$$
\text { When is } p=x^{2}+n y^{2} ?
$$

David Cox wrote a book
Primes of the form $x^{2}+n y^{2}$.
The main theme is, given n, which primes can be written as $x^{2}+n y^{2}$.

1 Conditions for $p=x^{2}+n y^{2}$

1. $p=x^{2}+y^{2}$ iff $p \equiv 1(\bmod 4)$.
2. $p=x^{2}+2 y^{2}$ iff $p=2$ or $p \equiv 1,3(\bmod 8)$.
3. $p=x^{2}+3 y^{2}$ iff $p=3$ or $p \equiv 1(\bmod 8)$.
4. $p=x^{2}+5 y^{2}$ iff $p=5$ or $p \equiv 1,9(\bmod 20)$.
5. $p=x^{2}+6 y^{2}$ iff $p \equiv 1,7(\bmod 24)$.
6. $p=x^{2}+10 y^{2}$ iff $p \equiv 1,9,11,19(\bmod 40)$.
7. $p=x^{2}+13 y^{2}$ iff $p=13$ or $p \equiv 1,9,17,25,29,49(\bmod 52)$.
8. Assume $p \neq 7 . p=x^{2}+14 y^{2}$ iff $\left(\frac{-14}{p}\right)=1$ and $\left(x^{2}+1\right)^{2} \equiv 8(\bmod p)$.
9. $p=x^{2}+15 y^{2}$ iff $p \equiv 1,9,31,49(\bmod 60)$.
10. $p=x^{2}+21 y^{2}$ iff $p \equiv 1,25,37(\bmod 84)$.
11. $p=x^{2}+22 y^{2}$ iff $p \equiv 1,9,15,23,25,31,47,49,71,81(\bmod 88)$.
12. $p=x^{2}+27 y^{2}$ iff $p \equiv 1(\bmod 3)$ and 2 is a cubic residue $\bmod p$.
13. $p=x^{2}+30 y^{2}$ iff $p \equiv 1,31,49,79(\bmod 120)$.
14. $p=x^{2}+64 y^{2}$ iff $p \equiv 1(\bmod 4)$ and 2 is a quartic residue $\bmod p$.

ARE THERE ANY n SUCH THAT THE CONDITION IS SIMPLE BUT IS NOT ON THIS LIST.

2 General Theorem

Def 2.1 Let $n, m \in \mathbb{N}$ with $n, m \geq 1$. Let

$$
\begin{aligned}
& f(z)=f_{m} z^{m}+\cdots+f_{0} \\
& g(z)=g_{n} z^{n}+\cdots+g_{0}
\end{aligned}
$$

The Sylvester Matrix associated to f, g is the $(n+m) \times(n+m)$ matrix constructed as follows

1. The first row is
$\left(f_{m} f_{m-1} \cdots f_{1} f_{0} 0 \cdots 0\right)$
(There are zero 0's on the left and $n-10$'s at the right end.)
2. The second row is
$\left(0 f_{m} f_{m-1} \cdots f_{1} f_{0} \cdots 0\right)$
(There is one 0 on the left end and $n-20$'s on the right end.)
3. Let $1 \leq i \leq n$. The i th row is
$\left(0 \cdots 0 f_{m} f_{m-1} \cdots f_{1} f_{0} 0 \cdots 0\right)$
(There are $i-10$'s on the left end and $n-i 0$'s on the right end.)
4. The $n+1$ st row is
$\left.\left(g_{n} g_{n-1} \cdots g_{1} g_{0} 0 \cdots\right)^{\prime}\right)$
(There are zero 0 's on the left and $m-10$'s at the right end.)
5. The $n+2$ th row is
$\left(\begin{array}{llllll}0 & g_{n} & g_{n-1} & \cdots & g_{1} & g_{0}\end{array} \cdots\right)_{0}$
(There is one 0 on the left end and $m-20$'s on the right end.)
6. Let $1 \leq i \leq n$. The $n+i$ th row is
$\left.\left(0 \cdots 0 g_{n} g_{n-1} \cdots g_{1} g_{0} 0 \cdots\right)_{0}\right)$
(There are $i-10$'s on the left end and $m-i 0$'s on the right end.)

Example If $m=4$ and $n=3$ then the matrix is

$$
\left(\begin{array}{ccccccc}
f_{4} & f_{3} & f_{2} & f_{1} & f_{0} & 0 & 0 \\
0 & f_{4} & f_{3} & f_{2} & f_{1} & f_{0} & 0 \\
0 & 0 & f_{4} & f_{3} & f_{2} & f_{1} & f_{0} \\
g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 & 0 \\
0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 & 0 \\
0 & 0 & g_{3} & g_{2} & g_{1} & g_{0} & 0 \\
0 & 0 & 0 & g_{3} & g_{2} & g_{1} & g_{0}
\end{array}\right)
$$

Def 2.2 The Resultant of two polynomials f, g is the determinant of the Sylvester Matrix associated to f, g. We denote this $\operatorname{Res}(f, g)$.

Def 2.3 Let f be a polynomial of degree n. Let f_{n} be its lead coefficient. Let f^{\prime} be the derivative of f. The Discriminat of f is

$$
\frac{(-1)^{n(n-1) / 2}}{f_{n}} \operatorname{Res}\left(f, f^{\prime}\right)
$$

We denote this $\operatorname{Disc}(f)$.

Theorem 2.4 Let $n \equiv 0,2(\bmod 4)$ be a positive squarefree integer. Then there exists an irreducible polynomial $f_{n}(x) \in \mathbb{Z}[x]$ such that the following happens: Let p be a prime that does not divide n and does not divide $\operatorname{Disc}\left(f_{n}\right)$. Then
$p=x^{2}+n y^{2}$ iff the following both hold.

1. $\left(\frac{-n}{p}\right)=1$ and
2. $f_{n}(x) \equiv 0(\bmod p)$.

THE ABOVE THEOREM SEEMS STRANGE SINCE THERE A CONDITION ON x. THIS DOES NOT SEEM TO LEAD TO AN ALGORITHM FOR, GIVEN PRIME p, n DETERMINE IF THERE EXISTS x, y WITH $p=x^{2}+n y^{2}$.

THE BOOK ONLY EVER GIVES THE POLY IN THE CASE OF $n=$ 14. ARE OTHER POLYS KNOWN? COMPLICATED?

Theorem 2.5 Let $n \geq 1$. Then there exists a monic irreducible polynomial $f_{n}(x) \in \mathbb{Z}[x]$ of degree $h(-4 n)$ [I DO NOT KNOW WHAT THAT IS] such that the following happens: Let p be a prime that does not divide n and does not divide $\operatorname{Disc}\left(f_{n}\right)$. Then
$p=x^{2}+n y^{2}$ iff the following both hold.

1. $\left(\frac{-n}{p}\right)=1$ and
2. $f_{n}(x) \equiv 0(\bmod p)$.

Theorem 2.6 Let n, m be positive integers. Then there exists a monic irreducible polynomial $f_{n, m}(x) \in \mathbb{Z}[x]$ such that the following happens: Let p be a prime that does not divide mn or and does not divide $\operatorname{Disc}\left(f_{n, m}\right)$. Then the following are equivalent

1. $p=x^{2}+n y^{2}$ with $x \equiv 1(\bmod m)$ and $y \equiv 0(\bmod m)$.
2. $\left(\frac{-n}{p}\right)=1$ and $f_{n, m} \equiv 0(\bmod p)$ has an integer solution.
