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Common usage:

100 ≡ 2 (mod 7)

Commonly if we are in mod n we have a large number on the
left and then a number between 0 and n − 1 on the right.

When dealing with mod n we assume the entire universe is
{0, 1, . . . , n − 1}.
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Modular Arithmetic: +,−,×

≡ is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g.,
20 + 10 ≡ 30 ≡ 4. Only use the number 30 as an
intermediary value on the way to the real answer.

2. −7 ≡ x where 0 ≤ x ≤ 25.
Pedantic: −y is the number such that y + (−y) ≡ 0.
−7 ≡ 19 (mod 26) because 19 + 7 ≡ 0 (mod 26).
Shortcut: −y ≡ 26− y .

3. Mult: xy is easy: wrap around. E.g., 20× 10 ≡ 200 ≡ 18.
Shortcut to avoid big numbers:

20× 10 ≡ −6× 10 ≡ −2× 30 ≡ −2× 4 ≡ −8 ≡ 18.

4. Division: Next Slide.
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≡ is mod 26 for this slide.
1
3
≡ x where 0 ≤ x ≤ 25.

Pedantic: 1
y
is the number such that y × 1

y
≡ 1.

1
3
≡ 9 since 9× 3 = 27 ≡ 1.

Shortcut: there is an algorithm that finds 1
y
quickly.

We will NOT study the algorithm later.

1
2
≡ x where 0 ≤ x ≤ 25. Think about it.

No such x exists.
Fact: A number y has an inverse mod 26 if y and 26 have no
common factors. Numbers that have an inverse mod 26:

{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}
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((#a(w) (mod 2),#b(w) (mod 3))

A DFA-classifier does not ACCEPT and REJECT. It classifies.

If w is fed to the DFA in the last slide, the resulting state is

(#a(w) (mod 2),#b(w) (mod 3))

The first DFA accepted (1, 2)-strings and rejected the rest.

The second DFA classifies strings without judgment.
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Alphabets and Strings

Def An alphabet Σ is a set of letters (or characters).

▶ For Examples 1 and 2: Σ = {a, b}.
▶ For Example 3: Σ = {A, ..., Z, #, .}.

Def A string or word is a sequence of symbols from an
alphabet Σ.

▶ Σ2 = ΣΣ = {σ1σ2 : σ1 ∈ Σ ∧ σ2 ∈ Σ}.
▶ Σ3 = ΣΣΣ = {σ1σ2σ3 : σ1 ∈ Σ ∧ σ2 ∈ Σ ∧ σ3 ∈ Σ}.
▶ Σi = {σ1 · · ·σi : σ1, . . . , σi ∈ Σ}
▶ i = 1 case is just Σ1 = Σ.

▶ i = 0 case is just Σ0 = {e} (the empty string).

▶ Notation Kleene star: Σ∗ = Σ0 ∪ Σ1 ∪ · · · is the set of
all strings over the alphabet Σ (including e).
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Languages

Def A language over an alphabet Σ is a subset of Σ∗.

Def Let M be a machine that accepts (or rejects) words.
Then the language L(M) = {w : M accepts w}.

Draw the DFA that accepts the empty language over
the alphabet {a, b}. I.e., L = {}.

q a, b

Draw the DFA that accepts the language L over the
alphabet {a, b} with only the empty word. I.e. L = {e}.

q1 q2
a, b

a, b
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Recall Second Example

q1 q2 q3 q4

q5

a

a

b

b

b

b a a

a, b

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5
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Formal definition of DFAs

Def A DFA M is a 5-tuple (Q,Σ, δ, s,F ) where:

1. Q is a finite set of states.

2. Σ is a finite alphabet.

3. δ : Q × Σ → Q is the transition function.

4. s ∈ Q is the start state.

5. F ⊆ Q is the set of final states.

Informally DFA M accepts w if when M is run on w it
ends up in a final state.

Formally
Def If M is a DFA and w ∈ Σ∗ is a word of length n, then M
accepts w if there is a sequence of states r0, r1, r2, . . . , rn
such that r0 = s, ri = δ(ri−1, xi) for 1 ≤ i ≤ n, and rn ∈ F .

Def Language L ⊆ Σ∗ is regular if there exists a DFA M such
that L(M) = L.
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Computer Implementation
of DFAs



Recall Second Example

Transition Table:

▶ States: {q1, q2, q3, q4, q5}
▶ Alphabet: {a, b}
▶ Start state: q1
▶ Final states: {q2, q4}

▶ Transition function
a b

q1 q2 q5
q2 q1 q3
q3 q5 q4
q4 q5 q3
q5 q5 q5

Implementation of Transition Table:

▶ States: {1, 2, 3, 4, 5}
▶ Alphabet: {1, 2}
▶ Start state: 1

▶ Final states: {2, 4}

▶ Transition function
1 2

1 2 5
2 1 3
3 5 4
4 5 3
5 5 5

Linear time!
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Diagrams Versus Transition Tables

Finite state automata are essentially graphs. Same rules apply:

▶ Diagrams are good for people to understand if the DFAs
are small.

▶ Transition tables are good for algorithms and formal
proofs.
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