## Homework 8 Morally Due April 16 at 3:30PM

1. (30 points) Show that NP is closed under intersection.
2. (40 points) In this problem we will look at instructions a Turing Machine could have and how they would be modeled by Boolean Formulas (by modifying the proof of the Cook-Levin Theorem)
We will DO one such problem and then assign two others.
(a) (0 points- I give the answer so that you can do the other parts more easily) Assume that a Turing Machine has an instruction of the following type:

$$
\delta(q, a)=(p, R R)
$$

which means that if the head is looking at the symbol $a$, and the state is $q$, then the head of the Turing Machine moves TWO steps to the right and the state changes to $p$. Nothing on the tape changes, though the configuration will change since the head has moved.
Give the formula that models this instruction.
ANSWER:
We first look at what happens if the configuration is $(q, a) b b$ ? Here is the sequence of parts of the configurations.

$$
\begin{array}{|c|c|c|}
\hline(q, a) & b & b \\
\hline a & b & (p, b) \\
\hline
\end{array}
$$

The formula is

$$
\left(z_{i, j,(q, a)} \wedge z_{i, j+1, b} \wedge z_{i, j+2, b}\right) \rightarrow\left(z_{i+1, j, a} \wedge z_{i+1, j+1, b} \wedge z_{i+1, j+2,(p, b)}\right)
$$

This is NOT the final answer since the configuration could have other symbols where I have the $b b$. Here is what happens if the config is $(q, a) \sigma_{1} \sigma_{2}$.

| $(q, a)$ | $\sigma_{1}$ | $\sigma_{2}$ |
| :---: | :---: | :---: |
| $a$ | $\sigma_{1}$ | $\left(p, \sigma_{2}\right)$ |

Hence the formula is

$$
\bigwedge_{\left(\sigma_{1}, \sigma_{2}\right) \in \Sigma \times \Sigma}
$$

$\left(z_{i, j,(q, a)} \wedge z_{i, j+1, \sigma_{1}} \wedge z_{i, j+2, \sigma_{2}}\right) \rightarrow\left(z_{i+1, j, a} \wedge z_{i+1, j+1, \sigma_{1}} \wedge z_{i+1, j+2,\left(p, \sigma_{2}\right)}\right)$

When you answer the questions below you NEED to have both a diagram like this one:

| $(q, a)$ | $\sigma_{1}$ | $\sigma_{2}$ |
| :---: | :---: | :---: |
| $a$ | $\sigma_{1}$ | $\left(p, \sigma_{2}\right)$ |

and the formula like this one:

$\left(z_{i, j,(q, a)} \wedge z_{i, j+1, \sigma_{1}} \wedge\left(z_{i, j+2, \sigma_{2}}\right) \rightarrow\left(z_{i+1, j, a} \wedge z_{i+1, j+1, \sigma_{1}} \wedge z_{i+1, j+2,\left(p, \sigma_{2}\right)}\right)\right.$
And NOW for the problems YOU need to do.
(b) (20 points) Do what I did above for the transition
$\delta(q, a)=(p, b, L)$
which means that if the head is looking at an $a$ and the machine is in state $q$ then it will overwrite the $a$ it is looking with by a $b$ AND change state to $p \mathbf{A N D}$ move Left.
(c) (20 points) Do what I did above for the transition
$\delta(q, a)=(p, L, b)$
which means that if the head is looking at an $a$ and the machine is in state $q$ then it will move Left AND THEN write a $b$ in the square (overwriting whatever was there) AND THEN change state to $p$.
3. (30 points) Let $a, b \in \mathrm{~N}, a, b \geq 2$. Let $B$ be solvable in time $2^{n^{b}}$ time where $n$ is the length of the input to $B$. (NOTE- in this problem the input to $B$ will be an ordered pair $(x, y)$ where $|x|=n$ and $|y|=n^{a}$ (as you will see soon). since $n \ll n^{a}$ we will consider the length of the input to $B$ to be $O\left(n^{a}\right)$.) Let

$$
A=\left\{x:\left(\exists y,|y|=|x|^{a}\right)[(x, y) \in B] .\right.
$$

Give an algorithm that determines if $x \in A$. Give $T(n)$, the time bound on the algorithm for inputs of length $n . T(n)$ should be of the form $2^{O\left(n^{c}\right)}$ for a $c$ that depends on $a, b$.

