Which Operations are P Closed Under? Which Operations are NP Closed Under?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We will look look at what is known about closure of P and of NP under the following operations:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We will look look at what is known about closure of P and of NP under the following operations:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Union

We will look look at what is known about closure of P and of NP under the following operations:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

- Union
- Intersection

We will look look at what is known about closure of P and of NP under the following operations:

- Union
- Intersection
- Complement

We will look look at what is known about closure of P and of NP under the following operations:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

- Union
- Intersection
- Complement
- Concatenation

We will look look at what is known about closure of P and of NP under the following operations:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

- Union
- Intersection
- Complement
- Concatenation
- Kleene star

Closure Properties of P

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

ション ふゆ アメリア メリア しょうくしゃ

1. Input(x) (We assume |x| = n.)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

4. If $b_1 = Y$ OR $b_2 = Y$ then output Y, else output N.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

4. If $b_1 = Y$ OR $b_2 = Y$ then output Y, else output N.

This algorithm takes $\sim p_1(n) + p_2(n)$, which is poly.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cup L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

4. If $b_1 = Y$ OR $b_2 = Y$ then output Y, else output N.

This algorithm takes $\sim p_1(n) + p_2(n)$, which is poly. **Note** Key is that the set of polynomials is closed under addition.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes $L_1 \cup L_2$ in poly time.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

The following algorithm recognizes $L_1 \cup L_2$ in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

The following algorithm recognizes $L_1 \cup L_2$ in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

The following algorithm recognizes $L_1 \cup L_2$ in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

The following algorithm recognizes $L_1 \cup L_2$ in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

4. If $b_1 = Y$ AND $b_2 = Y$ then output Y, else output N.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

The following algorithm recognizes $L_1 \cup L_2$ in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

4. If $b_1 = Y$ AND $b_2 = Y$ then output Y, else output N.

This algorithm takes $\sim p_1(n) + p_2(n)$, which is poly.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1 \cap L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

The following algorithm recognizes $L_1 \cup L_2$ in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

- 2. Run $M_1(x)$, output is b_1 (this takes $p_1(n)$)
- 3. Run $M_2(x)$, output is b_2 , (this takes $p_2(n)$)

4. If $b_1 = Y$ AND $b_2 = Y$ then output Y, else output N.

This algorithm takes $\sim p_1(n) + p_2(n)$, which is poly. **Note** Key is that the set of polynomials is closed under addition.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

1. Input(x) (We assume |x| = n.) Let $x = x_1 \cdots x_n$

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

1. Input(x) (We assume |x| = n.) Let $x = x_1 \cdots x_n$

2. For $0 \le i \le n$

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

- 1. Input(x) (We assume |x| = n.) Let $x = x_1 \cdots x_n$
- 2. For $0 \le i \le n$
 - 2.1 Run $M_1(x_1 \cdots x_i)$ and $M_2(x_{i+1} \cdots x_n)$. If both say Y then output Y and STOP. (Time: $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$.)

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

- 1. Input(x) (We assume |x| = n.) Let $x = x_1 \cdots x_n$
- 2. For $0 \le i \le n$
 - 2.1 Run $M_1(x_1 \cdots x_i)$ and $M_2(x_{i+1} \cdots x_n)$. If both say Y then output Y and STOP. (Time: $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$.)

3. Output N

Closure P Under Concatenation

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

- 1. Input(x) (We assume |x| = n.) Let $x = x_1 \cdots x_n$
- 2. For $0 \le i \le n$

2.1 Run $M_1(x_1 \cdots x_i)$ and $M_2(x_{i+1} \cdots x_n)$. If both say Y then output Y and STOP. (Time: $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$.)

3. Output N

This algorithm takes $\leq (n + 1) \times (p_1(n) + p_2(n))$ which is poly.

Closure P Under Concatenation

Thm If $L_1 \in P$ and $L_2 \in P$ then $L_1L_2 \in P$. $L_1 \in P$ via TM M_1 which works in time $p_1(n)$. $L_2 \in P$ via TM M_2 which works in time $p_2(n)$. The following algorithm recognizes L_1L_2 in poly time.

- 1. Input(x) (We assume |x| = n.) Let $x = x_1 \cdots x_n$
- 2. For $0 \le i \le n$

2.1 Run $M_1(x_1 \cdots x_i)$ and $M_2(x_{i+1} \cdots x_n)$. If both say Y then output Y and STOP. (Time: $p_1(i) + p_2(n-i) \le p_1(n) + p_2(n)$.)

3. Output N

This algorithm takes $\leq (n + 1) \times (p_1(n) + p_2(n))$ which is poly. **Note** Key is that the set of polynomials is closed under addition and mult by *n*.

Thm If $L \in P$ then $\overline{L} \in P$.

Thm If $L \in P$ then $\overline{L} \in P$. $L \in P$ via TM *M* which works in time p(n).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm If $L \in P$ then $\overline{L} \in P$. $L \in P$ via TM *M* which works in time p(n). The following algorithm recognizes \overline{L} in poly time.

Thm If $L \in P$ then $\overline{L} \in P$. $L \in P$ via TM *M* which works in time p(n). The following algorithm recognizes \overline{L} in poly time.

1. Input(x) (We assume |x| = n.)

Thm If $L \in P$ then $\overline{L} \in P$.

 $L \in P$ via TM *M* which works in time p(n).

The following algorithm recognizes \overline{L} in poly time.

- 1. Input(x) (We assume |x| = n.)
- 2. Run M(x). Answer is b.

Thm If $L \in P$ then $\overline{L} \in P$.

 $L \in P$ via TM *M* which works in time p(n).

The following algorithm recognizes \overline{L} in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

ション ふゆ アメビア メロア しょうくり

Run time is $\sim p(n)$, a poly.

Thm If $L \in P$ then $\overline{L} \in P$.

 $L \in P$ via TM *M* which works in time p(n).

The following algorithm recognizes \overline{L} in poly time.

1. Input(x) (We assume
$$|x| = n$$
.)

2. Run M(x). Answer is b.

3. If b = Y then output N, if b = N then output Y.

Run time is $\sim p(n)$, a poly.

Note No note needed.

 $L \in \mathrm{P} \to L^* \in \mathrm{P}$?

Attempt Proof

First lets talk about what you should not do.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

▶ $x \in L^*$? Look at ??? ways to have $x = z_1 \cdots z_m$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

▶ $x \in L^*$? Look at ??? ways to have $x = z_1 \cdots z_m$. Break string into 1 piece: $\binom{n}{0}$ ways to do this.

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

▶ $x \in L^*$? Look at ??? ways to have $x = z_1 \cdots z_m$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this.

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

▶ $x \in L^*$? Look at ??? ways to have $x = z_1 \cdots z_m$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this.

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

 x ∈ L*? Look at ??? ways to have x = z₁ ··· z_m. Break string into 1 piece: ⁿ₀ ways to do this. Break string into 2 pieces: ⁿ₁ ways to do this. Break string into 3 piece: ⁿ₂ ways to do this.
 Break string into n piece: ⁿ_n ways to do this.

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

▶ $x \in L^*$? Look at ??? ways to have $x = z_1 \cdots z_m$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this.

Break string into *n* piece: $\binom{n}{n}$ ways to do this. So total number of ways to break up the string is

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$$

 $L \in \mathbf{P} \to L^* \in \mathbf{P}$?

Attempt Proof

First lets talk about what you **should not** do.

A contrast

▶ $x \in L^*$? Look at ??? ways to have $x = z_1 \cdots z_m$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this.

Break string into *n* piece: $\binom{n}{n}$ ways to do this. So total number of ways to break up the string is

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$$

What is another name for this?

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?

(ロト (個) (E) (E) (E) (E) のへの

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^n .

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^n . You got that sum, I got 2^n . What does that mean?

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2ⁿ.
You got that sum, I got 2ⁿ. What does that mean?
D: That one of us is wrong

D: That one of us is wrong.

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

- **B:** Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^n . You got that sum, I got 2^n . What does that mean?
- **D:** That one of us is wrong.
- B: No. It means our answers are equal:

$$2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

- **B:** Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^n . You got that sum, I got 2^n . What does that mean?
- **D:** That one of us is wrong.
- B: No. It means our answers are equal:

$$2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

ション ふゆ アメリア メリア しょうくしゃ

D: Really!

- **B** is Bill, **D** is Darling.
- **B:** D, how many subsets are there of $\{1, \ldots, n\}$?
- D: You can either choose 0 elements or choose 1 element, so

$$\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}.$$

- **B:** Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^n . You got that sum, I got 2^n . What does that mean?
- **D:** That one of us is wrong.
- B: No. It means our answers are equal:

$$2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}.$$

- D: Really!
- B: Yes, really!

Vote

・ロト・日本・ モー・ モー うえぐ

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.

2. P is not closed under * and this is known.

Vote

- 1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
- 2. P is not closed under * and this is known.
- Unknown to Science but most theorists think P is closed under * .

Vote

- 1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
- 2. P is not closed under * and this is known.
- Unknown to Science but most theorists think P is closed under * .
- Unknown to Science but most theorists think P is not closed under * .

Vote

- 1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
- 2. P is not closed under * and this is known.
- Unknown to Science but most theorists think P is closed under * .
- Unknown to Science but most theorists think P is not closed under * .

ション ふゆ アメリア メリア しょうくしゃ

Answer on Next Slide

The technique of looking at all ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever.

The technique of looking at **all** ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information we don't need in the process.

The technique of looking at **all** ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information we don't need in the process.

Original Problem Given $x = x_1 \cdots x_n$ want to know if $x \in L^*$

The technique of looking at **all** ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information we don't need in the process. **Original Problem** Given $x = x_1 \cdots x_n$ want to know if $x \in L^*$

New Problem Given $x = x_1 \cdots x_n$ want to know:

P is Closed Under *

The technique of looking at **all** ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information we don't need in the process.

Original Problem Given $x = x_1 \cdots x_n$ want to know if $x \in L^*$ **New Problem** Given $x = x_1 \cdots x_n$ want to know: $e \in L^*$ $x_1 \in L^*$ $x_1x_2 \in L^*$ \vdots $x_1x_2 \cdots x_n \in L^*$.

P is Closed Under *

The technique of looking at **all** ways to break up x into pieces takes roughly 2^n steps, so we need to do something clever. **Dynamic Programming** We solve a harder problem but get lots of information we don't need in the process. **Original Problem** Given $x = x_1 \cdots x_n$ want to know if $x \in L^*$ **New Problem** Given $x = x_1 \cdots x_n$ want to know: $e \in L^*$ $x_1 \in L^*$ $x_1x_2 \in L^*$ $x_1x_2\cdots x_n \in L^*$. **Intuition** $x_1 \cdots x_i \in L^*$ IFF it can be broken into TWO pieces, the first one in L^* , and the second in L.

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input $x = x_1 \cdots x_n$

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$
 $A[0] = TRUE$

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = TRUE$

A[i] stores if $x_1 \cdots x_i$ is in L^* . M is poly-time Alg for L, poly p.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = \text{FALSE}$
 $A[0] = \text{TRUE}$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = \text{TRUE}$
output $A[n]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = ... = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = TRUE$
output $A[n]$

 $O(n^2)$ calls to M on inputs of length $\leq n$. Runtime $\leq O(n^2 p(n))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A[i] stores if $x_1 \cdots x_i$ is in L^* . *M* is poly-time Alg for *L*, poly *p*.

Input
$$x = x_1 \cdots x_n$$

 $A[1] = A[2] = \dots = A[n] = FALSE$
 $A[0] = TRUE$
for $i = 1$ to n do
for $j = 0$ to $i - 1$ do
if $A[j]$ AND $M(x_{j+1} \cdots x_i) = Y$ then $A[i] = TRUE$
output $A[n]$

 $O(n^2)$ calls to M on inputs of length $\leq n$. Runtime $\leq O(n^2p(n))$. Key the set of polynomials is closed under mult by n^2 .

What Operations is NP Closed Under?

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y) \in L_2 \in A : (\exists y) \in A \}$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y)$
[
 $|y| = p_1(|x|) + p_2(|x|) + 1\land$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y)$
[
 $|y| = p_1(|x|) + p_2(|x|) + 1 \land$
 $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$ and $|y_2| = p_2(|x|) \land$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y)$
[
 $|y| = p_1(|x|) + p_2(|x|) + 1 \land$
 $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$ and $|y_2| = p_2(|x|) \land$
 $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$
]}

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y)$
[
 $|y| = p_1(|x|) + p_2(|x|) + 1 \land$
 $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$ and $|y_2| = p_2(|x|) \land$
 $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$
]}
Witness $|y| = p_1(|x|) + p_2(|x|) + 1$ is short.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Thm If
$$L_1 \in NP$$
 and $L_2 \in NP$ then $L_1 \cup L_2 \in NP$.
 $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$
 $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$
The following defines $L_1 \cup L_2$ in an NP-way.
 $L_1 \cup L_2 = \{x : (\exists y)$
[
 $|y| = p_1(|x|) + p_2(|x|) + 1 \land$
 $y = y_1 \$ y_2$ where $|y_1| = p_1(|x|)$ and $|y_2| = p_2(|x|) \land$
 $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$
]}

Witness $|y| = p_1(|x|) + p_2(|x|) + 1$ is short. Verification $(x, y_1) \in B_1 \lor (x, y_2) \in B_2$, is quick.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Closure of NP Under Intersection

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1 \cap L_2 \in NP$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Closure of NP Under Intersection

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1 \cap L_2 \in NP$. Similar to UNION.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$.

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)[}$$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)[}$$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)[}$$

•
$$x = x_1 x_2$$

• $|y_1| = p_1(|x_1|)$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)[$$

•
$$x = x_1 x_2$$

• $|y_1| = p_1(|x_1|)$
• $|y_2| = p_2(|x_2|)$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)[$$

 $x = x_1 x_2$ $|y_1| = p_1(|x_1|)$ $|y_2| = p_2(|x_2|)$ $(x_1, y_1) \in B_1$

Thm If $L_1 \in NP$ and $L_2 \in NP$ then $L_1L_2 \in NP$. $L_1 = \{x : (\exists y_1)[|y_1| = p_1(|x|) \land (x, y_1) \in B_1]\}$ $L_2 = \{x : (\exists y_2)[|y_2| = p_2(|x|) \land (x, y_2) \in B_2]\}$

The following defines L_1L_2 in an NP-way.

$${x: (\exists x_1, x_2, y_1, y_2)[$$

1}

 $x = x_1 x_2$ $|y_1| = p_1(|x_1|)$ $|y_2| = p_2(|x_2|)$ $(x_1, y_1) \in B_1$ $(x_2, y_2) \in B_2$

Closure of NP Under *

Thm If $L \in NP$ then $L^* \in NP$.

Closure of NP Under *

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$ The following defines L^* in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$ The following defines L^* in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

ſ

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$ The following defines L^* in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

ſ

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$ The following defines L^* in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

ſ

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$ The following defines L^* in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

ſ

Thm If $L \in NP$ then $L^* \in NP$. $L = \{x : (\exists y)[|y| = p(|x|) \land (x, y) \in B]\}$ The following defines L^* in an NP-way

$$\{x: (\exists z_1,\ldots,z_k,y_1,\ldots,y_k)\}$$

ſ

]}

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Vote

(4日) (個) (主) (主) (三) の(の)

Vote

1. There is a proof that if $L \in NP$ then $\overline{L} \in NP$. (Hence NP is closed under complementation and we know this.)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Vote

- 1. There is a proof that if $L \in NP$ then $\overline{L} \in NP$. (Hence NP is closed under complementation and we know this.)
- 2. There is a language $L \in NP$ with $\overline{L} \notin NP$. (Hence NP is not closed under complementation and we know this.)

ション ふゆ アメリア メリア しょうくしゃ

Vote

- 1. There is a proof that if $L \in NP$ then $\overline{L} \in NP$. (Hence NP is closed under complementation and we know this.)
- 2. There is a language $L \in NP$ with $\overline{L} \notin NP$. (Hence NP is not closed under complementation and we know this.)
- 3. The question is **Unknown to Science!** but most theorists think **NP is closed under complementation** .

ション ふゆ アメリア メリア しょうくしゃ

Vote

- 1. There is a proof that if $L \in NP$ then $\overline{L} \in NP$. (Hence NP is closed under complementation and we know this.)
- 2. There is a language $L \in NP$ with $\overline{L} \notin NP$. (Hence NP is not closed under complementation and we know this.)
- 3. The question is **Unknown to Science!** but most theorists think **NP is closed under complementation** .
- 4. The question is **Unknown to Science!** but most theorists think **NP is not closed under complementation** .

ション ふゆ アメリア メリア しょうくしゃ

Vote

- 1. There is a proof that if $L \in NP$ then $\overline{L} \in NP$. (Hence NP is closed under complementation and we know this.)
- 2. There is a language $L \in NP$ with $\overline{L} \notin NP$. (Hence NP is not closed under complementation and we know this.)
- 3. The question is **Unknown to Science!** but most theorists think **NP is closed under complementation** .
- 4. The question is **Unknown to Science!** but most theorists think **NP is not closed under complementation** .

ション ふゆ アメリア メリア しょうくしゃ

Answer on next slide.

Most Complexity Theorists think NP is $\operatorname{\textbf{not}}$ closed under complementation.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Most Complexity Theorists think NP is ${\color{black}\operatorname{\textbf{not}}}$ closed under complementation.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Contrast Alice is all powerful, Bob is Poly Time.

Most Complexity Theorists think NP is ${\color{black}\operatorname{\textbf{not}}}$ closed under complementation.

Contrast Alice is all powerful, Bob is Poly Time.

▶ Alice wants to convince Bob that $\phi \in SAT$. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).

Most Complexity Theorists think NP is ${\color{black}\operatorname{\textbf{not}}}$ closed under complementation.

Contrast Alice is all powerful, Bob is Poly Time.

- ► Alice wants to convince Bob that \$\phi\$ ∈ SAT. She can! She gives Bob a satisfying assignment \$\vec{b}\$ (which is short) and he can check \$\phi\$(\$\vec{b}\$)\$ (which is poly time).
- ► Alice wants to convince Bob that \$\phi \not SAT\$. What can she do? Give him the entire truth table . Too long!

Most Complexity Theorists think NP is $\operatorname{\textbf{not}}$ closed under complementation.

Contrast Alice is all powerful, Bob is Poly Time.

- ► Alice wants to convince Bob that \$\phi\$ ∈ SAT. She can! She gives Bob a satisfying assignment \$\vec{b}\$ (which is short) and he can check \$\phi\$(\$\vec{b}\$)\$ (which is poly time).
- ► Alice wants to convince Bob that \$\phi \not SAT\$. What can she do? Give him the entire truth table . Too long!

It is thought that there is no way for Alice to do this.