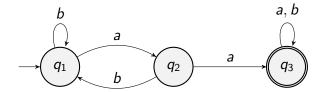
Deterministic Finite Automata (DFA): Closure Properties

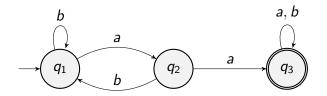
Two Fine Languages

The language L_a is the set of words over $\{a, b\}$ with two consecutive a's. DFA for L_a :

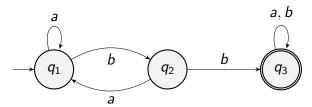


Two Fine Languages

The language L_a is the set of words over $\{a, b\}$ with two consecutive a's. DFA for L_a :

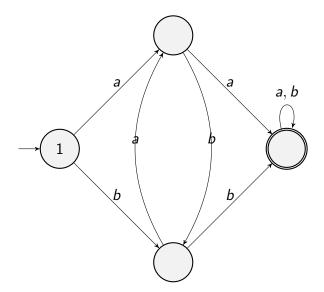


The language L_b is the set of words over $\{a, b\}$ with two consecutive b's. DFA for L_b :

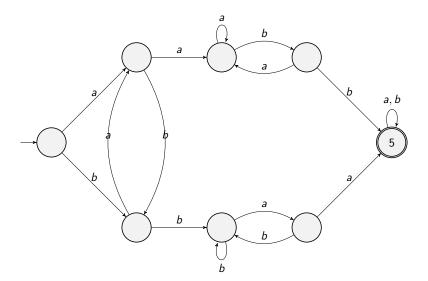


Union: $L_a \cup L_b$

Union: $L_a \cup L_b$



Intersection: $L_a \cap L_b$



Idea: First check two a's then check two b's.

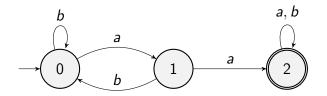
Idea: First check two a's then check two b's. No!

Idea: First check two a's then check two b's. No!

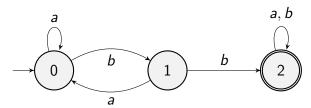
Must do two checks in parallel by "running both machines at once".

Two Fine Languages

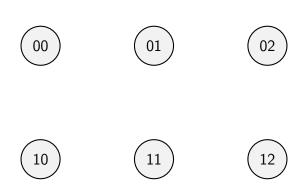
The language L_a is the set of words over $\{a, b\}$ with two consecutive a's. DFA for L_a :



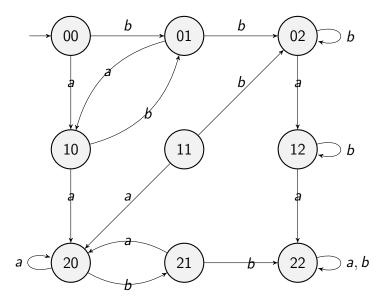
The language L_b is the set of words over $\{a, b\}$ with two consecutive b's. DFA for L_b :



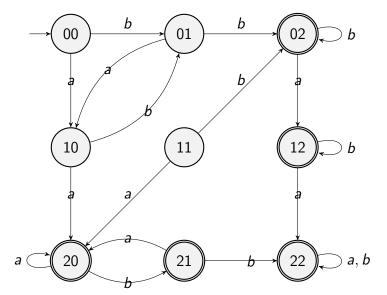
Grid



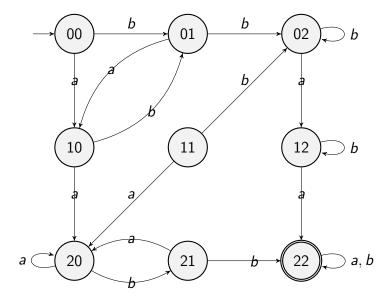
Grid



Union: $L_a \cup L_b$



Intersection: $L_a \cap L_b$



IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

IF L_1, L_2 are regular we want to show that $L_1 \cup L_2$ is regular.

Informally Create a DFA that runs both the DFA for L_1 and L_2 at the same time.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$ then $L_1 \cup L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$

and

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

Note The number of states in DFA for $L_1 \cup L_2$ is $n_1 n_2$.

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$

then $L_1 \cap L_2$ is regular via:

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$

then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma)=(\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$

then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma)=(\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

$$F = F_1 \times F_2$$

IF L_1, L_2 are regular we want to show that $L_1 \cap L_2$ is regular.

Formally If L_1 is regular via $(Q_1, \Sigma, \delta_1, s_1, F_1)$ and L_2 is regular via $(Q_2, \Sigma, \delta_2, s_2, F_2)$

then $L_1 \cap L_2$ is regular via:

$$(Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$$

where

$$\delta((q_1,q_2),\sigma)=(\delta_1(q_1,\sigma),\delta_2(q_2,\sigma))$$

and

$$F = F_1 \times F_2$$

Note The number of states in DFA for $L_1 \cap L_2$ is $n_1 n_2$.

How do you compliment a regular language?

How do you compliment a regular language?

Example How do you compliment a^* ?

How do you compliment a regular language?

Example How do you compliment a^* ?

I find the way all of your strings have only a's so lovely!

How do you compliment a regular language?

Example How do you compliment a^* ?

I find the way all of your strings have only a's so lovely!

Compliment An expression of admiration.

How do you compliment a regular language?

Example How do you compliment a^* ?

I find the way all of your strings have only a's so lovely!

Complement An expression of admiration. **Complement** The complement of L is $\Sigma^* - L$.

How do you complement a regular language?

How do you complement a regular language? **Informally** Swap the final and non-final states.

How do you complement a regular language?

Informally Swap the final and non-final states.

Formally If *L* is regular via

$$(Q, \Sigma, \delta, s, F)$$

then \overline{L} is regular via

$$(Q, \Sigma, \delta, s, Q - F).$$

How do you complement a regular language?

Informally Swap the final and non-final states.

Formally If *L* is regular via

$$(Q, \Sigma, \delta, s, F)$$

then \overline{L} is regular via

$$(Q, \Sigma, \delta, s, Q - F).$$

Note If DFA for L has n states then DFA for \overline{L} has n states.

Question Is the following true? IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.

Question Is the following true? IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE.

Question Is the following true? IF L_1 , L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Question Is the following true? IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES Good News There is a way to prove it using DFAs.

Question Is the following true? IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Question Is the following true?

IF L_1, L_2 are regular then $L_1 \cdot L_2$ is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.

Question Is the following true? IF L is regular then L^* is regular.

Question Is the following true? IF L is regular then L^* is regular. Vote YES, NO, or UNKNOWN TO SCIENCE.

Question Is the following true? IF L is regular then L^* is regular. Vote YES, NO, or UNKNOWN TO SCIENCE. YES

Question Is the following true?

IF L is regular then L^* is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Question Is the following true?

IF L is regular then L* is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Question Is the following true? IF L is regular then L^* is regular.

Vote YES, NO, or UNKNOWN TO SCIENCE.

YES

Good News There is a way to prove it using DFAs.

Bad News Proof is a mess!

Good News We can have a nice proof after we establish equivalence of DFAs and NFAs.

Summary of Closure Properties and Proofs

X means Can't Prove Easily

 $n_1 + n_2$ (and similar) is number of states in new machine if L_i reg via n_i -state machine.

Closure Property	DFA
$L_1 \cup L_2$	$n_1 n_2$
$L_1 \cap L_2$	$n_1 n_2$
$L_1 \cdot L_2$	Χ
\overline{L}	n
L*	X

BILL, STOP RECORDING LECTURE!!!!

BILL STOP RECORDING LECTURE!!!