When is $p = x^2 + ny^2$?

David Cox wrote a book

Primes of the form $x^2 + ny^2$. The main theme is, given n, which primes can be written as $x^2 + ny^2$.

1 Conditions for
$$p = x^2 + ny^2$$

1.
$$p = x^2 + y^2$$
 iff $p \equiv 1 \pmod{4}$.
2. $p = x^2 + 2y^2$ iff $p = 2$ or $p \equiv 1, 3 \pmod{8}$.
3. $p = x^2 + 3y^2$ iff $p = 3$ or $p \equiv 1 \pmod{8}$.
4. $p = x^2 + 5y^2$ iff $p = 3$ or $p \equiv 1, 9 \pmod{20}$.
5. $p = x^2 + 6y^2$ iff $p \equiv 1, 7 \pmod{24}$.
6. $p = x^2 + 10y^2$ iff $p \equiv 1, 9, 11, 19 \pmod{40}$.
7. $p = x^2 + 13y^2$ iff $p = 13$ or $p \equiv 1, 9, 17, 25, 29, 49 \pmod{52}$.
8. Assume $p \neq 7$. $p = x^2 + 14y^2$ iff $\left(\frac{-14}{p}\right) = 1$ and $(x^2 + 1)^2 \equiv 8 \pmod{p}$.
9. $p = x^2 + 15y^2$ iff $p \equiv 1, 9, 31, 49 \pmod{60}$.
10. $p = x^2 + 21y^2$ iff $p \equiv 1, 9, 15, 23, 25, 31, 47, 49, 71, 81 \pmod{88}$.
11. $p = x^2 + 27y^2$ iff $p \equiv 1, 31, 49, 79 \pmod{120}$.
14. $p = x^2 + 64y^2$ iff $p \equiv 1 \pmod{4}$ and 2 is a quartic residue mod p .

ARE THERE ANY n SUCH THAT THE CONDITION IS SIMPLE BUT IS NOT ON THIS LIST.

2 General Theorem

Def 2.1 Let $n, m \in \mathbb{N}$ with $n, m \ge 1$. Let

$$f(z) = f_m z^m + \dots + f_0$$

$$g(z) = g_n z^n + \dots + g_0$$

The Sylvester Matrix associated to f, g is the $(n + m) \times (n + m)$ matrix constructed as follows

1. The first row is

 $(f_m \ f_{m-1} \ \cdots \ f_1 \ f_0 \ 0 \ \cdots \ 0)$

(There are zero 0's on the left and n-1 0's at the right end.)

2. The second row is

 $(0 f_m f_{m-1} \cdots f_1 f_0 \cdots 0)$

(There is one 0 on the left end and n-2 0's on the right end.)

- 3. Let $1 \le i \le n$. The *i*th row is $(0 \cdots 0 f_m f_{m-1} \cdots f_1 f_0 0 \cdots 0)$ (There are i - 1 0's on the left end and n - i 0's on the right end.)
- 4. The n + 1st row is

 $(g_n g_{n-1} \cdots g_1 g_0 0 \cdots 0)$

(There are zero 0's on the left and m-1 0's at the right end.)

5. The n + 2th row is

 $(0 g_n g_{n-1} \cdots g_1 g_0 \cdots 0)$

(There is one 0 on the left end and m - 2 0's on the right end.)

6. Let $1 \le i \le n$. The n + ith row is $(0 \cdots 0 g_n g_{n-1} \cdots g_1 g_0 0 \cdots 0)$ (There are i - 1 0's on the left end and m - i 0's on the right end.) **Example** If m = 4 and n = 3 then the matrix is

f_4	f_3	f_2	f_1	f_0	0	$0 \rangle$
0	f_4	f_3	f_2	f_1	f_0	0
0	0	f_4	f_3	f_2	f_1	f_0
g_3	g_2	g_1	g_0	0	0	0
0	g_3	g_2	g_1	g_0	0	0
0	0	g_3	g_2	g_1	g_0	0
$\left(0 \right)$	0	0	g_3	g_2	g_1	g_0

Def 2.2 The *Resultant* of two polynomials f, g is the determinant of the Sylvester Matrix associated to f, g. We denote this Res(f, g).

Def 2.3 Let f be a polynomial of degree n. Let f_n be its lead coefficient. Let f' be the derivative of f. The *Discriminat* of f is

$$\frac{(-1)^{n(n-1)/2}}{f_n} \operatorname{Res}(f, f').$$

We denote this Disc(f).

Theorem 2.4 Let $n \equiv 0, 2 \pmod{4}$ be a positive squarefree integer. Then there exists an irreducible polynomial $f_n(x) \in \mathbb{Z}[x]$ such that the following happens: Let p be a prime that does not divide n and does not divide $\text{Disc}(f_n)$. Then

 $p = x^2 + ny^2$ iff the following both hold.

- 1. $\left(\frac{-n}{p}\right) = 1$ and
- 2. $f_n(x) \equiv 0 \pmod{p}$.

THE ABOVE THEOREM SEEMS STRANGE SINCE THERE A CON-DITION ON x. THIS DOES NOT SEEM TO LEAD TO AN ALGORITHM FOR, GIVEN PRIME p, n DETERMINE IF THERE EXISTS x, y WITH $p = x^2 + ny^2$.

THE BOOK ONLY EVER GIVES THE POLY IN THE CASE OF n = 14. ARE OTHER POLYS KNOWN? COMPLICATED?

Theorem 2.5 Let $n \ge 1$. Then there exists a monic irreducible polynomial $f_n(x) \in \mathbb{Z}[x]$ of degree h(-4n) [I DO NOT KNOW WHAT THAT IS] such that the following happens: Let p be a prime that does not divide n and does not divide $\text{Disc}(f_n)$. Then

- $p = x^2 + ny^2$ iff the following both hold.
- 1. $\left(\frac{-n}{p}\right) = 1$ and
- 2. $f_n(x) \equiv 0 \pmod{p}$.

Theorem 2.6 Let n, m be positive integers. Then there exists a monic irreducible polynomial $f_{n,m}(x) \in \mathbb{Z}[x]$ such that the following happens: Let p be a prime that does not divide mn or and does not divide $\text{Disc}(f_{n,m})$. Then the following are equivalent

- 1. $p = x^2 + ny^2$ with $x \equiv 1 \pmod{m}$ and $y \equiv 0 \pmod{m}$.
- 2. $\left(\frac{-n}{p}\right) = 1$ and $f_{n,m} \equiv 0 \pmod{p}$ has an integer solution.