Optional Project Morally Due May 7 3:30PM

This is an OPTIONAL PROJECT. It would be more accurate to say its an OPTIONAL HW. I will not look at it until after the final is graded and the final grades have been determined.

1. If you have a D in the course and do a VERY GOOD JOB on the optional project then I will bump your grade to a C-.
2. If you have an F in the course (note- in my 40 years of teaching this has only happened twice) and you do a VERY GOOD JOB on the optional project then I will bump your grade to a D .
3. The following has actually happened. DON"T BE THIS GUY. A guy does badly on the midterm, does not do the project, gets a D in the course, and THEN asks me if he could do some kind of optional project to bring his grade up to a C. The answer was of course NO. DO NOT BE THAT GUY.
4. Students often ask me for sample problems. Consider this to be a set of sample problems whether you do it or not.
5. Should you do this if you are in no danger of failing the course? Yesits a good study aid.
6. Can this bump your grade from a C to a B or a B to an A or some such? NO. I will only look at those from the D and F students.
7. Start the project NOW. You don't want to do it at the last minute.
8. (15 points)

Let L_{1} be regular with DFA $\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$.
Let L_{2} be regular with DFA $\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$.
Let $\$$ be a symbol that is not in Σ.
Construct a DFA for the language
$\left\{x \$ y: x \notin L_{1} \wedge y \notin L_{2}\right\}$.
2. (15 points) Let G be the grammar with rules $S \rightarrow A B$
$A \rightarrow B A$
$B \rightarrow S A$
$A \rightarrow a$
$B \rightarrow b$.
Let $L=L(G)$.
In this problem you will, by hand, do the algorithm for $L \in P$ on the string $a b b$.

Do by hand the algorithm for $L \in P$ on the input $a b b a$. In particular, fill in the BLANKS below, explain your work, and determine if $a b b a \in L$. $\operatorname{GEN}[1,1]=$ BLANK.
$\operatorname{GEN}[2,2]=$ BLANK.
$\operatorname{GEN}[3,3]=$ BLANK.
$\operatorname{GEN}[4,4]=$ BLANK.
$\operatorname{GEN}[1,2]=$ BLANK.
$\operatorname{GEN}[2,3]=$ BLANK.
$\operatorname{GEN}[3,4]=$ BLANK.
$\operatorname{GEN}[1,3]=$ BLANK.
$\operatorname{GEN}[2,4]=$ BLANK.
$\operatorname{GEN}[1,4]=$ BLANK.
Since GEN[1,4] BLANK, we know that the question $a b b a \in L$? has the answer BLANK.
3. (15 points) Show that if L is in P then L^{*} is in P .
4. (20 points- 1 point each) Assume $\mathrm{P} \neq \mathrm{NP}$. The following is a list of problems that are in NP. For each one state which of the following holds:

- The problem is known to be in P
- The problem is known to NOT be in P.
- It is NOT KNOWN if the problem is in P .

NOW, here is the list:
(a) $\{(G, k): G$ is k-colorable $\}$.
(b) $\{G: G$ is 1000 -colorable $\}$.
(c) $\{(G, k): G$ has a Vertex Cover of size $k\}$.
(Recall that a Vertex Cover of $G=(V, E)$ is a set $U \subseteq V$ such that every EDGE has at least one vertex in U as an endpoint.
(d) $\{G: G$ has a Vertex Cover of size $\leq 1000\}$.
(e) $\{(G, k): G$ has a Dom Set of size $k\}$.
(Recall that a Dom Set of $G=(V, E)$ is a set $U \subseteq V$ such that every VERTEX has at least one vertex in U as a NEIGHBOR.)
(f) $\{G: G$ has a Dom Set of size $\leq 1000\}$.
(g) $\left\{n:\left(\exists n_{1}, n_{2}, n_{3}, n_{4} \in \mathrm{~N}\right)\left[\mathrm{n}=\mathrm{n}_{1}^{2}+\mathrm{n}_{2}^{2}+\mathrm{n}_{3}^{2}+\mathrm{n}_{4}^{2}\right]\right\}$
(Note that n is in binary. Note that N includes 0 . These hold for the next two problem as well.)
(h) $\{n \in \mathrm{~N}: \mathrm{n}$ is prime $\}$
(i) $\{(n, m): n$ has a factor that is $\leq m\}$
(j) $\{(G, H): G$ and H are isomorphic $\}$
5. (20 points) This problem uses WS1S notation. Draw the DFA for

$$
\{(x, X): x+2 \in X\} .
$$

(NOTE: I posted this optional project on April 4. I had not covered the material needed to do this problem yet.)
6. (15 points) Present 5 sets that are not decidable. (PRESENT THEM CLEARLY!)
(NOTE: I posted this optional project on April 4. I had not covered the material needed to do this problem yet.)

