Which Operations are P Closed Under? Which Operations are NP Closed Under?

Closure Properties of P and NP

We will look look at what is known about closure of P and of NP under the following operations:

Closure Properties of P and NP

We will look look at what is known about closure of P and of NP under the following operations:

- Union

Closure Properties of P and NP

We will look look at what is known about closure of P and of NP under the following operations:

- Union
- Intersection

Closure Properties of P and NP

We will look look at what is known about closure of P and of NP under the following operations:

- Union
- Intersection
- Complement

Closure Properties of P and NP

We will look look at what is known about closure of P and of NP under the following operations:

- Union
- Intersection
- Complement
- Concatenation

Closure Properties of P and NP

We will look look at what is known about closure of P and of NP under the following operations:

- Union
- Intersection
- Complement
- Concatenation
- Kleene star

Closure Properties of \mathbf{P}

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ OR $b_{2}=Y$ then output Y, else output N.

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ OR $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.

Closure of P Under Union

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cup L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ OR $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ AND $b_{2}=Y$ then output Y, else output N.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ AND $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.

Closure of P Under Intersection

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} \cap L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} \cup L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M_{1}(x)$, output is b_{1} (this takes $p_{1}(n)$)
3. Run $M_{2}(x)$, output is b_{2}, (this takes $p_{2}(n)$)
4. If $b_{1}=Y$ AND $b_{2}=Y$ then output Y, else output N.

This algorithm takes $\sim p_{1}(n)+p_{2}(n)$, which is poly.
Note Key is that the set of polynomials is closed under addition.

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

3. Output N

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

3. Output N

This algorithm takes $\leq(n+1) \times\left(p_{1}(n)+p_{2}(n)\right)$ which is poly.

Closure P Under Concatenation

Thm If $L_{1} \in \mathrm{P}$ and $L_{2} \in \mathrm{P}$ then $L_{1} L_{2} \in \mathrm{P}$.
$L_{1} \in \mathrm{P}$ via TM M_{1} which works in time $p_{1}(n)$.
$L_{2} \in \mathrm{P}$ via TM M_{2} which works in time $p_{2}(n)$.
The following algorithm recognizes $L_{1} L_{2}$ in poly time.

1. Input (x) (We assume $|x|=n$.) Let $x=x_{1} \cdots x_{n}$
2. For $0 \leq i \leq n$
2.1 Run $M_{1}\left(x_{1} \cdots x_{i}\right)$ and $M_{2}\left(x_{i+1} \cdots x_{n}\right)$. If both say Y then output Y and STOP. (Time:

$$
\left.p_{1}(i)+p_{2}(n-i) \leq p_{1}(n)+p_{2}(n) .\right)
$$

3. Output N

This algorithm takes $\leq(n+1) \times\left(p_{1}(n)+p_{2}(n)\right)$ which is poly. Note Key is that the set of polynomials is closed under addition and mult by n.

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

1. Input (x) (We assume $|x|=n$.)

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M(x)$. Answer is b.

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

1. Input (x) (We assume $|x|=n$.)
2. Run $M(x)$. Answer is b.
3. If $b=Y$ then output N , if $b=N$ then output Y .

Run time is $\sim p(n)$, a poly.

Closure of P Under Complementation

Thm If $L \in \mathrm{P}$ then $\bar{L} \in \mathrm{P}$.
$L \in \mathrm{P}$ via TM M which works in time $p(n)$.
The following algorithm recognizes \bar{L} in poly time.

1. $\operatorname{Input}(x)$ (We assume $|x|=n$.)
2. Run $M(x)$. Answer is b.
3. If $b=Y$ then output N , if $b=N$ then output Y .

Run time is $\sim p(n)$, a poly.
Note No note needed.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?
Attempt Proof
First lets talk about what you should not do.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?

Attempt Proof

First lets talk about what you should not do.
A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?

Attempt Proof

First lets talk about what you should not do.
A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?

Attempt Proof

First lets talk about what you should not do.

A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?

Attempt Proof

First lets talk about what you should not do.

A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?

Attempt Proof

First lets talk about what you should not do.

A contrast

- $x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this. :

Break string into n piece: $\binom{n}{n}$ ways to do this.

Closure of P Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?
Attempt Proof
First lets talk about what you should not do.

A contrast

$-x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this. :

Break string into n piece: $\binom{n}{n}$ ways to do this.
So total number of ways to break up the string is

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

Closure of \mathbf{P} Under * ?

$L \in \mathrm{P} \rightarrow L^{*} \in \mathrm{P}$?
Attempt Proof
First lets talk about what you should not do.

A contrast

$-x \in L^{*}$? Look at ??? ways to have $x=z_{1} \cdots z_{m}$. Break string into 1 piece: $\binom{n}{0}$ ways to do this. Break string into 2 pieces: $\binom{n}{1}$ ways to do this. Break string into 3 piece: $\binom{n}{2}$ ways to do this. :
Break string into n piece: $\binom{n}{n}$ ways to do this.
So total number of ways to break up the string is

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

What is another name for this?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}.

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}. You got that sum, I got 2^{n}. What does that mean?

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}.
You got that sum, I got 2^{n}. What does that mean?
D: That one of us is wrong.

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}.
You got that sum, I got 2^{n}. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}
$$

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}.
You got that sum, I got 2^{n}. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}
$$

D: Really!

That Weird Sum: A Story

B is Bill, D is Darling.
B: D, how many subsets are there of $\{1, \ldots, n\}$?
D: You can either choose 0 elements or choose 1 element, so

$$
\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n} .
$$

B: Another Way: 1 is IN or OUT, 2 is IN or OUT, etc, so 2^{n}.
You got that sum, I got 2^{n}. What does that mean?
D: That one of us is wrong.
B: No. It means our answers are equal:

$$
2^{n}=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}
$$

D: Really!
B: Yes, really!

Is P Closed Under * ?

Vote

Is P Closed Under * ?

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.

Is P Closed Under * ?

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
2. P is not closed under * and this is known.

Is P Closed Under * ?

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
2. P is not closed under * and this is known.
3. Unknown to Science but most theorists think P is closed under * .

Is P Closed Under * ?

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
2. P is not closed under * and this is known.
3. Unknown to Science but most theorists think P is closed under *.
4. Unknown to Science but most theorists think P is not closed under * .

Is P Closed Under * ?

Vote

1. P is closed under *. Someone has a trick or hard math or a computer program to help do this. Fire and Brimstone speech about lower bounds to follow.
2. P is not closed under * and this is known.
3. Unknown to Science but most theorists think P is closed under *.
4. Unknown to Science but most theorists think P is not closed under * .

Answer on Next Slide

\mathbf{P} is Closed Under *

The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.

\mathbf{P} is Closed Under *

The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever. Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.

\mathbf{P} is Closed Under *

The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$

\mathbf{P} is Closed Under *

The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$ New Problem Given $x=x_{1} \cdots x_{n}$ want to know:

\mathbf{P} is Closed Under *

The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$ New Problem Given $x=x_{1} \cdots x_{n}$ want to know:
$e \in L^{*}$
$x_{1} \in L^{*}$
$x_{1} x_{2} \in L^{*}$
$x_{1} x_{2} \cdots x_{n} \in L^{*}$.

\mathbf{P} is Closed Under *

The technique of looking at all ways to break up x into pieces takes roughly 2^{n} steps, so we need to do something clever.
Dynamic Programming We solve a harder problem but get lots of information we don't need in the process.
Original Problem Given $x=x_{1} \cdots x_{n}$ want to know if $x \in L^{*}$ New Problem Given $x=x_{1} \cdots x_{n}$ want to know:
$e \in L^{*}$
$x_{1} \in L^{*}$
$x_{1} x_{2} \in L^{*}$
$x_{1} x_{2} \cdots x_{n} \in L^{*}$.
Intuition $x_{1} \cdots x_{i} \in L^{*}$ IFF it can be broken into TWO pieces, the first one in L^{*}, and the second in L.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=\mathrm{FALSE}$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=\mathrm{FALSE}$
$A[0]=$ TRUE

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.

$$
\begin{aligned}
& \text { Input } x=x_{1} \cdots x_{n} \\
& A[1]=A[2]=\ldots=A[n]=\text { FALSE } \\
& A[0]=\text { TRUE } \\
& \text { for } i=1 \text { to } n \text { do } \\
& \quad \text { for } j=0 \text { to } i-1 \text { do }
\end{aligned}
$$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.

$$
\begin{aligned}
& \text { Input } x=x_{1} \cdots x_{n} \\
& \begin{array}{l}
A[1]=A[2]=\ldots=A[n]=\text { FALSE } \\
A[0]=\mathrm{TRUE} \\
\text { for } i=1 \text { to } n \text { do } \\
\quad \text { for } j=0 \text { to } i-1 \text { do } \\
\quad \text { if } A[j] \text { AND } M\left(x_{j+1} \cdots x_{i}\right)=Y \text { then } A[i]=\text { TRUE }
\end{array}
\end{aligned}
$$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do
for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE output $A[n]$

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=$ FALSE
$A[0]=$ TRUE
for $i=1$ to n do
for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE output $A[n]$
$O\left(n^{2}\right)$ calls to M on inputs of length $\leq n$. Runtime $\leq O\left(n^{2} p(n)\right)$.

Final Algorithm

$A[i]$ stores if $x_{1} \cdots x_{i}$ is in $L^{*} . M$ is poly-time Alg for L, poly p.
Input $x=x_{1} \cdots x_{n}$
$A[1]=A[2]=\ldots=A[n]=\mathrm{FALSE}$
$A[0]=$ TRUE
for $i=1$ to n do
for $j=0$ to $i-1$ do
if $A[j]$ AND $M\left(x_{j+1} \cdots x_{i}\right)=Y$ then $A[i]=$ TRUE
output $A[n]$
$O\left(n^{2}\right)$ calls to M on inputs of length $\leq n$. Runtime $\leq O\left(n^{2} p(n)\right)$. Key the set of polynomials is closed under mult by n^{2}.

What Operations is NP Closed Under?

Closure of NP Under Union

Thm If $L_{1} \in \mathrm{NP}$ and $L_{2} \in \mathrm{NP}$ then $L_{1} \cup L_{2} \in \mathrm{NP}$.

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
$[$
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.

```
L
[
|y|=\mp@subsup{p}{1}{}(|x|)+\mp@subsup{p}{2}{}(|x|)+1^
y= y1 $\mp@subsup{y}{2}{}\mathrm{ where }|\mp@subsup{y}{1}{}|=\mp@subsup{p}{1}{}(|x|)\mathrm{ and }|\mp@subsup{y}{2}{}|=\mp@subsup{p}{2}{}(|x|)^
```


Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
[
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$
$y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|x|) \wedge$
$\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}$
]\}

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
[
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$
$y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|x|) \wedge$
$\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}$
]\}
Witness $|y|=p_{1}(|x|)+p_{2}(|x|)+1$ is short.

Closure of NP Under Union

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cup L_{2} \in N P$.
$L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}$
$L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}$
The following defines $L_{1} \cup L_{2}$ in an NP-way.
$L_{1} \cup L_{2}=\{x:(\exists y)$
[
$|y|=p_{1}(|x|)+p_{2}(|x|)+1 \wedge$
$y=y_{1} \$ y_{2}$ where $\left|y_{1}\right|=p_{1}(|x|)$ and $\left|y_{2}\right|=p_{2}(|x|) \wedge$
$\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}$
]\}
Witness $|y|=p_{1}(|x|)+p_{2}(|x|)+1$ is short.
Verification $\left(x, y_{1}\right) \in B_{1} \vee\left(x, y_{2}\right) \in B_{2}$, is quick.

Closure of NP Under Intersection

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cap L_{2} \in$ NP.

Closure of NP Under Intersection

Thm If $L_{1} \in$ NP and $L_{2} \in$ NP then $L_{1} \cap L_{2} \in$ NP. Similar to UNION.

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} L_{2} \in N P$.

Closure NP Under Concatenation

Thm If $L_{1} \in \mathrm{NP}$ and $L_{2} \in \mathrm{NP}$ then $L_{1} L_{2} \in \mathrm{NP}$.

$$
L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\}
$$

Closure NP Under Concatenation

Thm If $L_{1} \in \mathrm{NP}$ and $L_{2} \in \mathrm{NP}$ then $L_{1} L_{2} \in \mathrm{NP}$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

Closure NP Under Concatenation

Thm If $L_{1} \in \mathrm{NP}$ and $L_{2} \in \mathrm{NP}$ then $L_{1} L_{2} \in \mathrm{NP}$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in N P$ then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
$-\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$
- $\left(x_{1}, y_{1}\right) \in B_{1}$

Closure NP Under Concatenation

Thm If $L_{1} \in N P$ and $L_{2} \in$ NP then $L_{1} L_{2} \in N P$.

$$
\begin{aligned}
& L_{1}=\left\{x:\left(\exists y_{1}\right)\left[\left|y_{1}\right|=p_{1}(|x|) \wedge\left(x, y_{1}\right) \in B_{1}\right]\right\} \\
& L_{2}=\left\{x:\left(\exists y_{2}\right)\left[\left|y_{2}\right|=p_{2}(|x|) \wedge\left(x, y_{2}\right) \in B_{2}\right]\right\}
\end{aligned}
$$

The following defines $L_{1} L_{2}$ in an NP-way.

$$
\left\{x:\left(\exists x_{1}, x_{2}, y_{1}, y_{2}\right)[\right.
$$

- $x=x_{1} x_{2}$
- $\left|y_{1}\right|=p_{1}\left(\left|x_{1}\right|\right)$
- $\left|y_{2}\right|=p_{2}\left(\left|x_{2}\right|\right)$
- $\left(x_{1}, y_{1}\right) \in B_{1}$
- $\left(x_{2}, y_{2}\right) \in B_{2}$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in N P$.

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in \mathrm{NP}$.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right.
$$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right.
$$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\begin{gathered}
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right. \\
{[}
\end{gathered}
$$

$$
>x=z_{1} \cdots z_{k}
$$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right.
$$

- $x=z_{1} \cdots z_{k}$
- $(\forall i)\left[\left|y_{i}\right|=p\left(\left|z_{i}\right|\right)\right]$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right.
$$

- $x=z_{1} \cdots z_{k}$
- $(\forall i)\left[\left|y_{i}\right|=p\left(\left|z_{i}\right|\right)\right]$
- $(\forall i)\left[\left(z_{i}, y_{i}\right) \in B\right]$

Closure of NP Under *

Thm If $L \in$ NP then $L^{*} \in$ NP.
$L=\{x:(\exists y)[|y|=p(|x|) \wedge(x, y) \in B]\}$
The following defines L^{*} in an NP-way

$$
\left\{x:\left(\exists z_{1}, \ldots, z_{k}, y_{1}, \ldots, y_{k}\right)\right.
$$

- $x=z_{1} \cdots z_{k}$
- $(\forall i)\left[\left|y_{i}\right|=p\left(\left|z_{i}\right|\right)\right]$
- $(\forall i)\left[\left(z_{i}, y_{i}\right) \in B\right]$

]\}

Is NP closed under Complementation

Vote

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in$ NP. (Hence NP is closed under complementation and we know this.)

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in$ NP. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in N P$ with $\bar{L} \notin \mathrm{NP}$. (Hence NP is not closed under complementation and we know this.)

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in$ NP. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in$ NP with $\bar{L} \notin$ NP. (Hence NP is not closed under complementation and we know this.)
3. The question is Unknown to Science! but most theorists think NP is closed under complementation.

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in$ NP. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in$ NP with $\bar{L} \notin$ NP. (Hence NP is not closed under complementation and we know this.)
3. The question is Unknown to Science! but most theorists think NP is closed under complementation.
4. The question is Unknown to Science! but most theorists think NP is not closed under complementation.

Is NP closed under Complementation

Vote

1. There is a proof that if $L \in$ NP then $\bar{L} \in$ NP. (Hence NP is closed under complementation and we know this.)
2. There is a language $L \in$ NP with $\bar{L} \notin$ NP. (Hence NP is not closed under complementation and we know this.)
3. The question is Unknown to Science! but most theorists think NP is closed under complementation.
4. The question is Unknown to Science! but most theorists think NP is not closed under complementation.
Answer on next slide.

Unknown but most theorists thing NOT

Most Complexity Theorists think NP is not closed under complementation.

Unknown but most theorists thing NOT

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

Unknown but most theorists thing NOT

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that $\phi \in$ SAT. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).

Unknown but most theorists thing NOT

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that $\phi \in$ SAT. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).
- Alice wants to convince Bob that $\phi \notin$ SAT. What can she do? Give him the entire truth table. Too long!

Unknown but most theorists thing NOT

Most Complexity Theorists think NP is not closed under complementation.
Contrast Alice is all powerful, Bob is Poly Time.

- Alice wants to convince Bob that $\phi \in$ SAT. She can! She gives Bob a satisfying assignment \vec{b} (which is short) and he can check $\phi(\vec{b})$ (which is poly time).
- Alice wants to convince Bob that $\phi \notin$ SAT. What can she do? Give him the entire truth table. Too long!

It is thought that there is no way for Alice to do this.

