
An Application of Kolmogorov Complexity to Context Free Grammars
Exposition by William Gasarch

1 Introduction

Recall the definition of a Context Free Grammar (CFG) and of a Context
Free Language (CFL).

Def 1.1 A CFG is a tuple G = (N,Σ, R, S) such that the following holds:

• N is a finite set of nonterminals. These will be denoted by capital
letters.

• Σ is a finite alphabet. We require Σ∩N = ∅. These will be denoted by
small letters.

• R ⊆ N × (N ∪Σ)∗ and are called Rules. Here is an example of how we
write the rules

A → aBBaA

• S ∈ N , the start symbol.

Convention 1.2 We often just write the rules. The start symbol is S, the
nonterminals are the capital letters mentioned, the alphabet is the small
letters mentioned.

Notation 1.3 As usual e denotes the empty string.

Example 1.4

1. Let G be the CFG

S → aSb | bSa | SS | e

Our interest is in what strings of terminals can be generated. Here that
set is

1

{w : #a(w) = #b(w)}

where #σ(w) is the number of σ’s in w.

2. S → S1S1

S1 → S2S2

S2 → S3S3

S3 → a

The only string this can generate is a8.

Notation 1.5 Let G be a CFG with start symbol S.

1. Let A be a nonterminal. Then

A ⇒ α

means that if you start from A and apply the rules you can get to α.
Note that α may contain both terminals and nonterminals.

2. Recall that S is the start nonterminal.

L(G) = {w : S ⇒ w ∧ w ∈ Σ∗}

We can now finally define a context free language

Def 1.6 L is a CFL if there exists a CFG G such that L = L(G).

We will be looking at CFG’s of a particular form.

Def 1.7 A CFG G is in Chomsky Normal Form if the rules are all of the
following form:

1. A → BC where A,B,C ∈ N (nonterminals).

2. A → σ (where A ∈ N and σ ∈ Σ).

3. S → e (where S is the start symbol and e is the empty string).

2

Notation 1.8 We use the notation CNF CFG to mean a CFG in Chomsky
Normal Form. Do not confuse this use of CNF with Conjunctive Normal
Form.

The following is true though we are not going to prove it.

Def 1.9 If L is a CFL then there exists a CNF CFG G such that L = L(G).

2 Sizes of CFGs

Def 2.1 Let G be a CNF CFG. The size of G is the number of rules in G.

Fact 2.2 If G is a CNF CFG of size s then it has at most 3s nonterminals.
Note that each one can be represented with lg(s) +O(1) bits.

Theorem 2.3 Let L = {0n}. There is a CNF CFG G of size lg(n) +O(1).

Proof:
We will assume n is a power of 2 and that ℓ = lg(n).
Let S0 be the start symbol.
Here is the CNF CFG:
S0 → S1S1

S1 → S2S2
...

Sℓ−1 → SℓSℓ

SL → 0.
Clearly, for 1 ≤ i ≤ L− 1, S0 ⇒ S2i

i

Hence

S0 ⇒ S2ℓ

ℓ ⇒ 02
ℓ

= 0n.

The number of rules is ℓ+ 1 = lg(n) +O(1).

Exercise 1 Show that any CNF CFG for {0n} requires Ω(lg(n)) rules.

3

Theorem 2.4 Let n ∈ N be of the form m2+3m
2

. Let

w = 101102103 · · · 10m

Note that

|w| = m+ 1 + 2 + · · ·+m = m+
m(m+ 1)

2
=

m2 + 3m

2
= n.

Let L = {w}. There is a CNF CFG G of size O(
√
n log n).

Proof:
We first give a grammar that is not in Chomsky Normal Form.

The first rule is:

S → 1A11A2 · · · 1Am

For 1 ≤ i ≤ m have the CNF CFG with start symbol Ai that generates
0i and is of size lg(i) +O(1).

Since Ai has lg(i) rules, all of the Ai-grammars add up to have
lg(1) + · · ·+ lg(m) = O(m logm) rules.
We then take the rules

S → 1A11A2 · · · 1Am

and break it into O(m) rules of the right form.
Hence the final grammar is of size O(m logm) = O(

√
n log n).

Open Problem 2.5 Let L be as in Theorem ??. Prove or disprove that
there is a smaller grammar for L than O(

√
n log n).

3 Short Introduction to Kolmogorov Com-

plexity

Intuitively the string 0000000000000000000000 does not seem random. How
to make this rigorous? Note that there is a program of length lg n + O(1)
that prints out 0n:

4

for i = 1 to n print(0)

Conversely, the string 01101000110000001110101010001100 does seem ran-
dom. The shortest program to print it out might be

print(01101000110000001110101010001100)

which is roughly the length of the string itself.
Taking a cue from the above two examples, we will define the randomness

of a string x to be the size of the shortest program that prints x.

Def 3.1 Fix a programming language (we will later see that the definition
is largely independent of the choice of programming language).

1. If w ∈ {0, 1}n then C(x) is the length of the shortest program that, on
input e, prints out x. Note that C(x) ≤ n+O(1).

2. If w ∈ {0, 1}n then C(x|y) is the length of the shortest program that,
on input y, prints out x. Note that C(x|y) ≤ n+O(1).

3. A string is Kolmogorov random if C(x) ≥ n. A string is Kolmogorov
random relative to y if C(x|y) ≥ n.

We note some facts about C.

Note 3.2 Let y be a string.

1. If C1 is defined using one programming language, and C2 is defined
using another programming language, then, for all w, C1(w) and C2(w)
differ by a constant.

2. There exists a string that is Kolmogorov random relative to y. This is
a counting argument and is nonconstructive.

3. Most strings of length n are Kolmogorov random relative to y. This is
the same counting argument used to show that such strings exist.

5

4 Is There a w such that {w} requires a large

CNF CFG?

Theorem 4.1 Let w be of length n. Then there exists a CNF CFG of size
2n− 1 for {w}.

Proof:
Let w = w1 · · ·wn.
Here is the CNF CFG for {w}
S → W1U1

U1 → W2U2

U2 → W3U3.
...
Un−2 → Wn−1Wn.
W1 → w1

W2 → w2
...
Wn → wn

This CNF CFG has 2n− 1 rules.

Is There a w such that {w} Requires a large CNF CFG?
Yes.

Theorem 4.2 Let w be a Kolmogorov random string of length n. Any CNF
CFG for {w} has size at least Ω(n

lg(n)
).

Proof:
Let G be a CNF CFG for {w} with r rules. We will assume r is a power

of 2. From this we will obtain a description of w.
Since there are r rules there are at most 3r nonterminals. Hence each

nonterminal can be expressed with lg(r) + O(1) bits. Hence to describe the
entire grammar takes at most r lg(r) +O(r) bits.

From the grammar you can obtain the string w by generating strings in
all possible ways until you get one that is all terminals.

Since w is Kolmogorov random

r lg(r) +O(r) ≥ n

6

We leave it as an exercise to show this implies r = Ω(n
lg(n)

).

Open Problem 4.3 Is there a constructive proof that there is a string w
such that {w} requires a large CNF CFG?

5 The Most General Theorem on This Topic

The main result so far is that there is a string w such that any CNF CFG
G for {w} requires = Ω(n

logn
) rules. What if the CFG is not in CNF? What

if its not even a CFG? What if we seek w such that {w} requires (say)
√
n

rules? In this section we answer such questions.

Def 5.1 A Context Sensitive Grammar (CSG) is a tuple G = (N,Σ, R, S)
such that the following holds:

1. N is a finite set of nonterminals. These will be denoted by capital
letters.

2. Σ is a finite alphabet. We require Σ∩N = ∅. These will be denoted by
small letters.

3. R ⊆ (Σ ∪N)∗N(Σ ∪N)∗ × (N ∪ Σ)∗ and are called Rules. Here is an
example of how we write the rules

aAbB → aBBaA

4. S ∈ N , the start symbol.

Def 5.2

1. Let G be a CSG. If A ∈ N then L(A) is defined similarly to how it was
for a CFG.

2. L is a Context Sensitive Language (CSL) if there exists a CSG G such
that L = L(G).

Def 5.3 Let f(n) be a monotone non-decreasing function (so it could be
constant) such that 3 ≤ f(n) ≤ n. Let w be a string of length n.

7

1. An f -CFG for w is a CFG where (1) every rule has ≤ f(n) symbols,
and (2) L(G) = {w}.

2. An f -CSG for w is a CSG where (1) every rule has ≤ f(n) symbols,
and (2) L(G) = {w}.

Fact 5.4 Let w, f, n be as in Definition ??. Let G be an f -CSG for {w}
with r rules. Then G has at most r × f(n) nonterminals.

Theorem 5.5 Let f be a monotone non-decreasing function (so it may be
constant) such that 3 ≤ f(n) ≤ n. Let w be a string of length n. Then there
is an f -CFG for {w} of size O(n

f(n)
).

Proof:
The first rule is
S → A1 · · ·Af(n).
We call the Ai’s level-1 nonterminals.
For each Ai we have a rule that takes it to f(n) new nonterminals. We

call these new nonterminals level-2 nonterminals.
We keep going. The level i nonterminals each go to f(n) level i + 1

nonterminals. The first time that there are ≥ n
f(n)

level i nonterminals,
instead of mapping to another level of nonterminals, we would have the first
n

f(n)
of those nonterminals go to blocks of at most f(n) letters of w in order,

and have the remaining level-i nonterminals go to e.
We leave it to the reader to show that there are O(n

f(n)
) rules.

Theorem 5.6 Let f(n) be a monotone non-decreasing function (so it could
be constant) such that 3 ≤ f(n) ≤ n. Let g(n) be a computable monotone
increasing function such that 3 ≤ g(n) ≤ n. There exists a string w such
that the following hold.

1. There is an f -CFG for {w} of size O(g(n)
f(n)

+ lg(n)).

2. If G is an f -CSG for {w} of size r then

r = Ω
(
g(n)1−o(1)

f(n)

)
.

8

3. If f = O(1) then one can obtain

r = Ω
(
g(n)

log n

)
.

Proof:
Let w′ be a Kolmogorov random string of length g(n) relative to n. Let

w = w′0n−g(n).

1) We form the f -CFG for {w} as follows.
From Theorem ?? there is an f -CFG of size for {w′} of size

O
(
g(n)

f(n)

)
.

From Theorem ?? there is a 3-CFG for 0n−g(n) of size

≤ lg(n− g(n)) +O(1) ≤ lg(n) +O(1).

These two CFGs can easily be combined to obtain an f -CFG for {w} of
size

O
(
g(n)

f(n)
+ lg(n)

)
.

2) We show that any f -CSG for {w} has a large size.
Let G be an f -CSG for {w} with r rules. From G one can easily obtain a

description of w: generate strings with G until a string of terminals appears,
and that’s w. From w, the Turing machine for g (which is of size O(1)),
and n, one easily obtains a description of w′: Take w and strip off the last
n− g(n) 0’s. In short, w′ can be described from G.

Since G has r rules, G has at most rf(n) nonterminals. Hence each
nonterminal can be expressed with lg(rf(n)) +O(1) bits. Hence to describe
the G takes at most

rf(n)(lg(rf(n)) +O(1)) = O(rf(n) lg(rf(n))) bits .

Since w′ is a Kolmogorov random string of length g(n),

g(n) ≤ O(rf(n) lg(rf(n)))

9

Let ϵ > 0. We show that, for large enough n,

r = Ω
(
g(n)1−ϵ

f(n)

)
Let δ be such that 1

1+δ
= 1− ϵ. For large enough n we have

g(n) ≤ O(rf(n) lg(rf(n))) ≤ O((rf(n))1+δ)

Hence

r = Ω
(
g(n)1/(1+δ)

f(n)

)
.

Hence

r = Ω
(
g(n)1−ϵ

f(n)

)

3) We leave it to the reader to show, using

g(n) ≤ O(rf(n) lg(rf(n)))

and f(n) = O(1), that r = Ω(g(n)
logn

).

6 Open Questions

We gather up all of the open problems we have come across in this paper,
even those we already stated.

Recall that size means number of rules.

1. Theorem ?? gives a string w such that there is a CNF CFG for {w} of
size O(

√
n log n). Prove or disprove that there is a smaller CNF CFG

for {w}.

2. Theorem ?? states that, for all n, there is a string w of length n such
that any CNF CFG for {w} has size at least Ω(n

logn
). The proof is

nonconstructive. Can the proof be made constructive? Formally, is
there a poly time program P such that P (0n) is a string w of length n
such that any CNF CFG for {w} has size at least Ω(n

logn
)? Perhaps we

will get a not-as-good bound that is constructive.

10

3. A corollary to Theorem ?? is that, for all n, there is a string w of length
n such that any CNF CFG for {w} has size at least Ω(

√
n

logn
). The proof

is nonconstructive. Can the proof be made constructive?

4. In the last two open questions we asked for constructive proofs for
strings w such that any CNF CFG has size at least Ω(n

logn
) and at least

Ω(
√
n

logn
). One can replace n and

√
n with any computable increasing

function of n. Note that for log n we have an answer: take w = 0n.
How much higher than log n is it that there are no constructive proofs?

5. Are there strings w such that the smallest CSG for {w} is much smaller
than the smallest CFG for {w}? As a concrete example, is there a CSL
of size ≪ log n for 0n?

7 Acknowledgments

We thank Ming Li, Erika Melder, and Paul Vitanyi for helpful discussions.

11

