Undec Problems about CFG's

April 25, 2024

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Def If G is a CFG then L(G) is the language that G generates.

Def If G is a CFG then L(G) is the language that G generates. We will do the following:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Def If G is a CFG then L(G) is the language that G generates. We will do the following:

1. Show that the following problem is undec: Given a CFG G, determine if $L(G) = \Sigma^*$

Def If G is a CFG then L(G) is the language that G generates. We will do the following:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 Show that the following problem is undec: Given a CFG G, determine if L(G) = Σ* (We denote this problem CFGΣ*.)

Def If G is a CFG then L(G) is the language that G generates. We will do the following:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. Show that the following problem is undec: **Given a CFG** *G*, determine if $L(G) = \Sigma^*$ (We denote this problem CFG Σ^* .)
- 2. Discuss the exact complexity of that problem.

Def If G is a CFG then L(G) is the language that G generates. We will do the following:

- Show that the following problem is undec: Given a CFG G, determine if L(G) = Σ* (We denote this problem CFGΣ*.)
- 2. Discuss the exact complexity of that problem.
- 3. Discuss the following problem: Given a CFG G of size n such that L(G) is regular, bound the size of the DFA for L(G).

The Problem $CFG\Sigma^*$

April 25, 2024

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

(This differs from the convention used for the Cook-Levin Thm)

(This differs from the convention used for the Cook-Levin Thm)1) Assume the TM *M* has start state *s*.

- イロト イロト イヨト イヨト ヨー のへぐ

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

 $\#x(s,\#)\#\cdots\#$

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

 $\#x(s,\#)\#\cdots\#$

2) If a string is accepted the final config is

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

 $\#x(s,\#)\#\cdots\#$

2) If a string is accepted the final config is

 $#(h, Y)#\cdots#$

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

 $\#x(s,\#)\#\cdots\#$

2) If a string is accepted the final config is

 $\#(h, Y)\#\cdots\#$

3) Let C and D be configs.

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

 $\#x(s,\#)\#\cdots\#$

2) If a string is accepted the final config is

 $#(h, Y)#\cdots#$

3) Let C and D be configs. $C \vdash D$ means from C the TM goes to D.

(This differs from the convention used for the Cook-Levin Thm)
1) Assume the TM *M* has start state *s*.
Input *x*. Head of TM is just to the right of *x*. Initial Config:

 $\#x(s,\#)\#\cdots\#$

2) If a string is accepted the final config is

 $#(h, Y)#\cdots#$

3) Let C and D be configs. $C \vdash D$ means from C the TM goes to D. $C \nvDash D$ means from C the TM does not go to D.

Recall If $w \in \Sigma^*$ then w^R is the reverse.

Recall If $w \in \Sigma^*$ then w^R is the reverse. $aaba^R = abaa$.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Recall If $w \in \Sigma^*$ then w^R is the reverse. $aaba^R = abaa$. Let $e, x \in \mathbb{N}$. Consider Turing Machine M_e .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall If $w \in \Sigma^*$ then w^R is the reverse. $aaba^R = abaa$. Let $e, x \in \mathbb{N}$. Consider Turing Machine M_e . **Def** $ACC_{e,x}$ is the set of all sequences of config's represented by

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

such that

Recall If $w \in \Sigma^*$ then w^R is the reverse. $aaba^R = abaa$. Let $e, x \in \mathbb{N}$. Consider Turing Machine M_e . **Def** $ACC_{e,x}$ is the set of all sequences of config's represented by

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

such that

▶
$$|C_1| = |C_2| = \cdots = |C_s|.$$

Recall If $w \in \Sigma^*$ then w^R is the reverse. $aaba^R = abaa$. Let $e, x \in \mathbb{N}$. Consider Turing Machine M_e . **Def** $ACC_{e,x}$ is the set of all sequences of config's represented by

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

such that

- ► $|C_1| = |C_2| = \cdots = |C_s|.$
- C_1, C_2, \ldots, C_s represents an accepting computation of $M_e(x)$.

ション ふゆ アメビア メロア しょうくしゃ

Recall If $w \in \Sigma^*$ then w^R is the reverse. $aaba^R = abaa$. Let $e, x \in \mathbb{N}$. Consider Turing Machine M_e . **Def** $ACC_{e,x}$ is the set of all sequences of config's represented by

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

such that

- ► $|C_1| = |C_2| = \cdots = |C_s|.$
- C_1, C_2, \ldots, C_s represents an accepting computation of $M_e(x)$.

▶ We will later see why we do this funny thing with reversals.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$. If $w \notin ACC_{e,x}$ then one of the following happens:

 $\begin{array}{l} M_e \text{'s alphabet: } \{a, b, Y, N, \#\}. \ Y \text{ and } N \text{ only used in final config.} \\ \text{Our CFG will use alphabet} \\ \Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}. \end{array}$

ション ふゆ アメビア メロア しょうくしゃ

If $w \notin ACC_{e,x}$ then one of the following happens:

1. *w*'s prefix is not $\#x(s, \#) \#^*$.

 $\begin{aligned} & M_e\text{'s alphabet: } \{a, b, Y, N, \#\}. \ Y \text{ and } N \text{ only used in final config.} \\ & \text{Our CFG will use alphabet} \\ & \Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}. \end{aligned}$

If $w \notin ACC_{e,x}$ then one of the following happens:

w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x.

 $\begin{aligned} & M_e\text{'s alphabet: } \{a, b, Y, N, \#\}. \ Y \text{ and } N \text{ only used in final config.} \\ & \text{Our CFG will use alphabet} \\ & \Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}. \end{aligned}$

If $w \notin ACC_{e,x}$ then one of the following happens:

1. w's prefix is not $\#x(s, \#)\#^*$. Initial config is not what you get if the input is x. Regular.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

1. w's prefix is not $\#x(s, \#)\#^*$. Initial config is not what you get if the input is x. Regular.

2. *w*'s suffix is not $\#(h, Y) \#^*$.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.

2. w's suffix is not $\#(h, Y) \#^*$.

Final configuration does not accepts.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.

w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.

w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.

3. $w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.

- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.
- 3. $w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$.

Y or N appears before final configuration.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

- w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.
- 3. $w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$.

Y or N appears before final configuration. Regular.
M_e's alphabet: $\{a, b, Y, N, \#\}$. *Y* and *N* only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

- w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.
- 3. $w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$.

Y or N appears before final configuration. Regular.

4. $w \in \Sigma^* CD \Sigma^*$ where $C, D \in \{a, b, \#\}^*$ and $|C| \neq |D|$.

M_e's alphabet: $\{a, b, Y, N, \#\}$. *Y* and *N* only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{e,x}$ then one of the following happens:

- w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.
- 3. $w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$.

Y or N appears before final configuration. Regular.

4. $w \in \Sigma^* CDS\Sigma^*$ where $C, D \in \{a, b, \#\}^*$ and $|C| \neq |D|$. Two configs of different lengths.

M_e's alphabet: $\{a, b, Y, N, \#\}$. *Y* and *N* only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

If $w \notin ACC_{ex}$ then one of the following happens:

- 1. w's prefix is not $\#x(s, \#)\#^*$. Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.
- 3. $w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$.

Y or N appears before final configuration. Regular.

4. $w \in \Sigma^* CDS\Sigma^*$ where $C, D \in \{a, b, \#\}^*$ and $|C| \neq |D|$. Two configs of different lengths. HW CFL.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

 $\mathcal{L} = \{a, b, f, N, \#, \$\} \cup Q \times \{a, b, f, N, \#\}.$

If $w \notin ACC_{e,x}$ then one of the following happens:

- w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.

3.
$$w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$$
.

Y or N appears before final configuration. Regular.

4. $w \in \Sigma^* C^D \Sigma^*$ where $C, D \in \{a, b, \#\}^*$ and $|C| \neq |D|$. Two configs of different lengths. HW CFL.

5. $w \in \Sigma^* C D^R \Sigma^*$ where $C \not\vdash D$.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}$.

 $\Sigma = \{a, b, Y, N, \#, \mathfrak{h}\} \cup Q \times \{a, b, Y, N, \#\}.$

If $w \notin ACC_{e,x}$ then one of the following happens:

- w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.

3.
$$w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$$
.

Y or N appears before final configuration. Regular.

- 4. $w \in \Sigma^* C^D \Sigma^*$ where $C, D \in \{a, b, \#\}^*$ and $|C| \neq |D|$. Two configs of different lengths. HW CFL.
- 5. $w \in \Sigma^* C^D^R \Sigma^*$ where $C \not\vdash D$. Sequence is not a valid computation.

 M_e 's alphabet: $\{a, b, Y, N, \#\}$. Y and N only used in final config. Our CFG will use alphabet $\sum_{n=1}^{\infty} \{a, b, Y, N, \#\} + O \times \{a, b, Y, N, \#\}$

 $\Sigma = \{a, b, Y, N, \#, \$\} \cup Q \times \{a, b, Y, N, \#\}.$

If $w \notin ACC_{e,x}$ then one of the following happens:

- w's prefix is not #x(s, #)#*\$.
 Initial config is not what you get if the input is x. Regular.
- w's suffix is not \$#(h, Y)#*\$.
 Final configuration does not accepts. Regular.

3.
$$w \in \Sigma^* \{Y, N\} \Sigma^* \Sigma^*$$
.

Y or N appears before final configuration. Regular.

- 4. $w \in \Sigma^* C^D \Sigma^*$ where $C, D \in \{a, b, \#\}^*$ and $|C| \neq |D|$. Two configs of different lengths. HW CFL.
- 5. $w \in \Sigma^* C^D^R \Sigma^*$ where $C \not\vdash D$. Sequence is not a valid computation. In these slides.

Want CFG that accepts a string with $C^D P$ where $C \not\vdash D$.

Want CFG that accepts a string with $C^D = (p, a)$ where $C \neq D$. If $\delta(q, b) = (p, a)$

ρ	(q, b)	η
ρ	(p, a)	η

(ロト (個) (E) (E) (E) (E) のへの

Want CFG that accepts a string with $C^D = (p, a)$ where $C \not\vdash D$. If $\delta(q, b) = (p, a)$

ρ	(q, b)	η
ρ	(p, a)	η

We want a CFG that will generate a string where the (q, b) in C does not lead to a (p, a). For all $\sigma \neq (p, a)$ we produce a CFG that will put σ in the right place.

ション ふぼう メリン メリン しょうくしゃ

Want CFG that accepts a string with $C^D = (p, a)$ where $C \not\vdash D$. If $\delta(q, b) = (p, a)$

ρ	(q, b)	η
ρ	(p, a)	η

We want a CFG that will generate a string where the (q, b) in C does not lead to a (p, a). For all $\sigma \neq (p, a)$ we produce a CFG that will put σ in the right place.

ション ふぼう メリン メリン しょうくしゃ

We use *I* to denote the instruction $\delta(q, b) = (p, a)$

Want CFG that accepts a string with $C^D = (p, a)$ where $C \not\vdash D$. If $\delta(q, b) = (p, a)$

ρ	(q, b)	η
ρ	(p, a)	η

We want a CFG that will generate a string where the (q, b) in C does not lead to a (p, a). For all $\sigma \neq (p, a)$ we produce a CFG that will put σ in the right place.

We use *I* to denote the instruction $\delta(q, b) = (p, a)$

Continued on the next slides.

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recall that our strings are of the form:

```
C_1 C_2^R C_3 C_4^R \cdots C_s^R
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\sigma \neq (p, a)$. We want strings that have this substring:

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1 w_2 \sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1$ \$ $w_2\sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

We first generate the substrings.

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1 w_2 \sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

We first generate the substrings. $S \rightarrow (q, b) T \sigma$

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1 w_2 \sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

We first generate the substrings. $S \rightarrow (q, b) T \sigma$ $T \rightarrow \tau T \tau$ for all $\tau \in \{a, b, \#\}$.

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1$ \$ $w_2\sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

We first generate the substrings. $S \rightarrow (q, b) T \sigma$ $T \rightarrow \tau T \tau$ for all $\tau \in \{a, b, \#\}$. $T \rightarrow \$$

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1$ \$ $w_2\sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

We first generate the substrings. $S \rightarrow (q, b) T \sigma$ $T \rightarrow \tau T \tau$ for all $\tau \in \{a, b, \#\}$. $T \rightarrow \$$

We call this grammar $G_{I,\sigma}$.

Recall that our strings are of the form:

$$C_1 C_2^R C_3 C_4^R \cdots C_s^R$$

Let $\sigma \neq (p, a)$. We want strings that have this substring:

 $(q, b)w_1$ \$ $w_2\sigma$ where $|w_1| = |w_2|$ This is where use funny R thing.

ション ふぼう メリン メリン しょうくしゃ

We first generate the substrings. $S \rightarrow (q, b) T \sigma$ $T \rightarrow \tau T \tau$ for all $\tau \in \{a, b, \#\}$. $T \rightarrow \$$

We call this grammar $G_{I,\sigma}$. Next slide to finish this up.

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

(ロト (個) (E) (E) (E) (E) のへの

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

ρ	(q, b)	η
ρ	(p, a)	η

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

ρ	(q, b)	η
ρ	(p, a)	η

・ロト・日本・モト・モト・モー うへぐ

For every $\sigma \neq (p, a)$ we have grammar $G_{l,\sigma}$.

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

ρ	(q, b)	η
ρ	(p, a)	η

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

For every $\sigma \neq (p, a)$ we have grammar $G_{I,\sigma}$. Let $G_{I,\sigma}^1$ be the CFG for $\Sigma^* L(G_{I,\sigma}) \Sigma^*$.

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

ρ	(q, b)	η
ρ	(p, a)	η

For every $\sigma \neq (p, a)$ we have grammar $G_{I,\sigma}$. Let $G_{I,\sigma}^1$ be the CFG for $\Sigma^* L(G_{I,\sigma})\Sigma^*$. Let G_I be the CFG for $\bigcup_{\sigma \neq (p,a)} L(G_{I,\sigma}^1)$.

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

ρ	(q, b)	η
ρ	(p, a)	η

For every $\sigma \neq (p, a)$ we have grammar $G_{I,\sigma}$. Let $G_{I,\sigma}^1$ be the CFG for $\Sigma^* L(G_{I,\sigma})\Sigma^*$. Let G_I be the CFG for $\bigcup_{\sigma \neq (p,a)} L(G_{I,\sigma}^1)$.

What about the other instructions?

 $\delta(q, b) = (p, a)$. Recall that this is instruction *I*.

ρ	(q, b)	η
ρ	(p, a)	η

For every $\sigma \neq (p, a)$ we have grammar $G_{I,\sigma}$. Let $G_{I,\sigma}^1$ be the CFG for $\Sigma^* L(G_{I,\sigma})\Sigma^*$. Let G_I be the CFG for $\bigcup_{\sigma\neq (p,a)} L(G_{I,\sigma}^1)$.

What about the other instructions? Next slide

Let the instructions be I_1, \ldots, I_m .

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW)

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{l_2} , G_{l_3} , ..., G_{l_m} . (HW) SO our final grammar for $C \not\vdash D$ is

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW) SO our final grammar for $C \not\vdash D$ is

 $\bigcup_{i=1}^{m} G_{I_i}$

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW) SO our final grammar for $C \not\vdash D$ is

$$\bigcup_{i=1}^m G_{I_i}$$

Three points about G_I for any instruction I.

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW) SO our final grammar for $C \not\vdash D$ is

$$\bigcup_{i=1}^m G_{I_i}$$

Three points about G_I for any instruction I.

1. G_I will generates all sequences of configs which have adjacent C and D that should use instruction I but do not.

ション ふぼう メリン メリン しょうくしゃ

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW) SO our final grammar for $C \not\vdash D$ is

$$\bigcup_{i=1}^m G_{I_i}$$

Three points about G_I for any instruction I.

1. G_I will generates all sequences of configs which have adjacent C and D that should use instruction I but do not.

2. G_I will generate many other strings that are in $\overline{ACC_{e,x}}$.

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW) SO our final grammar for $C \not\vdash D$ is

$$\bigcup_{i=1}^m G_{I_i}$$

Three points about G_I for any instruction I.

1. G_I will generates all sequences of configs which have adjacent C and D that should use instruction I but do not.

ション ふぼう メリン メリン しょうくしゃ

2. G_I will generate many other strings that are in $\overline{ACC_{e,x}}$. Thats fine.

Let the instructions be I_1, \ldots, I_m . By similar methods you can get G_{I_2} , G_{I_3} , ..., G_{I_m} . (HW) SO our final grammar for $C \not\vdash D$ is

$$\bigcup_{i=1}^m G_{I_i}$$

Three points about G_I for any instruction I.

- 1. G_I will generates all sequences of configs which have adjacent C and D that should use instruction I but do not.
- 2. G_I will generate many other strings that are in $\overline{ACC_{e,x}}$. Thats fine.
- 3. We are not quite done yet. Next slide.
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$$\delta(q,b)=(p,a).$$

$$\delta(q,b)=(p,a).$$

а	а	b	b	(q, b)
b	а	b	b	(p, a)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

$$\delta(q,b)=(p,a).$$

а	а	b	b	(q, b)
b	а	b	b	(p, a)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Its possible that around the head it looks like $C \vdash D$ but away from the head is where you see $C \nvDash D$.

$$\delta(q,b)=(p,a).$$

а	а	b	b	(q, b)
b	а	b	b	(p, a)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Its possible that around the head it looks like $C \vdash D$ but away from the head is where you see $C \nvDash D$.

A CFG for this case is similar to $G_{I,\sigma}$. We omit it. (HW)

WAKE UP. No more Low Level TM Stuff

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The last few slides established the following:

WAKE UP. No more Low Level TM Stuff

The last few slides established the following:

 \exists an algorithm: given e, x, create a CFG G such that

$$L(G) = \overline{ACC_{e,x}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

WAKE UP. No more Low Level TM Stuff

The last few slides established the following: \exists an algorithm: given e, x, create a CFG G such that

$$L(G) = \overline{ACC_{e,x}}$$

We use this algorithm and to not need to know its details.

HALT $\leq_{\mathcal{T}} CFG\Sigma^*$: What does it Mean

Recall CFG Σ^* : Given a CFG *G* determine if $L(G) = \Sigma^*$.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

HALT \leq_{T} CFG Σ^* : What does it Mean

Recall CFG Σ^* : Given a CFG *G* determine if $L(G) = \Sigma^*$.

On the next slide we will present an algorithm for ${\rm HALT}$ that makes calls to ${\rm CFG}\Sigma^*$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recall CFG Σ^* : Given a CFG *G* determine if $L(G) = \Sigma^*$.

On the next slide we will present an algorithm for $\rm HALT$ that makes calls to $\rm CFG\Sigma^*$

We denote this HALT $\leq_T CFG\Sigma^*$.

Recall CFG Σ^* : Given a CFG *G* determine if $L(G) = \Sigma^*$.

On the next slide we will present an algorithm for $\rm HALT$ that makes calls to $\rm CFG\Sigma^*$

ション ふゆ アメリア メリア しょうくしゃ

We denote this HALT $\leq_{\mathcal{T}} CFG\Sigma^*$.

We will not define \leq_T formally.

Recall CFG Σ^* : Given a CFG *G* determine if $L(G) = \Sigma^*$.

On the next slide we will present an algorithm for $\rm HALT$ that makes calls to $\rm CFG\Sigma^*$

We denote this HALT $\leq_{\mathcal{T}} CFG\Sigma^*$.

We will not define \leq_T formally.

The T stands for Turing.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$.

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$. $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*$.

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$. $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*$. $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset \rightarrow \overline{ACC_{e,x}} = \Sigma^*$.

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$. $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*$. $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset \rightarrow \overline{ACC_{e,x}} = \Sigma^*$. **Thm** $L(G) = \Sigma^*$ is undec.

Recall \exists algorithm: given e, x, produce CFG for $ACC_{e,x}$. $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*$. $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset \rightarrow \overline{ACC_{e,x}} = \Sigma^*$. **Thm** $L(G) = \Sigma^*$ is undec. Assume, BWOC that $L(G) = \Sigma^*$ is dec. Can use to solve HALT.

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$.

 $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e, x}| = 1 \rightarrow \overline{ACC_{e, x}} \neq \Sigma^*.$

$$(e, x) \notin \text{HALT} \to \text{ACC}_{e, x} = \emptyset \to \overline{ACC_{e, x}} = \Sigma^*.$$

Thm $L(G) = \Sigma^*$ is undec. Assume, BWOC that $L(G) = \Sigma^*$ is dec. Can use to solve HALT. Given e, x, create CFG G for $\overline{ACC_{e,x}}$.

ション ふゆ アメリア メリア しょうくしゃ

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$.

 $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*.$ $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset \rightarrow \overline{ACC_{e,x}} = \Sigma^*.$ **Thm** $L(G) = \Sigma^*$ is undec. Assume, BWOC that $L(G) = \Sigma^*$ is dec. Can use to solve HALT. Given e, x, create CFG G for $\overline{ACC_{e,x}}$. Test if $L(G) = \Sigma^*.$

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$.

$$(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*.$$

 $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset \rightarrow \overline{ACC_{e,x}} = \Sigma^*.$
Thm $L(G) = \Sigma^*$ is undec.
Assume, BWOC that $L(G) = \Sigma^*$ is dec. Can use to solve HALT.
Given e, x , create CFG G for $\overline{ACC_{e,x}}$.
Test if $L(G) = \Sigma^*.$
If NO then $(e, x) \in \text{HALT}.$

Recall \exists algorithm: given e, x, produce CFG for $\overline{ACC_{e,x}}$.

 $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1 \rightarrow \overline{ACC_{e,x}} \neq \Sigma^*.$ $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset \rightarrow \overline{ACC_{e,x}} = \Sigma^*.$ **Thm** $L(G) = \Sigma^*$ is undec. Assume, BWOC that $L(G) = \Sigma^*$ is dec. Can use to solve HALT. Given e, x, create CFG G for $\overline{ACC_{e,x}}$. Test if $L(G) = \Sigma^*.$ If NO then $(e, x) \in \text{HALT}.$ If YES then $(e, x) \notin \text{HALT}.$

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

1. Yes and this is known and people care.

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

- 1. Yes and this is known and people care.
- 2. No and this is known and people care.

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

- 1. Yes and this is known and people care.
- 2. No and this is known and people care.

3. Only Bill cares and its unknown.

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

- 1. Yes and this is known and people care.
- 2. No and this is known and people care.
- 3. Only Bill cares and its unknown.
- 4. Only Bill cares and he showed YES.

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

- 1. Yes and this is known and people care.
- 2. No and this is known and people care.
- 3. Only Bill cares and its unknown.
- 4. Only Bill cares and he showed YES.
- 5. Only Bill cares and he showed NO.

ション ふゆ アメリア メリア しょうくしゃ

Valiant (1976) proved HALT $\leq_{\tau} CFG\Sigma^*$ Is the following true? $CFG\Sigma^* \leq_{\tau} HALT$ Vote

- 1. Yes and this is known and people care.
- 2. No and this is known and people care.
- 3. Only Bill cares and its unknown.
- 4. Only Bill cares and he showed YES.
- 5. Only Bill cares and he showed NO.

ション ふゆ アメリア メリア しょうくしゃ

Answer on next slide.

▲□▶▲□▶▲□▶▲□▶ ■ りへぐ

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^*\equiv_{\mathcal{T}}\mathrm{INF}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^*\equiv_{\mathcal{T}}\mathrm{INF}$

$$INF = \{e : (\forall y)(\exists x \ge y)(\exists s)[M_{e,s}(x) \downarrow]\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^*\equiv_{\mathcal{T}}\mathrm{INF}$

$$INF = \{e : (\forall y)(\exists x \ge y)(\exists s)[M_{e,s}(x) \downarrow]\}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Known HALT $<_{T}$ INF.

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^*\equiv_{\mathcal{T}}\mathrm{INF}$

$$INF = \{e : (\forall y)(\exists x \ge y)(\exists s)[M_{e,s}(x) \downarrow]\}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Known HALT $<_{\mathcal{T}}$ INF. Hence HALT $<_{\mathcal{T}}$ CFG Σ^* .
Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^* \equiv_T \mathrm{INF}$

$$INF = \{e : (\forall y)(\exists x \ge y)(\exists s)[M_{e,s}(x) \downarrow]\}.$$

Known HALT $<_{\mathcal{T}}$ INF. Hence HALT $<_{\mathcal{T}}$ CFG Σ^* .

How do we know nobody else cares?

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^* \equiv_T \mathrm{INF}$

$$INF = \{e : (\forall y)(\exists x \ge y)(\exists s)[M_{e,s}(x) \downarrow]\}.$$

Known HALT $<_{\mathcal{T}}$ INF. Hence HALT $<_{\mathcal{T}}$ CFG Σ^* .

How do we know nobody else cares?

Valiant's paper was 1976. Bill's was 2015.

Only Bill cares and he showed NO

Bill (2015) showed NO. Bill showed that

 $\mathrm{CFG}\Sigma^* \equiv_T \mathrm{INF}$

$$INF = \{e : (\forall y)(\exists x \ge y)(\exists s)[M_{e,s}(x) \downarrow]\}.$$

Known HALT $<_{\mathcal{T}}$ INF. Hence HALT $<_{\mathcal{T}}$ CFG Σ^* .

How do we know nobody else cares?

Valiant's paper was 1976. Bill's was 2015.

So nobody worked on it between 1976 and 2014.

April 25, 2024

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

G is CFG, |G| is size, M is DFA, |M| is numb of states.

・ロト・日本・ヨト・ヨト・日・ つへぐ

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

 $(|G| \leq n \wedge L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \wedge |M| \leq f(n)]$

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

```
(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]]
```

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

```
(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]
]
Vote
```

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

$$(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]$$

]
Vote

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1.
$$(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^n)[L(M) = L(G)].$$

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

$$(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]$$

]

Vote

1. $(|G| \le n \land L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \le 2^n)[L(M) = L(G)].$ 2. $(|G| \le n \land L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

$$(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]$$

]

Vote

- 1. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^n)[L(M) = L(G)].$
- 2. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^{2^n})[L(M) = L(G)].$
- 3. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq \operatorname{ACK}(\mathbf{n}))[L(M) = L(G)].$

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

$$(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]$$

]

Vote

- 1. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^n)[L(M) = L(G)].$
- 2. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^{2^n})[L(M) = L(G)].$
- 3. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq \operatorname{ACK}(n))[L(M) = L(G)].$
- 4. There is no computable f such that $(|G| \le n \land L(G) \text{ Reg }) \rightarrow (\exists M, |M| \le f(n))[L(M) = L(G)].$

G is CFG, |G| is size, M is DFA, |M| is numb of states.

A **bounding function for** (DFA, CFG) is a function f such that the following holds:

 $(\forall n)(\forall G)[$

$$(|G| \le n \land L(G) \in \text{REG}) \rightarrow (\exists \text{DFA } M)[L(G) = L(M) \land |M| \le f(n)]$$

]

Vote

- 1. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^n)[L(M) = L(G)].$
- 2. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq 2^{2^n})[L(M) = L(G)].$
- 3. $(|G| \leq n \wedge L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \leq \operatorname{ACK}(n))[L(M) = L(G)].$

4. There is no computable f such that $(|G| \le n \land L(G) \operatorname{Reg}) \rightarrow (\exists M, |M| \le f(n))[L(M) = L(G)].$

Answer on the next slide.

・ロト・御ト・ヨト・ヨト ヨーのへの

 $(e, x) \in HALT \rightarrow |ACC_{e,x}| = 1.$

 $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1.$ ACC_{e,x} is regular so $\overline{\text{ACC}_{e,x}}$ is regular.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

 $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1.$ ACC_{e,x} is regular so $\overline{\text{ACC}_{e,x}}$ is regular. $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset.$

 $(e, x) \in \text{HALT} \rightarrow |\text{ACC}_{e,x}| = 1.$ ACC_{e,x} is regular so $\overline{\text{ACC}_{e,x}}$ is regular. $(e, x) \notin \text{HALT} \rightarrow \text{ACC}_{e,x} = \emptyset.$ ACC_{e,x} is regular so $\overline{\text{ACC}_{e,x}}$ is regular.

Assume there is a computable bdding function f for (DFA, CFG).

Assume there is a computable bdding function f for (DFA, CFG).

1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.

Assume there is a computable bdding function f for (DFA, CFG).

ション ふぼう メリン メリン しょうくしゃ

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- 3. Let D_1, \ldots, D_N be all DFA's with $\leq f(n)$ states.

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- Let D₁,..., D_N be all DFA's with ≤ f(n) states.
 Key The DFA for ACC_{e,x} has ≤ f(n) states so the DFA for ACC_{e,x} has ≤ f(n) states.

ション ふぼう メリン メリン しょうくしゃ

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- Let D₁,..., D_N be all DFA's with ≤ f(n) states.
 Key The DFA for ACC_{e,x} has ≤ f(n) states so the DFA for ACC_{e,x} has ≤ f(n) states.
 So the DFA for ACC_{e,x} is one of D₁,..., D_N.

ション ふぼう メリン メリン しょうくしゃ

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- Let D₁,..., D_N be all DFA's with ≤ f(n) states.
 Key The DFA for ACC_{e,x} has ≤ f(n) states so the DFA for ACC_{e,x} has ≤ f(n) states.
 So the DFA for ACC_{e,x} is one of D₁,..., D_N.

4. Find all D_i 's that accept only one string: D_{i_1}, \ldots, D_{i_M} .

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- Let D₁,..., D_N be all DFA's with ≤ f(n) states.
 Key The DFA for ACC_{e,x} has ≤ f(n) states so the DFA for ACC_{e,x} has ≤ f(n) states.
 So the DFA for ACC_{e,x} is one of D₁,..., D_N.

4. Find all D_i 's that accept only one string: D_{i_1}, \ldots, D_{i_M} . For $1 \le j \le M$ let $L(D_{i_j}) = w_j$.

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- Let D₁,..., D_N be all DFA's with ≤ f(n) states.
 Key The DFA for ACC_{e,x} has ≤ f(n) states so the DFA for ACC_{e,x} has ≤ f(n) states.
 So the DFA for ACC_{e,x} is one of D₁,..., D_N.
- 4. Find all D_i 's that accept only one string: D_{i_1}, \ldots, D_{i_M} . For $1 \le j \le M$ let $L(D_{i_j}) = w_j$.

 $(\exists j)[w_j \text{ is accepting comp for } M_e(x)] \rightarrow (e, x) \in \text{HALT}.$

Assume there is a computable bdding function f for (DFA, CFG).

- 1. Input (e, x). Create CFG G for $\overline{ACC_{e,x}}$.
- 2. Let *n* be the size of *G*. Compute f(n).
- Let D₁,..., D_N be all DFA's with ≤ f(n) states.
 Key The DFA for ACC_{e,x} has ≤ f(n) states so the DFA for ACC_{e,x} has ≤ f(n) states.
 So the DFA for ACC_{e,x} is one of D₁,..., D_N.

4. Find all D_i's that accept only one string: D_{i1},..., D_{iM}. For 1 ≤ j ≤ M let L(D_{ij}) = w_j. (∃j)[w_j is accepting comp for M_e(x)]→ (e,x) ∈ HALT. If not then (e, x) ∉ HALT.

The following is **false**:

The following is **false**:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくぐ

The following is **false**:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$ Hence the following is **true**: There exists *n*, $(\exists G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\forall M, |M| \le 2^{2^n})[L(M) \ne L(G)].$

The following is **false**:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$ Hence the following is **true**: There exists *n*, $(\exists G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\forall M, |M| \le 2^{2^n})[L(M) \ne L(G)].$ This means that any DFA for *M* has $\ge 2^{2^n}$ states.

The following is false:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$ Hence the following is **true**: There exists *n*, $(\exists G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\forall M, |M| \le 2^{2^n})[L(M) \ne L(G)].$ This means that any DFA for *M* has $\ge 2^{2^n}$ states.

So there is a regular language where the DFA is **much smaller** than the CFG.

The following is false:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$ Hence the following is **true**: There exists *n*, $(\exists G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\forall M, |M| \le 2^{2^n})[L(M) \ne L(G)].$ This means that any DFA for *M* has $\ge 2^{2^n}$ states.

So there is a regular language where the DFA is **much smaller** than the CFG.

You can replace 2^{2^n} with any computable function.
Concrete Thoughts

The following is false:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$ Hence the following is **true**: There exists *n*, $(\exists G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\forall M, |M| \le 2^{2^n})[L(M) \ne L(G)].$ This means that any DFA for *M* has $\ge 2^{2^n}$ states.

So there is a regular language where the DFA is **much smaller** than the CFG.

You can replace 2^{2^n} with any computable function. More is know.

Concrete Thoughts

The following is false:

For all *n*, $(\forall G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\exists M, |M| \le 2^{2^n})[L(M) = L(G)].$ Hence the following is **true**: There exists *n*, $(\exists G)[|G| \le n \land L(G) \text{ Reg }] \rightarrow (\forall M, |M| \le 2^{2^n})[L(M) \ne L(G)].$ This means that any DFA for *M* has $\ge 2^{2^n}$ states.

So there is a regular language where the DFA is **much smaller** than the CFG.

You can replace 2^{2^n} with any computable function. More is know.

Next slide.

One can show the following:

There are inf number of n such that there exists CFG G_n with:

One can show the following:

There are inf number of n such that there exists CFG G_n with:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

1. G_n has size n and $L(G_n)$ is regular.

One can show the following:

There are inf number of n such that there exists CFG G_n with:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. G_n has size n and $L(G_n)$ is regular.
- 2. Any DFA for $L(G_n)$ is of size $\geq 2^{2^n}$.

One can show the following:

There are inf number of n such that there exists CFG G_n with:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. G_n has size n and $L(G_n)$ is regular.
- 2. Any DFA for $L(G_n)$ is of size $\geq 2^{2^n}$.

 2^{2^n} can be replaced by any computable function.

One can show the following:

There are inf number of n such that there exists CFG G_n with:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. G_n has size n and $L(G_n)$ is regular.
- 2. Any DFA for $L(G_n)$ is of size $\geq 2^{2^n}$.

 2^{2^n} can be replaced by any computable function.

Open Bill Question can you replace

One can show the following:

There are inf number of n such that there exists CFG G_n with:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. G_n has size n and $L(G_n)$ is regular.
- 2. Any DFA for $L(G_n)$ is of size $\geq 2^{2^n}$.

 2^{2^n} can be replaced by any computable function.

Open Bill Question can you replace **There are inf number of** *n*

One can show the following:

There are inf number of n such that there exists CFG G_n with:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- 1. G_n has size n and $L(G_n)$ is regular.
- 2. Any DFA for $L(G_n)$ is of size $\geq 2^{2^n}$.

 2^{2^n} can be replaced by any computable function.

Open Bill Question can you replace **There are inf number of** *n* with

One can show the following:

There are inf number of n such that there exists CFG G_n with:

ション ふぼう メリン メリン しょうくしゃ

- 1. G_n has size n and $L(G_n)$ is regular.
- 2. Any DFA for $L(G_n)$ is of size $\geq 2^{2^n}$.

 2^{2^n} can be replaced by any computable function.

Open Bill Question can you replace **There are inf number of** *n* with

For all but a finite number of n

Final Notes

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

Final Notes

1. Hay (1981) proved that the bounding function for (DFA, CFG) can compute HALT. Note that HALT is Σ_1 . I showed you her proof.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Final Notes

- 1. Hay (1981) proved that the bounding function for (DFA, CFG) can compute HALT. Note that HALT is Σ_1 . I showed you her proof.
- Gasarch (2015) proved that the bounding function for (DFA, CFG) can compute INF. Note that INF is Π₂. He also showed there is a bounding function for (DFA, CFG) of the same complexity as INF. Hence the complexity is solved.