact.

4. (4 points) Prove that if $x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16)$ then

$$
(\forall i)\left[x_{i} \equiv 0(\bmod 2)\right]
$$

5. (10 points) Prove the following by induction on n.

Theorem Let $n \geq 0$. Let $k \in \mathrm{~N}$. Show that $16^{n}(16 k+15)$ cannot be written as the sum of 14 fourth-powers.

