
Undec Problems about
CFG’s

April 25, 2024

Goals

Def If G is a CFG then L(G) is the language that G generates.

We will do the following:

1. Show that the following problem is undec:
Given a CFG G , determine if L(G) = Σ∗

(We denote this problem CFGΣ∗.)

2. Discuss the exact complexity of that problem.

3. Discuss the following problem: Given a CFG G of size n such
that L(G) is regular, bound the size of the DFA for L(G).

Goals

Def If G is a CFG then L(G) is the language that G generates.

We will do the following:

1. Show that the following problem is undec:
Given a CFG G , determine if L(G) = Σ∗

(We denote this problem CFGΣ∗.)

2. Discuss the exact complexity of that problem.

3. Discuss the following problem: Given a CFG G of size n such
that L(G) is regular, bound the size of the DFA for L(G).

Goals

Def If G is a CFG then L(G) is the language that G generates.

We will do the following:

1. Show that the following problem is undec:
Given a CFG G , determine if L(G) = Σ∗

(We denote this problem CFGΣ∗.)

2. Discuss the exact complexity of that problem.

3. Discuss the following problem: Given a CFG G of size n such
that L(G) is regular, bound the size of the DFA for L(G).

Goals

Def If G is a CFG then L(G) is the language that G generates.

We will do the following:

1. Show that the following problem is undec:
Given a CFG G , determine if L(G) = Σ∗

(We denote this problem CFGΣ∗.)

2. Discuss the exact complexity of that problem.

3. Discuss the following problem: Given a CFG G of size n such
that L(G) is regular, bound the size of the DFA for L(G).

Goals

Def If G is a CFG then L(G) is the language that G generates.

We will do the following:

1. Show that the following problem is undec:
Given a CFG G , determine if L(G) = Σ∗

(We denote this problem CFGΣ∗.)

2. Discuss the exact complexity of that problem.

3. Discuss the following problem: Given a CFG G of size n such
that L(G) is regular, bound the size of the DFA for L(G).

Goals

Def If G is a CFG then L(G) is the language that G generates.

We will do the following:

1. Show that the following problem is undec:
Given a CFG G , determine if L(G) = Σ∗

(We denote this problem CFGΣ∗.)

2. Discuss the exact complexity of that problem.

3. Discuss the following problem: Given a CFG G of size n such
that L(G) is regular, bound the size of the DFA for L(G).

The Problem CFGΣ∗

April 25, 2024

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.

C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.

C ̸⊢ D means from C the TM does not go to D.

Conventions for TM

(This differs from the convention used for the Cook-Levin Thm)

1) Assume the TM M has start state s.

Input x . Head of TM is just to the right of x . Initial Config:

#x(s,#)# · · ·#

2) If a string is accepted the final config is

#(h,Y)# · · ·#

3) Let C and D be configs.
C ⊢ D means from C the TM goes to D.
C ̸⊢ D means from C the TM does not go to D.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse.

aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .
Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.
▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse. aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .
Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.
▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse. aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .

Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.
▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse. aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .
Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.
▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse. aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .
Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.

▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse. aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .
Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.
▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

Connect TM’s to CFG’s

Recall If w ∈ Σ∗ then wR is the reverse. aabaR = abaa.

Let e, x ∈ N. Consider Turing Machine Me .
Def ACCe,x is the set of all sequences of config’s represented by

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

such that

▶ |C1| = |C2| = · · · = |Cs |.
▶ C1,C2, . . . ,Cs represents an accepting computation of Me(x).

▶ We will later see why we do this funny thing with reversals.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.

Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.

If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.

Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x .

Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.

Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts.

Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.

Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration.

Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.

Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths.

HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.

Sequence is not a valid computation. In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation.

In these slides.

ACCe,x is a CFG!

Me ’s alphabet: {a, b,Y ,N,#}. Y and N only used in final config.
Our CFG will use alphabet
Σ = {a, b,Y ,N,#, $} ∪ Q × {a, b,Y ,N,#}.
If w /∈ ACCe,x then one of the following happens:

1. w ’s prefix is not #x(s,#)#∗$.
Initial config is not what you get if the input is x . Regular.

2. w ’s suffix is not $#(h,Y)#∗$.
Final configuration does not accepts. Regular.

3. w ∈ Σ∗{Y ,N}Σ∗$Σ∗$.
Y or N appears before final configuration. Regular.

4. w ∈ Σ∗CD$Σ∗ where C ,D ∈ {a, b,#}∗ and |C | ≠ |D|.
Two configs of different lengths. HW CFL.

5. w ∈ Σ∗CDR$Σ∗ where C ̸⊢ D.
Sequence is not a valid computation. In these slides.

An Example

Want CFG that accepts a string with CDR$ where C ̸⊢ D.

If δ(q, b) = (p, a)

ρ (q, b) η

ρ (p, a) η

We want a CFG that will generate a string where the (q, b) in C
does not lead to a (p, a). For all σ ̸= (p, a) we produce a CFG that
will put σ in the right place.
We use I to denote the instruction δ(q, b) = (p, a)

Continued on the next slides.

An Example

Want CFG that accepts a string with CDR$ where C ̸⊢ D.
If δ(q, b) = (p, a)

ρ (q, b) η

ρ (p, a) η

We want a CFG that will generate a string where the (q, b) in C
does not lead to a (p, a). For all σ ̸= (p, a) we produce a CFG that
will put σ in the right place.
We use I to denote the instruction δ(q, b) = (p, a)

Continued on the next slides.

An Example

Want CFG that accepts a string with CDR$ where C ̸⊢ D.
If δ(q, b) = (p, a)

ρ (q, b) η

ρ (p, a) η

We want a CFG that will generate a string where the (q, b) in C
does not lead to a (p, a). For all σ ̸= (p, a) we produce a CFG that
will put σ in the right place.

We use I to denote the instruction δ(q, b) = (p, a)

Continued on the next slides.

An Example

Want CFG that accepts a string with CDR$ where C ̸⊢ D.
If δ(q, b) = (p, a)

ρ (q, b) η

ρ (p, a) η

We want a CFG that will generate a string where the (q, b) in C
does not lead to a (p, a). For all σ ̸= (p, a) we produce a CFG that
will put σ in the right place.
We use I to denote the instruction δ(q, b) = (p, a)

Continued on the next slides.

An Example

Want CFG that accepts a string with CDR$ where C ̸⊢ D.
If δ(q, b) = (p, a)

ρ (q, b) η

ρ (p, a) η

We want a CFG that will generate a string where the (q, b) in C
does not lead to a (p, a). For all σ ̸= (p, a) we produce a CFG that
will put σ in the right place.
We use I to denote the instruction δ(q, b) = (p, a)

Continued on the next slides.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.

S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ

T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.

T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.

Next slide to finish this up.

We use that Weird $C1$CR
2 $ Thing

Recall that our strings are of the form:

$C1$C
R
2 $C3$C

R
4 $ · · · $CR

s $

Let σ ̸= (p, a). We want strings that have this substring:

(q, b)w1$w2σ where |w1| = |w2| This is where use funny R thing.

We first generate the substrings.
S→(q, b)Tσ
T→τT τ for all τ ∈ {a, b,#}.
T→$

We call this grammar GI ,σ.
Next slide to finish this up.

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.
Let G 1

I ,σ be the CFG for Σ∗L(GI ,σ)Σ
∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?
Next slide

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.
Let G 1

I ,σ be the CFG for Σ∗L(GI ,σ)Σ
∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?
Next slide

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.

Let G 1
I ,σ be the CFG for Σ∗L(GI ,σ)Σ

∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?
Next slide

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.
Let G 1

I ,σ be the CFG for Σ∗L(GI ,σ)Σ
∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?
Next slide

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.
Let G 1

I ,σ be the CFG for Σ∗L(GI ,σ)Σ
∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?
Next slide

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.
Let G 1

I ,σ be the CFG for Σ∗L(GI ,σ)Σ
∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?

Next slide

Final CFG for this one instruction

δ(q, b) = (p, a). Recall that this is instruction I .

ρ (q, b) η

ρ (p, a) η

For every σ ̸= (p, a) we have grammar GI ,σ.
Let G 1

I ,σ be the CFG for Σ∗L(GI ,σ)Σ
∗.

Let GI be the CFG for
⋃

σ ̸=(p,a) L(G
1
I ,σ).

What about the other instructions?
Next slide

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .

Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Final CFG for all instruction

Let the instructions be I1, . . . , Im.

By similar methods you can get GI2 , GI3 , . . ., GIm . (HW)

SO our final grammar for C ̸⊢ D is

m⋃
i=1

GIi

Three points about GI for any instruction I .

1. GI will generates all sequences of configs which have adjacent
C and D that should use instruction I but do not.

2. GI will generate many other strings that are in
ACCe,x .Thats fine.

3. We are not quite done yet. Next slide.

Another Way for C ̸⊢ D

δ(q, b) = (p, a).

a a b b (q, b)

b a b b (p, a)

Its possible that around the head it looks like C ⊢ D but away
from the head is where you see C ̸⊢ D.

A CFG for this case is similar to GI ,σ. We omit it. (HW)

Another Way for C ̸⊢ D

δ(q, b) = (p, a).

a a b b (q, b)

b a b b (p, a)

Its possible that around the head it looks like C ⊢ D but away
from the head is where you see C ̸⊢ D.

A CFG for this case is similar to GI ,σ. We omit it. (HW)

Another Way for C ̸⊢ D

δ(q, b) = (p, a).

a a b b (q, b)

b a b b (p, a)

Its possible that around the head it looks like C ⊢ D but away
from the head is where you see C ̸⊢ D.

A CFG for this case is similar to GI ,σ. We omit it. (HW)

Another Way for C ̸⊢ D

δ(q, b) = (p, a).

a a b b (q, b)

b a b b (p, a)

Its possible that around the head it looks like C ⊢ D but away
from the head is where you see C ̸⊢ D.

A CFG for this case is similar to GI ,σ. We omit it. (HW)

WAKE UP. No more Low Level TM Stuff

The last few slides established the following:

∃ an algorithm: given e, x , create a CFG G such that

L(G) = ACCe,x

We use this algorithm and to not need to know its details.

WAKE UP. No more Low Level TM Stuff

The last few slides established the following:

∃ an algorithm: given e, x , create a CFG G such that

L(G) = ACCe,x

We use this algorithm and to not need to know its details.

WAKE UP. No more Low Level TM Stuff

The last few slides established the following:

∃ an algorithm: given e, x , create a CFG G such that

L(G) = ACCe,x

We use this algorithm and to not need to know its details.

HALT ≤T CFGΣ∗: What does it Mean

Recall CFGΣ∗: Given a CFG G determine if L(G) = Σ∗.

On the next slide we will present an algorithm for HALT that
makes calls to CFGΣ∗

We denote this HALT ≤T CFGΣ∗.

We will not define ≤T formally.

The T stands for Turing.

HALT ≤T CFGΣ∗: What does it Mean

Recall CFGΣ∗: Given a CFG G determine if L(G) = Σ∗.

On the next slide we will present an algorithm for HALT that
makes calls to CFGΣ∗

We denote this HALT ≤T CFGΣ∗.

We will not define ≤T formally.

The T stands for Turing.

HALT ≤T CFGΣ∗: What does it Mean

Recall CFGΣ∗: Given a CFG G determine if L(G) = Σ∗.

On the next slide we will present an algorithm for HALT that
makes calls to CFGΣ∗

We denote this HALT ≤T CFGΣ∗.

We will not define ≤T formally.

The T stands for Turing.

HALT ≤T CFGΣ∗: What does it Mean

Recall CFGΣ∗: Given a CFG G determine if L(G) = Σ∗.

On the next slide we will present an algorithm for HALT that
makes calls to CFGΣ∗

We denote this HALT ≤T CFGΣ∗.

We will not define ≤T formally.

The T stands for Turing.

HALT ≤T CFGΣ∗: What does it Mean

Recall CFGΣ∗: Given a CFG G determine if L(G) = Σ∗.

On the next slide we will present an algorithm for HALT that
makes calls to CFGΣ∗

We denote this HALT ≤T CFGΣ∗.

We will not define ≤T formally.

The T stands for Turing.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.

Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.

Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .

Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.

If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.

If YES then (e, x) /∈ HALT.

HALT ≤T CFGΣ∗

Recall ∃ algorithm: given e, x , produce CFG for ACCe,x .

(e, x) ∈ HALT→|ACCe,x | = 1 → ACCe,x ̸= Σ∗.

(e, x) /∈ HALT → ACCe,x = ∅ → ACCe,x = Σ∗.

Thm L(G) = Σ∗ is undec.
Assume, BWOC that L(G) = Σ∗ is dec. Can use to solve HALT.
Given e, x , create CFG G for ACCe,x .
Test if L(G) = Σ∗.
If NO then (e, x) ∈ HALT.
If YES then (e, x) /∈ HALT.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT

Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

How Hard is CFGΣ∗?

Valiant (1976) proved HALT ≤T CFGΣ∗

Is the following true? CFGΣ∗ ≤T HALT
Vote

1. Yes and this is known and people care.

2. No and this is known and people care.

3. Only Bill cares and its unknown.

4. Only Bill cares and he showed YES.

5. Only Bill cares and he showed NO.

Answer on next slide.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.

Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

CFGΣ∗ ≡T INF

INF = {e : (∀y)(∃x ≥ y)(∃s)[Me,s(x) ↓]}.

Known HALT <T INF.
Hence HALT <T CFGΣ∗.

How do we know nobody else cares?

Valiant’s paper was 1976. Bill’s was 2015.

So nobody worked on it between 1976 and 2014.

Bounding Functions

April 25, 2024

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bounding Function

G is CFG, |G | is size, M is DFA, |M| is numb of states.

A bounding function for (DFA,CFG) is a function f such that
the following holds:

(∀n)(∀G)[

(|G | ≤ n∧L(G) ∈ REG)→(∃DFA M)[L(G) = L(M)∧ |M| ≤ f (n)]

]

Vote

1. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 2n)[L(M) = L(G)].

2. (|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ 22
n
)[L(M) = L(G)].

3. (|G | ≤ n∧L(G) Reg)→(∃M, |M| ≤ ACK(n))[L(M) = L(G)].

4. There is no computable f such that
(|G | ≤ n ∧ L(G) Reg)→(∃M, |M| ≤ f(n))[L(M) = L(G)].

Answer on the next slide.

Bdding Funct for (DFA,CFG) is Not Computable

(e, x) ∈ HALT→|ACCe,x | = 1.

ACCe,x is regular so ACCe,x is regular.

(e, x) /∈ HALT → ACCe,x = ∅.
ACCe,x is regular so ACCe,x is regular.

Bdding Funct for (DFA,CFG) is Not Computable

(e, x) ∈ HALT→|ACCe,x | = 1.

ACCe,x is regular so ACCe,x is regular.

(e, x) /∈ HALT → ACCe,x = ∅.
ACCe,x is regular so ACCe,x is regular.

Bdding Funct for (DFA,CFG) is Not Computable

(e, x) ∈ HALT→|ACCe,x | = 1.

ACCe,x is regular so ACCe,x is regular.

(e, x) /∈ HALT → ACCe,x = ∅.
ACCe,x is regular so ACCe,x is regular.

Bdding Funct for (DFA,CFG) is Not Computable

(e, x) ∈ HALT→|ACCe,x | = 1.

ACCe,x is regular so ACCe,x is regular.

(e, x) /∈ HALT → ACCe,x = ∅.

ACCe,x is regular so ACCe,x is regular.

Bdding Funct for (DFA,CFG) is Not Computable

(e, x) ∈ HALT→|ACCe,x | = 1.

ACCe,x is regular so ACCe,x is regular.

(e, x) /∈ HALT → ACCe,x = ∅.
ACCe,x is regular so ACCe,x is regular.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.

Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.

So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .

For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Bdding Funct for (DFA,CFG) is Not Comp (cont)

Assume there is a computable bdding function f for (DFA,CFG).

1. Input (e, x). Create CFG G for ACCe,x .

2. Let n be the size of G . Compute f (n).

3. Let D1, . . . ,DN be all DFA’s with ≤ f (n) states.
Key The DFA for ACCe,x has ≤ f (n) states so the DFA for
ACCe,x has ≤ f (n) states.
So the DFA for ACCe,x is one of D1, . . . ,DN .

4. Find all Di ’s that accept only one string: Di1 , . . . ,DiM .
For 1 ≤ j ≤ M let L(Dij) = wj .

(∃j)[wj is accepting comp for Me(x)]→ (e, x) ∈ HALT.

If not then (e, x) /∈ HALT.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.

Next slide.

Concrete Thoughts

The following is false:

For all n,
(∀G)[|G | ≤ n ∧ L(G) Reg]→(∃M, |M| ≤ 22

n
)[L(M) = L(G)].

Hence the following is true: There exists n,
(∃G)[|G | ≤ n ∧ L(G) Reg]→(∀M, |M| ≤ 22

n
)[L(M) ̸= L(G)].

This means that any DFA for M has ≥ 22
n
states.

So there is a regular language where the DFA is much smaller
than the CFG.

You can replace 22
n
with any computable function.

More is know.
Next slide.

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n
with
For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n
with
For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n
with
For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n
with
For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace

There are inf number of n
with
For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n

with
For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n
with

For all but a finite number of n

Concrete Thoughts (cont)

One can show the following:
There are inf number of n such that there exists CFG Gn with:

1. Gn has size n and L(Gn) is regular.

2. Any DFA for L(Gn) is of size ≥ 22
n
.

22
n
can be replaced by any computable function.

Open Bill Question can you replace
There are inf number of n
with
For all but a finite number of n

Final Notes

1. Hay (1981) proved that the bounding function for
(DFA,CFG) can compute HALT. Note that HALT is Σ1. I
showed you her proof.

2. Gasarch (2015) proved that the bounding function for
(DFA,CFG) can compute INF. Note that INF is Π2. He also
showed there is a bounding function for (DFA,CFG) of the
same complexity as INF. Hence the complexity is solved.

Final Notes

1. Hay (1981) proved that the bounding function for
(DFA,CFG) can compute HALT. Note that HALT is Σ1. I
showed you her proof.

2. Gasarch (2015) proved that the bounding function for
(DFA,CFG) can compute INF. Note that INF is Π2. He also
showed there is a bounding function for (DFA,CFG) of the
same complexity as INF. Hence the complexity is solved.

Final Notes

1. Hay (1981) proved that the bounding function for
(DFA,CFG) can compute HALT. Note that HALT is Σ1. I
showed you her proof.

2. Gasarch (2015) proved that the bounding function for
(DFA,CFG) can compute INF. Note that INF is Π2. He also
showed there is a bounding function for (DFA,CFG) of the
same complexity as INF. Hence the complexity is solved.

