
The Cook-Levin Thm

Exposition by William Gasarch—U of MD

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Variants of SAT

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE .

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Turing Machines Def

Def A Turing Machine is a tuple (Q,Σ, δ, s, h) where

▶ Q is a finite set of states. It has the state h.

▶ Σ is a finite alphabet. It contains the symbol #.

▶ δ : (Q − {h})× Σ → Q × Σ ∪ {R, L}
▶ s ∈ Q is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes,
more heads. All equivalent.

Conventions for our Turing Machines

1. Tape has a left endpoint; however, the tape goes off to
infinity to the right.

2. The alphabet has symbols {a, b,#, $,Y ,N}.
3. # is the blank symbol.

4. $ is a separator symbol.

5. Y and N are only used when the machine goes into a halt
state. They are YES and NO.

6. The input is written on the left. So the input abba would be
on the tape as

abba### · · ·

7. The head is initially on the rightmost symbol of the input. So
it he above it would be on the a just before the # symbol.

How to Represent any Computation

Let M be a Turing Machine and x ∈ Σ∗. We represent the
computation M(x) as follows:

Example The tape has:

abba#abcab#a### · · ·

If the machine is in state q and the head is looking at the c then
we represent this by:

abba#ab(c , q)ab#a### · · ·

Convention—extend alphabet and allow symbols Σ× Q. The
symbol (c , q) means the symbol is c , the state is q, and that
square is where the head of the machine is.

Configurations

We need a term for strings like:

abba#ab(c , q)a

Def Strings in Σ∗(Σ× Q)Σ∗ are configuration.

The Computation M(x) is represented by a sequence of configs.
Key A config is finite since what we don’t see is #.

Example

If δ(s, b) = (q, L) and δ(q, b) = (p, a)

a a b b (b, s) #

a a b (b, q) b #

a a b (a, p) b #

▶ The left endpoint is the end of the tape.

▶ The unseen symbols on the right are all #

How to Represent an NP Computation

Let X ∈ NP.

Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

▶ Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

▶ Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

▶ Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

▶ Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).

Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

▶ Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

▶ Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.

Here is ALL that matters:

▶ Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

▶ Computation can only look at the first t(|x |) tapes squares on
any config.

How to Represent an NP Computation

Let X ∈ NP.
Then there exists a poly p and a TM that runs in time poly q such
that

X = {x | (∃y)[|y | = p(|x |) AND M(x , y) = Y]}

M(x , y) runs in time ≤ q(|x |+ |y |) = q(|x |+ p(|x |)).
Let t(n) = q(n + p(n)), a poly.
Here is ALL that matters:

▶ Numb of steps M(x , y) takes is ≤ t(|x |). Hence ≤ t(|x |)
configs.

▶ Computation can only look at the first t(|x |) tapes squares on
any config.

New Convention

Old Convention

a a b b (s, b)

means that off to the right there are an infinite number of #.

New Convention

a a b b (s, b) # · · ·

Tape is t(|x |) long so know when stops. Can include entire tape.
Key Config is finite since what we don’t see is never used.

New Convention

Old Convention

a a b b (s, b)

means that off to the right there are an infinite number of #.
New Convention

a a b b (s, b) # · · ·

Tape is t(|x |) long so know when stops. Can include entire tape.
Key Config is finite since what we don’t see is never used.

Summary of What’s Important

Let X ∈ NP via poly q and TM M, so

X = {x : (∃y)[|y | = q(|x |) ∧M(x , y) = Y]

x ∈ X implies (∃y)[|y | = q(|x |) ∧M(x , y) = Y] implies
(∃y ,C1, . . . ,Ct)[C1, . . . ,Ct is an accepting comp of M(x , y)]

Summary of What’s Important

Let X ∈ NP via poly q and TM M, so

X = {x : (∃y)[|y | = q(|x |) ∧M(x , y) = Y]

x ∈ X implies (∃y)[|y | = q(|x |) ∧M(x , y) = Y] implies
(∃y ,C1, . . . ,Ct)[C1, . . . ,Ct is an accepting comp of M(x , y)]

Cook-Levin Thm

Theorem
SAT is NP-complete.

We need to prove two things:

1. SAT ∈ NP.

SAT = {ϕ : (∃y⃗)[ϕ(y⃗) = T]}

Formally

B = {(ϕ, y⃗) : ϕ(y⃗) = T}

The satisfying assignment is the witness.

2. For all X ∈ NP, X ≤ SAT. This is the bulk of the proof.

x ∈ X → . . .

If x ∈ X then there is a y of length p(|x |) such that M(x , y) = Y .
If x ∈ X then there is a y and a sequence of configurations
C1,C2, . . . ,Ct such that

▶ C1 is the configuration that says ‘input is x$y , and I am in the
starting state.’

▶ For all i , Ci+1 follows from Ci (note that M is deterministic)
using δ.

▶ Ct is the configuration that is in state h and the output is Y.

▶ t = q(|x |+ p(|x |)).
How to make all of this into a formula?

How to Represent Sequence of Configs as Fml

KEY 1: We have variables for every possible entry in every
possible configuration. The variables are

{zi ,j ,σ : 1 ≤ i , j ≤ t, σ ∈ Σ ∪ (Q × Σ)}

If there is an accepting sequence of configurations then
zi ,j ,σ = T iff the jth symbol in the ith configuration is σ.

Making the zi ,j ,σ Make Sense

Need that for all 1 ≤ i , j ≤ t there exists exactly one σ such that
zijσ is TRUE. ∨

σ∈Σ∪(Σ×Q)

zi ,j ,σ

for each σ ∈ Σ ∪ (Σ× Q)

zi ,j ,σ →
∧

τ∈Σ∪(Σ×Q)−{σ}

¬zi ,j ,τ

C1 is Start Config

C1 is the
∧

of the following:
C1 starts with x . Let x = x1 · · · xn.

z1,1,x1 ∧ · · · ∧ z1,n−1,xn−1 , z1,n,(xn,s) ∧ z1,n+1,$

C1 then has q(|x |) symbols from {a, b}, so NOT the funny
symbols.

n+q(|x |)+1∧
j=n+2

∨
σ∈{a,b}

z1,j ,σ

C1 then has all blanks:

∧
t(n)∧

j=q(n)+n+3

z1,j ,#

C1 is Start Config: Example

x = ab, p(n) = n2, and q(n) = 2n
|y | = 4. Input to M is of length 2 + 4 + 1 = 7, so M(x , y) runs
≤ 2× 7 = 14 steps.
Formula saying C1 codes x as input is

z1,1,a ∧ z1,2,(b,s) ∧ z1,3,$∧

(z1,4,a ∨ z1,4,b) ∧ (z1,5,a ∨ z1,5,b) ∧ (z1,6,a ∨ z1,6,b) ∧ (z1,7,a ∨ z1,7,b)∧

z1,8,# ∧ · · · ∧ z1,23,#

Ct is an Accept Config

Convention M(x , y) accepts means M(x , y) leaves a Y on the left
most square and the head is on the left most square.
The state in Ct is h, the halt state,

zt,1,(Y ,h)

Ci leads to Ci+1

Thought Experiment: What if δ(q, a) = (p, b). Then:

σ1 (a, q) σ2
σ1 (b, p) σ2

Formula is a
∧

over relevant i , j , σ1, σ2 of:

(zijσ1 ∧ zi(j+1),(a,q) ∧ zi ,(j+2)σ2
) →

(z(i+1)jσ1
∧ z(i+1)(j+1),(b,p) ∧ z(i+1),(j+2)σ2

)

Ci leads to Ci+1

Thought Experiment: What if δ(q, a) = (p, L). Then:

σ1 (a, q) σ2
(σ1, p) a σ2

One can make a formula out of this as well. (Leave for HW.)

Ci leads to Ci+1

Note that only the symbols at or near the head get changed.

Also need a formula saying that if the (i , j) spot is NOT near the
head and zi ,j ,σ then zi+1,j ,σ.

Putting it All Together

On input x you output a formula ϕ constructed as follows

1. t(|x |) = q(|x |+ p(|x |)). We call this t.

2. Variables {zi ,j ,τ : 1 ≤ i , j ≤ t, τ ∈ Σ ∪ (Σ× Q)}.
3. Formula saying:

3.1 For all 1 ≤ i , j ≤ t, exists ONE σ with zi,j,σ = T .
3.2 C1 is the start config with x .
3.3 Ct is the accept config.
3.4 For each instruction of the TM have a formula saying Ci goes

to Ci+1 if that instruction is relevant.
3.5 If head is not within 2 square of (i , j) and zijσ then z(i+1)jσ.

Important Upshot

▶ If SAT ∈ P then every set in NP is in P, so we would have
P = NP.

▶ We will soon have more NP-complete problems.

▶ If any NP-complete problem is in P then P = NP.

▶ In the year 2000 the Clay Math Institute posted seven math
problems and offered $1,000,000 for the solution to any of
them. Resolving P vs NP was one of them.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.

That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE .

NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.

The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? I

1. SAT is the set of all boolean formulas that are satisfiable.
That is, ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that
ϕ(b⃗) = TRUE . NP-Complete.

2. CNFSAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals. NP-complete.
The proof of Cook-Levin yields a CNF formula.

3. k-SAT is the set of all boolean formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
3-SAT is NP-complete, 2-SAT is in Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

Poly Time. If
some Ci does not have (say) both x and ¬x then satisfiable,
else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
Poly Time since DNFSAT is Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals. Poly Time. If
some Ci does not have (say) both x and ¬x then satisfiable,
else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Poly Time since DNFSAT is Poly Time.

Variants of SAT: Which ones are Hard? II

1. DNFSAT is the set of all boolean formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals. Poly Time. If
some Ci does not have (say) both x and ¬x then satisfiable,
else not.

2. k-DNFSAT is the set of all boolean formulas in SAT of the
form C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
Poly Time since DNFSAT is Poly Time.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

CNFSAT Hard;DNFSAT Easy.
CNFSAT → DNFSAT. Collect $1,000,000

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT
problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! $1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Bad News I’d rather have the $1,000,000 than be enlightened.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:
There is a proof that CNFSAT ≤ DNFSAT is NOT true. That is,
there is NO poly time algorithm that will transform ϕ in CNF form
to ψ in DNF form such that ϕ ∈ SAT iff ψ ∈ SAT.

TRUE, we Do have a proof!. Hard to believe.

Vote on CNF vs DNF

Vote on whether the following statement is TRUE or FALSE:
There is a proof that CNFSAT ≤ DNFSAT is NOT true. That is,
there is NO poly time algorithm that will transform ϕ in CNF form
to ψ in DNF form such that ϕ ∈ SAT iff ψ ∈ SAT.
TRUE, we Do have a proof!. Hard to believe.

Work with Neighbor

Convert the following into CNF form

1. (x1 ∨ y1)

2. (x1 ∨ y1) ∧ (x2 ∨ y2)

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)

x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ y3)∨ (x1 ∧ y2 ∧ x3)∨ (x1 ∧ y2 ∧ y3)∨

(y1 ∧ x2 ∧ x3) ∨ (y1 ∧ x2 ∧ y3) ∨ (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)

(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ y3)∨ (x1 ∧ y2 ∧ x3)∨ (x1 ∧ y2 ∧ y3)∨

(y1 ∧ x2 ∧ x3) ∨ (y1 ∧ x2 ∧ y3) ∨ (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ y3)∨ (x1 ∧ y2 ∧ x3)∨ (x1 ∧ y2 ∧ y3)∨

(y1 ∧ x2 ∧ x3) ∨ (y1 ∧ x2 ∧ y3) ∨ (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ y3)∨ (x1 ∧ y2 ∧ x3)∨ (x1 ∧ y2 ∧ y3)∨

(y1 ∧ x2 ∧ x3) ∨ (y1 ∧ x2 ∧ y3) ∨ (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)

Not going to do it but it would take 16 clauses.

CNF vs DNF

Convert the following into DNF form

1. (x1 ∨ y1)
x1 ∨ y1

2. (x1 ∨ y1) ∧ (x2 ∨ y2)
(x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∨ y2).

3. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3)

(x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ y3)∨ (x1 ∧ y2 ∧ x3)∨ (x1 ∧ y2 ∧ y3)∨

(y1 ∧ x2 ∧ x3) ∨ (y1 ∧ x2 ∧ y3) ∨ (y1 ∧ y2 ∧ x3) ∨ (y1 ∧ y2 ∧ y3)

4. (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x3 ∨ y3) ∧ (x4 ∧ y4)
Not going to do it but it would take 16 clauses.

