Homework 10 Morally Due April 30 at 3:30PM

1. (30 points)
(a) (30 points) Let f be a computable function from N to N such that

$$
(\forall x, y)[x<y \rightarrow f(x)<f(y)] .
$$

(so f is increasing).
Show that the set of numbers in the image of f is decidable. Formally the image is

$$
\{y:(\exists x)[f(x)=y]\} .
$$

(b) (0 points but I want you to think about this one)

Let f be a computable function from N to N such that

$$
(\forall x, y)[x<y \rightarrow f(x) \leq f(y)] .
$$

(so f is monotonically increasing).
IS the image of f decidable? THINK ABOUT IT.
2. (30 points) Show that the following problem is DECIDABLE:

Given a polynomial $p(x)=a_{n} x^{n}+\cdots+a_{0}$ where $a_{n}, \ldots, a_{0} \in \mathbf{Z}$. determine if p have a root in \mathbf{Z}.
(Hint Your first step is to rewrite $p(x)$ as

$$
p(x)=x\left(a_{n} x^{n-1}+\cdots+a_{1}\right)+a_{0} .
$$

Your next step is to set this to 0 and see if that bounds what x can be.
3. (40 points)
(a) (10 points) Using the WS1S convention give a DFA for

$$
\{(x, y): x=y+1\} .
$$

How many states does your DFA have?
(All states are labelled A for accept or R for reject or S for stupid.)
(b) (10 points) Using the WS1S convention give a DFA for

$$
\{(x, y): x=y+2\} .
$$

How many states does your DFA have?
(All states are labelled A for accept or R for reject or S for stupid.)
(c) (20 points) Let $a \in \mathrm{~N}$ and $a \geq 1$. Using the WS1S convention give a DFA for

$$
\{(x, y): x=y+a\} .
$$

You will need to use DOT DOT DOT.
How many states does your DFA have have as a function of a ?
(All states are labelled A for accept or R for reject or S for stupid.)

