The Cook-Levin Thm

Exposition by William Gasarch—U of MD

BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Variants of SAT

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals.
- 3. *k*-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly *k* literals.
- 4. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals.
- 5. *k*-DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of exactly *k* literals.

Turing Machines Def

Def A *Turing Machine* is a tuple $(Q, \Sigma, \delta, s, h)$ where

- Q is a finite set of states. It has the state h.
- \triangleright Σ is a finite alphabet. It contains the symbol #.

$$\blacktriangleright \ \delta: (Q - \{h\}) \times \Sigma \to Q \times \Sigma \cup \{R, L\}$$

• $s \in Q$ is the start state, h is the halt state.

Note There are many variants of Turing Machines- more tapes, more heads. All equivalent.

Conventions for our Turing Machines

- 1. Tape has a left endpoint; however, the tape goes off to infinity to the right.
- 2. The alphabet has symbols $\{a, b, \#, \$, Y, N\}$.
- 3. # is the blank symbol.
- 4. \$ is a separator symbol.
- 5. *Y* and *N* are only used when the machine goes into a halt state. They are YES and NO.
- 6. The input is written on the left. So the input *abba* would be on the tape as

$abba \# \# \# \cdots$

7. The head is initially on the rightmost symbol of the input. So it he above it would be on the a just before the # symbol.

Let M be a Turing Machine and $x \in \Sigma^*$. We represent the computation M(x) as follows:

Example The tape has:

 $abba#abcab#a###\cdots$

If the machine is in state q and the head is looking at the c then we represent this by:

 $abba#ab(c,q)ab#a###\cdots$

Convention—extend alphabet and allow symbols $\Sigma \times Q$. The symbol (c, q) means the symbol is c, the state is q, and that square is where the head of the machine is.

We need a term for strings like:

abba # ab(c,q)a

Def Strings in $\Sigma^*(\Sigma \times Q)\Sigma^*$ are **configuration**.

The Computation M(x) is represented by a sequence of configs. Key A config is finite since what we don't see is #.

Example

If $\delta(s, b) = (q, L)$ and $\delta(q, b) = (p, a)$

а	а	b	b	(<i>b</i> , <i>s</i>)	#
а	а	b	(b,q)	b	#
а	а	b	(<i>a</i> , <i>p</i>)	b	#

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

- ▶ The left endpoint is the end of the tape.
- \blacktriangleright The unseen symbols on the right are all #

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let $X \in NP$.

Let $X \in NP$. Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Let $X \in NP$. Then there exists a poly p and a TM that runs in time poly q such that

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

M(x, y) runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|)).$

Let $X \in NP$.

Then there exists a poly p and a TM that runs in time poly q such that

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

$$M(x, y) \text{ runs in time } \leq q(|x| + |y|) = q(|x| + p(|x|)).$$

Let $t(n) = q(n + p(n))$, a poly.

Let $X \in NP$.

Then there exists a poly p and a TM that runs in time poly q such that

$$X = \{x \mid (\exists y)[|y| = p(|x|) \text{ AND } M(x, y) = Y]\}$$

M(x, y) runs in time $\leq q(|x| + |y|) = q(|x| + p(|x|))$. Let t(n) = q(n + p(n)), a poly. Here is ALL that matters:

- Numb of steps M(x, y) takes is ≤ t(|x|). Hence ≤ t(|x|) configs.
- Computation can only look at the first t(|x|) tapes squares on any config.

New Convention

Old Convention

$$\# | a | a | b | b | (s,b) | \#$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

means that off to the right there are an infinite number of #.

New Convention

Old Convention

$$\# | a | a | b | b | (s,b) | \#$$

means that off to the right there are an infinite number of #. New Convention

$$\# | a | a | b | b | (s,b) | \# | \cdots | \#$$

Tape is t(|x|) long so **know** when stops. Can include entire tape. **Key** Config is finite since what we don't see is never used.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Summary of What's Important

Let $X \in NP$ via poly q and TM M, so

$$X = \{x : (\exists y)[|y| = q(|x|) \land M(x,y) = Y]$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Summary of What's Important

Let $X \in NP$ via poly q and TM M, so

$$X = \{x : (\exists y)[|y| = q(|x|) \land M(x, y) = Y]$$

ション ふぼう メリン メリン しょうくしゃ

 $x \in X$ implies $(\exists y)[|y| = q(|x|) \land M(x, y) = Y]$ implies $(\exists y, C_1, \dots, C_t)[C_1, \dots, C_t \text{ is an accepting comp of } M(x, y)]$

Cook-Levin Thm

Theorem SAT is NP-complete. We need to prove two things: 1. SAT \in NP.

$$SAT = \{\phi : (\exists \vec{y}) [\phi(\vec{y}) = T]\}$$

Formally

$$B = \{(\phi, \vec{y}) : \phi(\vec{y}) = T\}$$

The satisfying assignment is the witness.

2. For all $X \in NP$, $X \leq SAT$. This is the bulk of the proof.

$x \in X \to \ldots$

If $x \in X$ then there is a y of length p(|x|) such that M(x, y) = Y. If $x \in X$ then there is a y and a sequence of configurations C_1, C_2, \ldots, C_t such that

- C₁ is the configuration that says 'input is x\$y, and I am in the starting state.'
- For all *i*, C_{i+1} follows from C_i (note that *M* is deterministic) using δ .
- C_t is the configuration that is in state h and the output is Y.

▶ t = q(|x| + p(|x|)).

How to make all of this into a formula?

KEY 1: We have variables for every possible entry in every possible configuration. The variables are

$$\{z_{i,j,\sigma}: 1 \leq i,j \leq t,\sigma \in \Sigma \cup (Q \times \Sigma)\}$$

If there is an accepting sequence of configurations then $z_{i,j,\sigma} = T$ iff the *j*th symbol in the *i*th configuration is σ .

Making the $z_{i,j,\sigma}$ Make Sense

Need that for all $1 \le i, j \le t$ there exists exactly one σ such that $z_{ij\sigma}$ is TRUE.

$$\bigvee_{\sigma \in \Sigma \cup (\Sigma \times Q)} z_{i,j,\sigma}$$

for each $\sigma \in \Sigma \cup (\Sigma \times Q)$

$$z_{i,j,\sigma} \to \bigwedge_{\tau \in \Sigma \cup (\Sigma \times Q) - \{\sigma\}} \neg z_{i,j,\tau}$$

イロト 不得 トイヨト イヨト ヨー ろくで

C₁ is Start Config

 C_1 is the \bigwedge of the following: C_1 starts with x. Let $x = x_1 \cdots x_n$.

$$z_{1,1,x_1} \land \cdots \land z_{1,n-1,x_{n-1}}, z_{1,n,(x_n,s)} \land z_{1,n+1,s}$$

 C_1 then has q(|x|) symbols from $\{a, b\}$, so NOT the funny symbols.

$$\bigwedge_{j=n+2}^{n+q(|\mathsf{x}|)+1}\bigvee_{\sigma\in\{\mathsf{a},\mathsf{b}\}}\mathsf{z}_{1,j,\sigma}$$

 C_1 then has all blanks:

$$\wedge \bigwedge_{j=q(n)+n+3}^{t(n)} z_{1,j,\#}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○ ○

C₁ is Start Config: Example

x = ab, $p(n) = n^2$, and q(n) = 2n|y| = 4. Input to M is of length 2 + 4 + 1 = 7, so M(x, y) runs $\leq 2 \times 7 = 14$ steps. Formula saying C_1 codes x as input is

 $z_{1,1,a} \wedge z_{1,2,(b,s)} \wedge z_{1,3,\$} \wedge$

 $(z_{1,4,a} \lor z_{1,4,b}) \land (z_{1,5,a} \lor z_{1,5,b}) \land (z_{1,6,a} \lor z_{1,6,b}) \land (z_{1,7,a} \lor z_{1,7,b}) \land$

 $z_{1,8,\#} \wedge \cdots \wedge z_{1,23,\#}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

C_t is an Accept Config

Convention M(x, y) accepts means M(x, y) leaves a Y on the left most square and the head is on the left most square. The state in C_t is h, the halt state,

 $z_{t,1,(Y,h)}$

C_i leads to C_{i+1}

Thought Experiment: What if $\delta(q, a) = (p, b)$. Then:

σ_1	(a,q)	σ_2	
σ_1	(<i>b</i> , <i>p</i>)	σ_2	

Formula is a \bigwedge over relevant i, j, σ_1, σ_2 of:

$$(z_{ij\sigma_1} \wedge z_{i(j+1),(a,q)} \wedge z_{i,(j+2)\sigma_2}) \rightarrow$$

$$(z_{(i+1)j\sigma_1} \wedge z_{(i+1)(j+1),(b,p)} \wedge z_{(i+1),(j+2)\sigma_2})$$

Thought Experiment: What if $\delta(q, a) = (p, L)$. Then:

σ_1	(a,q)	σ_2
(σ_1, p)	а	σ_2

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

One can make a formula out of this as well. (Leave for HW.)

Note that only the symbols at or near the head get changed.

Also need a formula saying that if the (i, j) spot is NOT near the head and $z_{i,j,\sigma}$ then $z_{i+1,j,\sigma}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Putting it All Together

On input x you output a formula ϕ constructed as follows

- 1. t(|x|) = q(|x| + p(|x|)). We call this t.
- 2. Variables $\{z_{i,j,\tau} : 1 \leq i,j \leq t, \tau \in \Sigma \cup (\Sigma \times Q)\}.$
- 3. Formula saying:
 - 3.1 For all $1 \le i, j \le t$, exists ONE σ with $z_{i,j,\sigma} = T$.
 - 3.2 C_1 is the start config with x.
 - 3.3 C_t is the accept config.
 - 3.4 For each instruction of the TM have a formula saying C_i goes to C_{i+1} if that instruction is relevant.

3.5 If head is not within 2 square of (i, j) and $z_{ij\sigma}$ then $z_{(i+1)j\sigma}$.

Important Upshot

- If SAT ∈ P then every set in NP is in P, so we would have P = NP.
- We will soon have more NP-complete problems.
- If any NP-complete problem is in P then P = NP.
- In the year 2000 the Clay Math Institute posted seven math problems and offered \$1,000,000 for the solution to any of them. Resolving P vs NP was one of them.

1. SAT is the set of all boolean formulas that are satisfiable.

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \lor of literals. NP-complete.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.
- 3. *k*-SAT is the set of all boolean formulas in SAT of the form $C_1 \land \cdots \land C_m$ where each C_i is an \lor of exactly *k* literals.

- 1. SAT is the set of all boolean formulas that are satisfiable. That is, $\phi(\vec{x}) \in SAT$ if there exists a vector \vec{b} such that $\phi(\vec{b}) = TRUE$. NP-Complete.
- 2. CNFSAT is the set of all boolean formulas in SAT of the form $C_1 \wedge \cdots \wedge C_m$ where each C_i is an \vee of literals. NP-complete. The proof of Cook-Levin yields a CNF formula.
- k-SAT is the set of all boolean formulas in SAT of the form C₁ ∧ · · · ∧ C_m where each C_i is an ∨ of exactly k literals.
 3-SAT is NP-complete, 2-SAT is in Poly Time.

1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

- 1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals. Poly Time. If some C_i does not have (say) both x and $\neg x$ then satisfiable, else not.
- k-DNFSAT is the set of all boolean formulas in SAT of the form C₁ ∨··· ∨ C_m where each C_i is an ∧ of exactly k literals.

- 1. DNFSAT is the set of all boolean formulas in SAT of the form $C_1 \lor \cdots \lor C_m$ where each C_i is an \land of literals. Poly Time. If some C_i does not have (say) both x and $\neg x$ then satisfiable, else not.
- k-DNFSAT is the set of all boolean formulas in SAT of the form C₁ ∨··· ∨ C_m where each C_i is an ∧ of exactly k literals. Poly Time since DNFSAT is Poly Time.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT. Show me the Money! \$1,000,000 is mine!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Show me the Money! \$1,000,000 is mine!

Bad News This does not work.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Show me the Money! \$1,000,000 is mine!

Bad News This does not work.

Good News The reason it does not work is interesting.

Idea Given ϕ in CNF form, convert to DNF form, solve DNF-SAT problem in Poly time, and now know if ϕ is in SAT.

Show me the Money! \$1,000,000 is mine!

- Bad News This does not work.
- Good News The reason it does not work is interesting.
- Bad News I'd rather have the \$1,000,000 than be enlightened.

Vote on whether the following statement is TRUE or FALSE: There is a proof that CNFSAT \leq DNFSAT is NOT true. That is, there is NO poly time algorithm that will transform ϕ in CNF form to ψ in DNF form such that $\phi \in$ SAT iff $\psi \in$ SAT.

Vote on whether the following statement is TRUE or FALSE: There is a proof that $CNFSAT \leq DNFSAT$ is NOT true. That is, there is NO poly time algorithm that will transform ϕ in CNF form to ψ in DNF form such that $\phi \in SAT$ iff $\psi \in SAT$. TRUE, we Do have a proof!. Hard to believe.

Work with Neighbor

Convert the following into CNF form

1.
$$(x_1 \lor y_1)$$

2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$
3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)$
4. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \land y_4)$

(ロト (個) (E) (E) (E) (E) のへの

Convert the following into DNF form 1. $(x_1 \lor y_1)$

Convert the following into DNF form

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- 1. $(x_1 \lor y_1)$ $x_1 \lor y_1$
- 2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$

Convert the following into DNF form

- $1. (x_1 \lor y_1) \\ x_1 \lor y_1$
- 2. $(x_1 \lor y_1) \land (x_2 \lor y_2)$ $(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2).$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)$

Convert the following into DNF form

 $1. (x_1 \lor y_1) \\ x_1 \lor y_1$

2.
$$(x_1 \lor y_1) \land (x_2 \lor y_2)$$

 $(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2).$
3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3)$

$$(x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge y_3) \vee (x_1 \wedge y_2 \wedge x_3) \vee (x_1 \wedge y_2 \wedge y_3) \vee$$

$$(y_1 \wedge x_2 \wedge x_3) \vee (y_1 \wedge x_2 \wedge y_3) \vee (y_1 \wedge y_2 \wedge x_3) \vee (y_1 \wedge y_2 \wedge y_3)$$

$$4. (x_1 \vee y_1) \wedge (x_2 \vee y_2) \wedge (x_3 \vee y_3) \wedge (x_4 \wedge y_4)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Convert the following into DNF form

 $1. (x_1 \lor y_1) \\ x_1 \lor y_1$

2.
$$(x_1 \lor y_1) \land (x_2 \lor y_2)$$

 $(x_1 \land x_2) \lor (x_1 \land y_2) \lor (y_1 \land x_2) \lor (y_1 \lor y_2)$
3. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_2 \lor y_2)$

$$(x_1 + y_1) + (x_2 + y_2) + (x_3 + y_3)$$

$$(x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge y_3) \vee (x_1 \wedge y_2 \wedge x_3) \vee (x_1 \wedge y_2 \wedge y_3) \vee$$

$$(y_1 \wedge x_2 \wedge x_3) \vee (y_1 \wedge x_2 \wedge y_3) \vee (y_1 \wedge y_2 \wedge x_3) \vee (y_1 \wedge y_2 \wedge y_3)$$

4. $(x_1 \lor y_1) \land (x_2 \lor y_2) \land (x_3 \lor y_3) \land (x_4 \land y_4)$ Not going to do it but it would take 16 clauses.