Deterministic Finite Automata (DFA)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Three Examples

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目| のへの

Standard Conventions

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

Standard Conventions

1. The state that has an arrow pointing to it (from nowhere, not from another state) is the **start** state.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Standard Conventions

1. The state that has an arrow pointing to it (from nowhere, not from another state) is the **start** state.

ション ふぼう メリン メリン しょうくしゃ

2. The states that are circled are **final states**. If the machine ends up there, then the string is accepted.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のんで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

What is the language?

What is the language?

Odd number of *a*'s followed by an even number of *b*'s, but at least two.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□▶

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

What is the language?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

What is the language? Odd number of *a*'s followed by an even number of *b*'s.

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

What is the language?

What is the language? Messy

What is the language? Messy

Third Example without Garbage State

イロト (個) (主) (主) (三) のへの

Third Example without Garbage State

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

Third Example without Garbage State

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

What is the language?

Short Detour

・ロト・西ト・ヨト・ヨー うへぐ

Short Detour

Modular Arithmetic

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

• $x \equiv y \pmod{N}$ if and only if N divides x - y.

(ロト (個) (E) (E) (E) (E) のへの

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

x ≡ y (mod N) if and only if N divides x - y.
 25 ≡ 35 (mod 10).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

▶ $100 \equiv 2 \pmod{7}$ since $100 = 7 \times 14 + 2$.

Modular Arithmetic II: Convention

Common usage:

$$100 \equiv 2 \pmod{7}$$

Modular Arithmetic II: Convention

Common usage:

$$100 \equiv 2 \pmod{7}$$

Commonly if we are in mod n we have a large number on the left and then a number between 0 and n - 1 on the right.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Modular Arithmetic II: Convention

Common usage:

$$100 \equiv 2 \pmod{7}$$

Commonly if we are in mod n we have a large number on the left and then a number between 0 and n-1 on the right.

When dealing with mod n we assume the entire universe is $\{0, 1, \ldots, n-1\}$.

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2. $-7 \equiv x$ where $0 \leq x \leq 25$.

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2. $-7 \equiv x$ where $0 \leq x \leq 25$. **Pedantic:** -y is the number such that $y + (-y) \equiv 0$.

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic: $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
\equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic: $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic: $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$.

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic: $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic: $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

$$20 \times 10 \equiv -6 \times 10 \equiv -2 \times 30 \equiv -2 \times 4 \equiv -8 \equiv 18.$$

 \equiv is mod 26 for this slide. (This slide is from CMSC456.)

1. Addition: x + y is easy: wrap around. E.g., $20 + 10 \equiv 30 \equiv 4$. Only use the number 30 as an intermediary value on the way to the real answer.

2.
$$-7 \equiv x$$
 where $0 \leq x \leq 25$.
Pedantic: $-y$ is the number such that $y + (-y) \equiv 0$.
 $-7 \equiv 19 \pmod{26}$ because $19 + 7 \equiv 0 \pmod{26}$.
Shortcut: $-y \equiv 26 - y$.

3. Mult: xy is easy: wrap around. E.g., $20 \times 10 \equiv 200 \equiv 18$. Shortcut to avoid big numbers:

 $20 \times 10 \equiv -6 \times 10 \equiv -2 \times 30 \equiv -2 \times 4 \equiv -8 \equiv 18.$

4. Division: Next Slide.

```
\equiv is mod 26 for this slide.
\frac{1}{3} \equiv x where 0 \le x \le 25.
```

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\equiv \text{ is mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \le x \le 25. \\ \text{Pedantic: } \frac{1}{y} \text{ is the number such that } y \times \frac{1}{y} \equiv 1. \\ \end{array}$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\equiv \text{ is mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \leq x \leq 25. \\ \text{Pedantic: } \frac{1}{y} \text{ is the number such that } y \times \frac{1}{y} \equiv 1. \\ \frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1. \end{cases}$

 $\equiv \text{ is mod 26 for this slide.} \\ \frac{1}{3} \equiv x \text{ where } 0 \leq x \leq 25. \\ \text{Pedantic: } \frac{1}{y} \text{ is the number such that } y \times \frac{1}{y} \equiv 1. \\ \frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1. \\ \text{Shortcut: } \end{cases}$

 \equiv is mod 26 for this slide. $\frac{1}{3} \equiv x$ where $0 \le x \le 25$. **Pedantic:** $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9$ since $9 \times 3 = 27 \equiv 1$. Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly.

ション ふぼう メリン メリン しょうくしゃ

 \equiv is mod 26 for this slide. $\frac{1}{3} \equiv x$ where $0 \le x \le 25$. **Pedantic:** $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1$. $\frac{1}{3} \equiv 9$ since $9 \times 3 = 27 \equiv 1$. Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will NOT study the algorithm later.

ション ふぼう メリン メリン しょうくしゃ

= is mod 26 for this slide. $\frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1.$ $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will NOT study the algorithm later.

ション ふぼう メリン メリン しょうくしゃ

 $\frac{1}{2} \equiv x$ where $0 \leq x \leq 25$.

= is mod 26 for this slide. $\frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1.$ $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will NOT study the algorithm later.

ション ふぼう メリン メリン しょうくしゃ

 $\frac{1}{2} \equiv x$ where $0 \le x \le 25$. Think about it.

= is mod 26 for this slide. $\frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1.$ $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will NOT study the algorithm later.

ション ふぼう メリン メリン しょうくしゃ

 $\frac{1}{2} \equiv x$ where $0 \le x \le 25$. Think about it. No such x exists.

= is mod 26 for this slide. $\frac{1}{3} = x \text{ where } 0 \le x \le 25.$ Pedantic: $\frac{1}{y}$ is the number such that $y \times \frac{1}{y} \equiv 1.$ $\frac{1}{3} \equiv 9 \text{ since } 9 \times 3 = 27 \equiv 1.$ Shortcut: there is an algorithm that finds $\frac{1}{y}$ quickly. We will NOT study the algorithm later.

 $\frac{1}{2} \equiv x$ where $0 \le x \le 25$. Think about it. No such x exists.

Fact: A number y has an inverse mod 26 if y and 26 have no common factors. Numbers that have an inverse mod 26:

 $\{1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25\}$

End of Detour

End of Detour

Another Example

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

$\{w: \#_a(w) \equiv 1 \pmod{2} \land \#_b(w) \equiv 2 \pmod{3}\}$

・ロト・西ト・モン・モー シック

 $\{w: \#_a(w) \equiv 1 \pmod{2} \land \#_b(w) \equiv 2 \pmod{3}\}$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえの

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

A DFA-classifier does not ACCEPT and REJECT. It classifies.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A DFA-classifier does not ACCEPT and REJECT. It classifies. If w is fed to the DFA in the last slide, the resulting state is

 $(\#_a(w) \pmod{2}, \#_b(w) \pmod{3})$

ション ふぼう メリン メリン しょうくしゃ

A DFA-classifier does not ACCEPT and REJECT. It classifies. If w is fed to the DFA in the last slide, the resulting state is

 $(\#_a(w) \pmod{2}, \#_b(w) \pmod{3})$

ション ふゆ アメビア メロア しょうくしゃ

The first DFA accepted (1, 2)-strings and rejected the rest.

A DFA-classifier does not ACCEPT and REJECT. It classifies. If w is fed to the DFA in the last slide, the resulting state is

 $(\#_a(w) \pmod{2}, \#_b(w) \pmod{3})$

The first DFA **accepted** (1, 2)-strings and **rejected** the rest. The second DFA **classifies** strings without judgment.

ション ふぼう メリン メリン しょうくしゃ

Short Detour

・ロト・西ト・ヨト・ヨー うへぐ

Short Detour

Alphabets, Strings, and Languages

▲□▶▲圖▶▲≧▶▲≣▶ ≣ のへで

Def An **alphabet** Σ is a set of letters (or characters).

・ロト・日本・モト・モト・モー うへぐ

Def An **alphabet** Σ is a set of letters (or characters).

For Examples 1 and 2: $\Sigma = \{a, b\}$.

Def An **alphabet** Σ is a set of letters (or characters).

For Examples 1 and 2: $\Sigma = \{a, b\}$.

• For Example 3:
$$\Sigma = \{A, ..., Z, \#, .\}$$
.

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

$$\blacktriangleright \Sigma^2 = \Sigma \Sigma = \{ \sigma_1 \sigma_2 : \sigma_1 \in \Sigma \land \sigma_2 \in \Sigma \}.$$

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

$$\begin{split} & \boldsymbol{\Sigma}^2 = \boldsymbol{\Sigma}\boldsymbol{\Sigma} = \{\sigma_1\sigma_2 : \sigma_1 \in \boldsymbol{\Sigma} \land \sigma_2 \in \boldsymbol{\Sigma}\}. \\ & \boldsymbol{\Sigma}^3 = \boldsymbol{\Sigma}\boldsymbol{\Sigma}\boldsymbol{\Sigma} = \{\sigma_1\sigma_2\sigma_3 : \sigma_1 \in \boldsymbol{\Sigma} \land \sigma_2 \in \boldsymbol{\Sigma} \land \sigma_3 \in \boldsymbol{\Sigma}\}. \end{split}$$

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

$$\begin{split} & \boldsymbol{\Sigma}^2 = \boldsymbol{\Sigma}\boldsymbol{\Sigma} = \{\sigma_1\sigma_2 : \sigma_1 \in \boldsymbol{\Sigma} \land \sigma_2 \in \boldsymbol{\Sigma}\}. \\ & \boldsymbol{\Sigma}^3 = \boldsymbol{\Sigma}\boldsymbol{\Sigma}\boldsymbol{\Sigma} = \{\sigma_1\sigma_2\sigma_3 : \sigma_1 \in \boldsymbol{\Sigma} \land \sigma_2 \in \boldsymbol{\Sigma} \land \sigma_3 \in \boldsymbol{\Sigma}\}. \\ & \boldsymbol{\Sigma}^i = \{\sigma_1 \cdots \sigma_i : \sigma_1, \dots, \sigma_i \in \boldsymbol{\Sigma}\} \end{split}$$

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

$$\begin{split} & \boldsymbol{\Sigma}^2 = \boldsymbol{\Sigma} \boldsymbol{\Sigma} = \{ \sigma_1 \sigma_2 : \sigma_1 \in \boldsymbol{\Sigma} \land \sigma_2 \in \boldsymbol{\Sigma} \}. \\ & \boldsymbol{\Sigma}^3 = \boldsymbol{\Sigma} \boldsymbol{\Sigma} \boldsymbol{\Sigma} = \{ \sigma_1 \sigma_2 \sigma_3 : \sigma_1 \in \boldsymbol{\Sigma} \land \sigma_2 \in \boldsymbol{\Sigma} \land \sigma_3 \in \boldsymbol{\Sigma} \}. \\ & \boldsymbol{\Sigma}^i = \{ \sigma_1 \cdots \sigma_i : \sigma_1, \dots, \sigma_i \in \boldsymbol{\Sigma} \} \\ & \boldsymbol{i} = 1 \text{ case is just } \boldsymbol{\Sigma}^1 = \boldsymbol{\Sigma}. \\ & \boldsymbol{i} = 0 \text{ case is just } \boldsymbol{\Sigma}^0 = \{ e \} \text{ (the empty string)}. \end{split}$$
Alphabets and Strings

Def An **alphabet** Σ is a set of letters (or characters).

- For Examples 1 and 2: $\Sigma = \{a, b\}$.
- For Example 3: $\Sigma = \{A, ..., Z, \#, .\}$.

Def A **string** or **word** is a sequence of symbols from an alphabet Σ .

- Σ² = ΣΣ = {σ₁σ₂ : σ₁ ∈ Σ ∧ σ₂ ∈ Σ}.
 Σ³ = ΣΣΣ = {σ₁σ₂σ₃ : σ₁ ∈ Σ ∧ σ₂ ∈ Σ ∧ σ₃ ∈ Σ}.
 Σⁱ = {σ₁ ··· σ_i : σ₁, ..., σ_i ∈ Σ}
 i = 1 case is just Σ¹ = Σ.
 i = 0 case is just Σ⁰ = {e} (the empty string).
- ▶ Notation Kleene star: $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \cdots$ is the set of all strings over the alphabet Σ (including *e*).

(4日) (個) (主) (主) (三) の(の)

Def A **language** over an alphabet Σ is a subset of Σ^* .

・ロト・日本・ヨト・ヨト・日・ つへぐ

Def A **language** over an alphabet Σ is a subset of Σ^* . **Def** Let *M* be a machine that accepts (or rejects) words. Then the **language** $L(M) = \{w : M \text{ accepts } w\}$.

Def A **language** over an alphabet Σ is a subset of Σ^* . **Def** Let M be a machine that accepts (or rejects) words. Then the **language** $L(M) = \{w : M \text{ accepts } w\}$.

Draw the DFA that accepts the empty language over the alphabet $\{a, b\}$. I.e., $L = \{\}$.

Def A **language** over an alphabet Σ is a subset of Σ^* . **Def** Let M be a machine that accepts (or rejects) words. Then the **language** $L(M) = \{w : M \text{ accepts } w\}$.

Draw the DFA that accepts the empty language over the alphabet $\{a, b\}$. I.e., $L = \{\}$.

$$\rightarrow q$$
, a, b

Def A **language** over an alphabet Σ is a subset of Σ^* . **Def** Let M be a machine that accepts (or rejects) words. Then the **language** $L(M) = \{w : M \text{ accepts } w\}$.

Draw the DFA that accepts the empty language over the alphabet $\{a, b\}$. I.e., $L = \{\}$.

$$\rightarrow q$$
, b

Draw the DFA that accepts the language *L* over the alphabet $\{a, b\}$ with only the empty word. I.e. $L = \{e\}$.

Def A **language** over an alphabet Σ is a subset of Σ^* . **Def** Let M be a machine that accepts (or rejects) words. Then the **language** $L(M) = \{w : M \text{ accepts } w\}$.

Draw the DFA that accepts the empty language over the alphabet $\{a, b\}$. I.e., $L = \{\}$.

$$\rightarrow q$$
, a, b

Draw the DFA that accepts the language *L* over the alphabet $\{a, b\}$ with only the empty word. I.e. $L = \{e\}$.

End of Detour

・ロト・西ト・ヨト・ヨー うへぐ

End of Detour

Start of Transition Tables

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

< 口 > < 問 > < 芝 > < 芝 > ミ 芝 - 오 ()

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 … 釣んで

Transition Table:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Transition Table:

• States:
$$\{q_1, q_2, q_3, q_4, q_5\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Transition Table:

States: {q₁, q₂, q₃, q₄, q₅}
 Alphabet: {a, b}

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Transition Table:

- States: $\{q_1, q_2, q_3, q_4, q_5\}$
- ► Alphabet: {*a*, *b*}
- Start state: q₁

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Transition Table:

- States: $\{q_1, q_2, q_3, q_4, q_5\}$
- ► Alphabet: {*a*, *b*}
- Start state: q₁
- Final states: $\{q_2, q_4\}$

Transition Table:

- States: $\{q_1, q_2, q_3, q_4, q_5\}$
- ► Alphabet: {*a*, *b*}
- Start state: q₁
- Final states: $\{q_2, q_4\}$

Transition function

		а	b
	q_1	q_2	q_5
	q_2	q_1	<i>q</i> ₃
	q 3	q_5	q_4
	q_4	q_5	q 3
• • • •	q_5	_ q 5	<i>q</i> 5

・ロト・1日・1日・1日・1日・2000

Def A **DFA** *M* is a 5-tuple $(Q, \Sigma, \delta, s, F)$ where:

- 1. Q is a finite set of **states**.
- 2. Σ is a finite **alphabet**.
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.

- 4. $s \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of **final states**.

Def A **DFA** *M* is a 5-tuple $(Q, \Sigma, \delta, s, F)$ where:

- 1. *Q* is a finite set of **states**.
- 2. Σ is a finite **alphabet**.
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
- 4. $s \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of **final states**.

Informally DFA M accepts w if when M is run on w it ends up in a final state.

ション ふぼう メリン メリン しょうくしゃ

Def A **DFA** *M* is a 5-tuple $(Q, \Sigma, \delta, s, F)$ where:

- 1. Q is a finite set of **states**.
- 2. Σ is a finite **alphabet**.
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
- 4. $s \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of **final states**.

Informally DFA M accepts w if when M is run on w it ends up in a final state.

Formally

Def If *M* is a DFA and $w \in \Sigma^*$ is a word of length *n*, then *M* accepts *w* if there is a sequence of states $r_0, r_1, r_2, \ldots, r_n$ such that $r_0 = s$, $r_i = \delta(r_{i-1}, x_i)$ for $1 \le i \le n$, and $r_n \in F$.

Def A **DFA** *M* is a 5-tuple $(Q, \Sigma, \delta, s, F)$ where:

- 1. Q is a finite set of **states**.
- 2. Σ is a finite **alphabet**.
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function.
- 4. $s \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of **final states**.

Informally DFA M accepts w if when M is run on w it ends up in a final state.

Formally

Def If *M* is a DFA and $w \in \Sigma^*$ is a word of length *n*, then *M* accepts *w* if there is a sequence of states $r_0, r_1, r_2, \ldots, r_n$ such that $r_0 = s$, $r_i = \delta(r_{i-1}, x_i)$ for $1 \le i \le n$, and $r_n \in F$.

Def Language $L \subseteq \Sigma^*$ is **regular** if there exists a DFA *M* such that L(M) = L.

Computer Implementation of DFAs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

< 口 > < 問 > < 芝 > < 芝 > ミ 芝 · 오()

Recall Second Example Transition Table:

- States: $\{q_1, q_2, q_3, q_4, q_5\}$
- ► Alphabet: {*a*, *b*}
- Start state: q1
- Final states: $\{q_2, q_4\}$

	а	b
q_1	q_2	q_5
q_2	q_1	q_3
<i>q</i> ₃	q_5	q_4
q_4	q_5	q 3
q_5	q_5	q_5

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Recall Second Example Transition Table:

- States: $\{q_1, q_2, q_3, q_4, q_5\}$
- ► Alphabet: {*a*, *b*}
- Start state: q₁
- Final states: $\{q_2, q_4\}$

Implementation of Transition Table:

- ▶ States: {1, 2, 3, 4, 5}
- ► Alphabet: {1,2}
- Start state: 1
- ▶ Final states: {2,4}

Transition function

	а	b
q_1	q_2	q_5
q_2	q_1	q 3
q_3	q_5	q_4
q_4	q_5	q 3
q_5	q_5	q_5

Transition function

- 日本 不得 とうほう 不可 とうせい

Recall Second Example Transition Table:

- States: $\{q_1, q_2, q_3, q_4, q_5\}$
- ► Alphabet: {*a*, *b*}
- Start state: q₁
- Final states: $\{q_2, q_4\}$

Implementation of Transition Table:

- ▶ States: {1, 2, 3, 4, 5}
- ► Alphabet: {1,2}
- Start state: 1
- ▶ Final states: {2,4}

Linear time!

Transition function

	а	b
q_1	q_2	q_5
q_2	q_1	q 3
q_3	q_5	q_4
q_4	q_5	q 3
q_5	q_5	q_5

Transition function

・ロト・国ト・ヨト・ヨー つんぐ

・ロト・御ト・ヨト・ヨト ヨー めへぐ

Finite state automata are essentially graphs. Same rules apply:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Finite state automata are essentially graphs. Same rules apply:

Diagrams are good for people to understand if the DFAs are small.

Finite state automata are essentially graphs. Same rules apply:

Diagrams are good for people to understand if the DFAs are small.

 Transition tables are good for algorithms and formal proofs.