Bounded Queries in Recursion Theory

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in$ HALT and 0 otherwise.

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in \operatorname{HALT}$ and 0 otherwise.
Consider the following problem:

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in \operatorname{HALT}$ and 0 otherwise.
Consider the following problem:
Input You are given three programs e_{1}, e_{2}, e_{3}.

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in \operatorname{HALT}$ and 0 otherwise.
Consider the following problem:
Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in \operatorname{HALT}$ and 0 otherwise.
Consider the following problem:
Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
(Output is one of $000,001,010,011,100,101,110,111$.)

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in \operatorname{HALT}$ and 0 otherwise.
Consider the following problem:
Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
(Output is one of $000,001,010,011,100,101,110,111$.
Not computable since HALT is not computable.

Asking about Three Programs

Notation $\operatorname{HALT}(e)$ is 1 if $e \in \operatorname{HALT}$ and 0 otherwise.
Consider the following problem:
Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
(Output is one of $000,001,010,011,100,101,110,111$.
Not computable since HALT is not computable.
But What if. . . See next slide.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.
What if you are only allowed 2 queries to HALT?

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.
What if you are only allowed 2 queries to HALT?
VOTE

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.
What if you are only allowed 2 queries to HALT?
VOTE

- Known cannot solve with 2 queries.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.
What if you are only allowed 2 queries to HALT?
VOTE

- Known cannot solve with 2 queries.
- Known can solve with 2 queries.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.
What if you are only allowed 2 queries to HALT?
VOTE

- Known cannot solve with 2 queries.
- Known can solve with 2 queries.
- Unknown to Science.

What if You Could Make Queries to HALT?

Input You are given three programs e_{1}, e_{2}, e_{3}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \operatorname{HALT}\left(e_{3}\right)$.
We will allow queries to HALT.
If could make 3 queries to HALT then you could solve.
What if you are only allowed 2 queries to HALT?
VOTE

- Known cannot solve with 2 queries.
- Known can solve with 2 queries.
- Unknown to Science.

Answer on next slide.

Known Can Solve With 2 Queries

We will need the following notation.

Known Can Solve With 2 Queries

We will need the following notation.
Notation Let e_{1}, e_{2}, e_{3} be programs. $A(i)$ is the program that runs all of them at the same time until i of them halt.

Known Can Solve With 2 Queries

We will need the following notation.
Notation Let e_{1}, e_{2}, e_{3} be programs. $A(i)$ is the program that runs all of them at the same time until i of them halt.
$A(i) \in$ HALT iff at least i of the programs are in HALT.

Known Can Solve With 2 Queries

We will need the following notation.
Notation Let e_{1}, e_{2}, e_{3} be programs. $A(i)$ is the program that runs all of them at the same time until i of them halt.
$A(i) \in$ HALT iff at least i of the programs are in HALT. Key Do $\geq i$ of $e_{1}, e_{2}, e_{3} \in$ HALT is a query to HALT.

Known Can Solve With 2 Queries

We will need the following notation.
Notation Let e_{1}, e_{2}, e_{3} be programs. $A(i)$ is the program that runs all of them at the same time until i of them halt.
$A(i) \in$ HALT iff at least i of the programs are in HALT. Key Do $\geq i$ of $e_{1}, e_{2}, e_{3} \in$ HALT is a query to HALT.
We will use $A(i)$ in the algorithm on the next slide.

Known Can Solve With 2 Queries

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?
2.1 If YES then Ask Are ≥ 3 of e_{1}, e_{2}, e_{3} in HALT?

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?
2.1 If YES then Ask Are ≥ 3 of e_{1}, e_{2}, e_{3} in HALT?

If YES then output 111.

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?
2.1 If YES then Ask Are ≥ 3 of e_{1}, e_{2}, e_{3} in HALT?

If YES then output 111.
If NO then exactly 2 of e_{1}, e_{2}, e_{3} are in HALT.

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?
2.1 If YES then Ask Are ≥ 3 of e_{1}, e_{2}, e_{3} in HALT?

If YES then output 111.
If NO then exactly 2 of e_{1}, e_{2}, e_{3} are in HALT. What to do? Discuss!

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?
2.1 If YES then Ask Are ≥ 3 of e_{1}, e_{2}, e_{3} in HALT?

If YES then output 111.
If NO then exactly 2 of e_{1}, e_{2}, e_{3} are in HALT.
What to do? Discuss!
RUN e_{1}, e_{2}, e_{3} UNTIL 2 of them halt. When they do, you know exactly which ones halt.

Known Can Solve With 2 Queries

1. Input e_{1}, e_{2}, e_{3}.
2. Ask Are ≥ 2 of e_{1}, e_{2}, e_{3} in HALT?
2.1 If YES then Ask Are ≥ 3 of e_{1}, e_{2}, e_{3} in HALT?

If YES then output 111.
If NO then exactly 2 of e_{1}, e_{2}, e_{3} are in HALT.
What to do? Discuss!
RUN e_{1}, e_{2}, e_{3} UNTIL 2 of them halt. When they do, you know exactly which ones halt.
2.2 If NO then similar. Find out HOW MANY of e_{1}, e_{2}, e_{3} are in HALT and then RUN them all to see which ones HALT.

Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries. He was right but wrong.

Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries. He was right but wrong. Actually wrong but has a point.

Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries. He was right but wrong. Actually wrong but has a point.
Note the following:

Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries. He was right but wrong. Actually wrong but has a point.
Note the following:
If in the algorithm the wrong information was supplied to the questions then the algorithm could \uparrow.

Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries. He was right but wrong. Actually wrong but has a point.
Note the following:
If in the algorithm the wrong information was supplied to the questions then the algorithm could \uparrow.
Known If you require the algorithm to halt even with wrong answers, then you need 3 queries.

Notes On The Result

1. Konstantine voted Known Cannot be done with 2 queries. He was right but wrong. Actually wrong but has a point.
Note the following:
If in the algorithm the wrong information was supplied to the questions then the algorithm could \uparrow.
Known If you require the algorithm to halt even with wrong answers, then you need 3 queries.
2. I did 3-queries-for-2. We will generalize on next slide.

What if Given n Programs?

Given e_{1}, \ldots, e_{n} want to know

$$
\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{n}\right)
$$

What if Given n Programs?

Given e_{1}, \ldots, e_{n} want to know

$$
\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{n}\right)
$$

Work with your neighbor on the question:
Let $n \geq 3$. How many queries to HALT do you need to find $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{n}\right)$?

Here is the Answer

n	No. of q's
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	4
9	4
10	4
11	4
12	4
13	4
14	4
15	4
16	5

Here is the Answer

n	No. of q's
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	4
9	4
10	4
11	4
12	4
13	4
14	4
15	4
16	5

If $2^{i} \leq n \leq 2^{i+1}-1$ then takes $i+1$ queries.

Here is the Answer

n	No. of q's
1	1
2	2
3	2
4	3
5	3
6	3
7	3
8	4
9	4
10	4
11	4
12	4
13	4
14	4
15	4
16	5

If $2^{i} \leq n \leq 2^{i+1}-1$ then takes $i+1$ queries.
Is there a better algorithm? Next slide looks at $n \Rightarrow 2$.

Asking about Two Programs

Consider the following problem:

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.
(Output is one of $00,01,10,11$)

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.
(Output is one of $00,01,10,11$)
VOTE

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.
(Output is one of $00,01,10,11$)
VOTE

- Known cannot solve with 1 query.

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.
(Output is one of $00,01,10,11$) VOTE

- Known cannot solve with 1 query.
- Known can solve with 1 query.

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.
(Output is one of $00,01,10,11$)
VOTE

- Known cannot solve with 1 query.
- Known can solve with 1 query.
- Unknown to Science

Asking about Two Programs

Consider the following problem:
Input You are given two programs e_{1}, e_{2}.
Output $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$.
(Output is one of $00,01,10,11$)
VOTE

- Known cannot solve with 1 query.
- Known can solve with 1 query.
- Unknown to Science

Answer on next slide.

Known Cannot Solve With 1 Query

Known Cannot Solve With 1 Query

Need a new viewpoint.

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \mathrm{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \operatorname{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.)

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \mathrm{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.) Thm If f can be computed with 1 query to X then $f \in \operatorname{EN}(2)$.

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \mathrm{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.) Thm If f can be computed with 1 query to X then $f \in \operatorname{EN}(2)$. Proof

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \mathrm{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.)
Thm If f can be computed with 1 query to X then $f \in \operatorname{EN}(2)$. Proof
$M_{1}(x)$ runs the 1-query Alg for f. Answer query YES.

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \operatorname{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.)
Thm If f can be computed with 1 query to X then $f \in \operatorname{EN}(2)$. Proof
$M_{1}(x)$ runs the 1-query Alg for f. Answer query YES.
$M_{2}(x)$ runs the 1-query Alg for f. Answer query NO.

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \operatorname{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.)
Thm If f can be computed with 1 query to X then $f \in \operatorname{EN}(2)$. Proof
$M_{1}(x)$ runs the 1-query Alg for f. Answer query YES.
$M_{2}(x)$ runs the 1-query Alg for f. Answer query NO.
Since the query asked either has answer Y or answer N , at least one of $M_{1}(x)$ and $M_{2}(x)$ will be correct.

Known Cannot Solve With 1 Query

Need a new viewpoint.
Def A function $f \in \operatorname{EN}(2)$ if there exists 2 Turing Machines M_{1}, M_{2} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), M_{2}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.)
Thm If f can be computed with 1 query to X then $f \in \operatorname{EN}(2)$. Proof
$M_{1}(x)$ runs the 1-query Alg for f. Answer query YES.
$M_{2}(x)$ runs the 1-query Alg for f. Answer query NO.
Since the query asked either has answer Y or answer N , at least one of $M_{1}(x)$ and $M_{2}(x)$ will be correct.
Note that which one is correct may vary. It may be that on $M_{1}(17) \downarrow=f(17)$ but $M_{2}(22) \downarrow=f(22)$.

Known Cannot Solve With 1 Query

Notation $(a, b)=1(c, d)$ means $a=c . \operatorname{Sim}$ for $\neq 1$.

Known Cannot Solve With 1 Query

Notation $(a, b)=1(c, d)$ means $a=c$. Sim for $\neq 1$.
Assume, BWOC that the function $f\left(e_{1}, e_{2}\right)=\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ can be computed with one query to HALT.

Known Cannot Solve With 1 Query

Notation $(a, b)=1(c, d)$ means $a=c$. Sim for \mathcal{F}_{1}.
Assume, BWOC that the function $f\left(e_{1}, e_{2}\right)=\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ can be computed with one query to HALT.
By last slide there are two TM's M_{1}, M_{2} such that $\left(\forall e_{1}, e_{2}\right)\left[\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \in\left\{M_{1}\left(e_{1}, e_{2}\right), M_{2}\left(e_{1}, e_{2}\right)\right\}\right.$.

Known Cannot Solve With 1 Query

Notation $(a, b)=1(c, d)$ means $a=c$. Sim for \mathcal{F}_{1}.
Assume, BWOC that the function $f\left(e_{1}, e_{2}\right)=\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ can be computed with one query to HALT.
By last slide there are two TM's M_{1}, M_{2} such that $\left(\forall e_{1}, e_{2}\right)\left[\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \in\left\{M_{1}\left(e_{1}, e_{2}\right), M_{2}\left(e_{1}, e_{2}\right)\right\}\right.$.
We will use this to get HALT is decidable.

Known Cannot Solve With 1 Query

Notation $(a, b)=1(c, d)$ means $a=c$. Sim for $\neq 1$.
Assume, BWOC that the function $f\left(e_{1}, e_{2}\right)=\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ can be computed with one query to HALT.
By last slide there are two TM's M_{1}, M_{2} such that $\left(\forall e_{1}, e_{2}\right)\left[\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right) \in\left\{M_{1}\left(e_{1}, e_{2}\right), M_{2}\left(e_{1}, e_{2}\right)\right\}\right.$.
We will use this to get HALT is decidable.
Two cases. On the next two slides.

Case 1

Motivation We have M_{1}, M_{2} which take two inputs

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input.

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:
Case $1\left(\forall e_{1}\right)\left(\exists e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{1}\left(e_{1}, e_{2}\right)={ }_{1} M_{2}\left(e_{1}, e_{2}\right)\right]$.

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:
Case $1\left(\forall e_{1}\right)\left(\exists e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{1}\left(e_{1}, e_{2}\right)={ }_{1} M_{2}\left(e_{1}, e_{2}\right)\right]$.

1. Input e_{1}

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:
Case $1\left(\forall e_{1}\right)\left(\exists e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{1}\left(e_{1}, e_{2}\right)={ }_{1} M_{2}\left(e_{1}, e_{2}\right)\right]$.

1. Input e_{1}
2. For $\left(e_{2}, s\right) \in \mathbb{N} \times \mathbb{N}$

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:
Case $1\left(\forall e_{1}\right)\left(\exists e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{1}\left(e_{1}, e_{2}\right)={ }_{1} M_{2}\left(e_{1}, e_{2}\right)\right]$.

1. Input e_{1}
2. For $\left(e_{2}, s\right) \in \mathbb{N} \times \mathbb{N}$
2.1 Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ for s steps.

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:
Case $1\left(\forall e_{1}\right)\left(\exists e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{1}\left(e_{1}, e_{2}\right)={ }_{1} M_{2}\left(e_{1}, e_{2}\right)\right]$.

1. Input e_{1}
2. For $\left(e_{2}, s\right) \in \mathbb{N} \times \mathbb{N}$
2.1 Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ for s steps.
2.2 If they both \downarrow and agree on first spot, output that spot. Else go to next (e_{2}, s).

Case 1

Motivation We have M_{1}, M_{2} which take two inputs But we want to solve HALT which takes one input. what if we could always find a helpful second input:
Case $1\left(\forall e_{1}\right)\left(\exists e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{1}\left(e_{1}, e_{2}\right)={ }_{1} M_{2}\left(e_{1}, e_{2}\right)\right]$.

1. Input e_{1}
2. For $\left(e_{2}, s\right) \in \mathbb{N} \times \mathbb{N}$
2.1 Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ for s steps.
2.2 If they both \downarrow and agree on first spot, output that spot. Else go to next (e_{2}, s).
This algorithm computes HALT because of the case we are in.

Case 2

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
[$M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge$ agree on first spot].
Case 2 will be negation of Case 1 .

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

1. Input e_{2} (Yes I intentionally use e_{2}.)

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

1. Input e_{2} (Yes I intentionally use e_{2}.)
2. Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ at the same time until one of them halts and has b as the first component.

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

1. Input e_{2} (Yes I intentionally use e_{2}.)
2. Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ at the same time until one of them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and have b as the second component.

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

1. Input e_{2} (Yes I intentionally use e_{2}.)
2. Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ at the same time until one of them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and have b as the second component.
Hence this is the correct answer.

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

1. Input e_{2} (Yes I intentionally use e_{2}.)
2. Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ at the same time until one of them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and have b as the second component. Hence this is the correct answer.
3. Output the second component.

Case 2

Recall: Case $1\left(\forall e_{2}\right)\left(\exists e_{1}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \downarrow \wedge M_{2}\left(e_{1}, e_{2}\right) \downarrow \wedge\right.$ agree on first spot].
Case 2 will be negation of Case 1 .
Case $2\left(\exists e_{1}\right)\left(\forall e_{2}\right)$
$\left[M_{1}\left(e_{1}, e_{2}\right) \uparrow \vee M_{2}\left(e_{1}, e_{2}\right) \uparrow \vee M_{1}\left(e_{1}, e_{2}\right) \downarrow \neq 1 M_{2}\left(e_{1}, e_{2}\right)\right]$.
We use e_{1} and $b=\operatorname{HALT}\left(e_{1}\right)$ as parameters in the algorithm.

1. Input e_{2} (Yes I intentionally use e_{2}.)
2. Run $M_{1}\left(e_{1}, e_{2}\right)$ and $M_{2}\left(e_{1}, e_{2}\right)$ at the same time until one of them halts and has b as the first component.
Because of the case we are in, the other one cannot halt and have b as the second component. Hence this is the correct answer.
3. Output the second component.

This algorithm computes HALT because of the case we are in.

The Proof is Nonconstructive!

Given an alleged algorithm for $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ that makes only one query, the proof does not tell you how to create an algorithm for HALT.

The Proof is Nonconstructive!

Given an alleged algorithm for $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ that makes only one query, the proof does not tell you how to create an algorithm for HALT.

However, it does tell you how to create an infinite number of programs, one of which solve HALT.

The Proof is Nonconstructive!

Given an alleged algorithm for $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ that makes only one query, the proof does not tell you how to create an algorithm for HALT.

However, it does tell you how to create an infinite number of programs, one of which solve HALT.

So the proof is nonconstructive.

The Proof is Nonconstructive!

Given an alleged algorithm for $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ that makes only one query, the proof does not tell you how to create an algorithm for HALT.

However, it does tell you how to create an infinite number of programs, one of which solve HALT.

So the proof is nonconstructive.
Could there be a constructive proof? No.

The Proof is Nonconstructive!

Given an alleged algorithm for $\operatorname{HALT}\left(e_{1}\right) \operatorname{HALT}\left(e_{2}\right)$ that makes only one query, the proof does not tell you how to create an algorithm for HALT.

However, it does tell you how to create an infinite number of programs, one of which solve HALT.

So the proof is nonconstructive.
Could there be a constructive proof? No.
Proven by Gasarch in 1990.

Summary of What I've Told You

Summary of What I've Told You

- 3-queries-to-HALT can be computed with 2-queries-to-HALT.

Summary of What I've Told You

- 3-queries-to-HALT can be computed with 2-queries-to-HALT.
- 2-queries-to-HALT cannot be computed with 1-query-to- X for any X.

Summary of What I've Told You

- 3-queries-to-HALT can be computed with 2-queries-to-HALT.
- 2-queries-to-HALT cannot be computed with 1-query-to- X for any X.
- Konstantine's Theorem CANNOT do 3-queries-to-HALT with 2-queries-to- X if you insist that even incorrect answers lead to converging.

Summary of What I've Told You

- 3-queries-to-HALT can be computed with 2-queries-to-HALT.
- 2-queries-to-HALT cannot be computed with 1-query-to- X for any X.
- Konstantine's Theorem CANNOT do 3-queries-to-HALT with 2-queries-to- X if you insist that even incorrect answers lead to converging.

Hence we know the exact query complexity of 3-queries-to-HALT.

What More is Known

What More is Known

- 2^{n} - 1-queries-to-HALT can be computed with n-queries-to-HALT.

What More is Known

- $2^{n}-1$-queries-to-HALT can be computed with n-queries-to-HALT.
Use Binary Search to find out how many halt and then run them to see which ones halt.

What More is Known

- $2^{n}-1$-queries-to-HALT can be computed with n-queries-to-HALT.
Use Binary Search to find out how many halt and then run them to see which ones halt.
- 2^{n}-queries-to-HALT cannot be computed with n-queries-to- X.

What More is Known

- $2^{n}-1$-queries-to-HALT can be computed with n-queries-to-HALT.
Use Binary Search to find out how many halt and then run them to see which ones halt.
- 2^{n}-queries-to-HALT cannot be computed with n-queries-to- X.

Could do this in class if had more time.

What More is Known

- 2^{n} - 1-queries-to-HALT can be computed with n-queries-to-HALT.
Use Binary Search to find out how many halt and then run them to see which ones halt.
- 2^{n}-queries-to-HALT cannot be computed with n-queries-to- X.

Could do this in class if had more time.

- Konstantine's Theorem If you want to compute m-queries to HALT and you insist that even incorrect answers lead to converging then requires m queries.

First Step in Proof about 2^{n}

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.)

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$.

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$. Proof For $\tau \in\{0,1\}^{n}$ let $M^{\tau}(x)$ do the computation of f but answer the i th query with σ_{i}.

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$. Proof For $\tau \in\{0,1\}^{n}$ let $M^{\tau}(x)$ do the computation of f but answer the i th query with σ_{i}.
Thm $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ cannot be computed with n queries.

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right]
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$. Proof For $\tau \in\{0,1\}^{n}$ let $M^{\tau}(x)$ do the computation of f but answer the i th query with σ_{i}.
Thm $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ cannot be computed with n queries.
Beginning of Proof
Assume, BWOC that $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ can be computed with n queries. By Lemma $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right) \in \operatorname{EN}\left(2^{n}\right)$.

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right] .
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$. Proof For $\tau \in\{0,1\}^{n}$ let $M^{\tau}(x)$ do the computation of f but answer the i th query with σ_{i}.
Thm $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ cannot be computed with n queries.
Beginning of Proof
Assume, BWOC that $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ can be computed with n queries. By Lemma $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right) \in \operatorname{EN}\left(2^{n}\right)$. OH ! Lets CHANGE the problem

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right] .
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$. Proof For $\tau \in\{0,1\}^{n}$ let $M^{\tau}(x)$ do the computation of f but answer the i th query with σ_{i}.
Thm $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ cannot be computed with n queries.
Beginning of Proof
Assume, BWOC that $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ can be computed with n queries. By Lemma $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right) \in \operatorname{EN}\left(2^{n}\right)$.
OH ! Lets CHANGE the problem
Thm For all $m, \operatorname{HALT}\left(e_{1}\right), \cdots, \operatorname{HALT}\left(e_{m}\right)$ is notin $\operatorname{EN}(m)$.

First Step in Proof about 2^{n}

Def A function $f \in \operatorname{EN}(m)$ if there exists m Turing Machines M_{1}, \ldots, M_{m} such that

$$
(\forall x)\left[f(x) \in\left\{M_{1}(x), \ldots, M_{m}(x)\right\}\right] .
$$

(So at least one of the TM's halts and outputs the right answer.) Lemma If f can be computed with n q's to X then $f \in \operatorname{EN}\left(2^{n}\right)$. Proof For $\tau \in\{0,1\}^{n}$ let $M^{\tau}(x)$ do the computation of f but answer the i th query with σ_{i}.
Thm $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ cannot be computed with n queries.
Beginning of Proof
Assume, BWOC that $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right)$ can be computed with n queries. By Lemma $\operatorname{HALT}\left(e_{1}\right) \cdots \operatorname{HALT}\left(e_{2^{n}}\right) \in \operatorname{EN}\left(2^{n}\right)$. OH ! Lets CHANGE the problem
Thm For all $m, \operatorname{HALT}\left(e_{1}\right), \cdots, \operatorname{HALT}\left(e_{m}\right)$ is notin $\operatorname{EN}(m)$.
The proof is by induction on m. Omitted but could do.

More Has Been Studied

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$.

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3-for-2 Alg was sequential.

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT.

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example $\operatorname{INF}=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete.

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example INF $=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete. $\operatorname{INF}\left(e_{1}\right) \cdots \operatorname{INF}\left(e_{n}\right)$ requires n queries.

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$. The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example INF $=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete. $\operatorname{INF}\left(e_{1}\right) \cdots \operatorname{INF}\left(e_{n}\right)$ requires n queries.
4. Number-of-q's is a complexity measure.

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$.
The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example $\operatorname{INF}=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete. $\operatorname{INF}\left(e_{1}\right) \cdots \operatorname{INF}\left(e_{n}\right)$ requires n queries.
4. Number-of-q's is a complexity measure.

Example

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$.
The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example $\operatorname{INF}=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete. $\operatorname{INF}\left(e_{1}\right) \cdots \operatorname{INF}\left(e_{n}\right)$ requires n queries.
4. Number-of-q's is a complexity measure.

Example How many queries does it take to find the chromatic number of an infinite graph?

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$.
The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example $\mathrm{INF}=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete. $\operatorname{INF}\left(e_{1}\right) \cdots \operatorname{INF}\left(e_{n}\right)$ requires n queries.
4. Number-of-q's is a complexity measure. Example How many queries does it take to find the chromatic number of an infinite graph?
5. q's-to-SAT in Poly Time has been studied. Some results similar. But the following is different:

More Has Been Studied

Thm Let A be undec. $\left.(\forall m)\left[A\left(e_{1}\right) \cdots A e_{m}\right) \notin \operatorname{EN}(m)\right]$.
The following have been studied:

1. Parallel q's. Our 3 -for- 2 Alg was sequential.
2. Algs where all query-paths \downarrow (Konstantine's Issue).
3. Sets other than HALT. Example $\mathrm{INF}=\left\{e:(\forall x)(\exists y, s)\left[M_{e, s) \downarrow}\right\}\right.$ is Π_{2}-complete. $\operatorname{INF}\left(e_{1}\right) \cdots \operatorname{INF}\left(e_{n}\right)$ requires n queries.
4. Number-of-q's is a complexity measure.

Example How many queries does it take to find the chromatic number of an infinite graph?
5. q's-to-SAT in Poly Time has been studied. Some results similar. But the following is different: If $\operatorname{SAT}\left(\phi_{1}\right) \cdots \operatorname{SAT}\left(\phi_{k}\right)$ can be computed in poly time with $k-1$ queries to X then $\Sigma_{2}^{p}=\Pi_{2}^{p}$, so we think not.

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well. . . its not as though l've wrote a book on it.

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well... its not as though l've wrote a book on it.
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer-ebook/dp/ B000W98WU4?ref_=ast_author_mpb

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well... its not as though l've wrote a book on it.
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer-ebook/dp/ B000W98WU4?ref_=ast_author_mpb
Oh! I did!

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well... its not as though l've wrote a book on it.
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer-ebook/dp/ B000W98WU4?ref_=ast_author_mpb
Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well... its not as though l've wrote a book on it.
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer-ebook/dp/ B000W98WU4?ref_=ast_author_mpb
Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn't have one and the Chairman was assembling a display of books by faculty.

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well... its not as though l've wrote a book on it.
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer-ebook/dp/ B000W98WU4?ref_=ast_author_mpb
Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn't have one and the Chairman was assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one one which is still there.

Is This a Bill-Topic?

Jeremy wants to know: Is this a Bill-Topic?
Well... its not as though l've wrote a book on it.
https://www.amazon.com/
Bounded-Queries-Recursion-Progress-Computer-ebook/dp/ B000W98WU4?ref_=ast_author_mpb
Oh! I did!
Published in 1991. Sold about 1000 copies, the last two in 2014.

1. I bought a copy since I didn't have one and the Chairman was assembling a display of books by faculty.
Amazon asked me if I wanted to write a review, so I wrote one one which is still there.
2. Tell story about Adam Winkler buying a copy.
