Tricks for Divisibility and DFA's

What I Learned in Junior High School

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

What I Learned in Junior High School

Divisibility tricks for $2,3,5,9,10$.
Let $x=x_{n} \cdots x_{0}$.

- 2 :

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3 :

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5 :

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5: $x \equiv 0(\bmod 5)$ iff $x_{0} \equiv 0(\bmod 5)$.

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5: $x \equiv 0(\bmod 5)$ iff $x_{0} \equiv 0(\bmod 5)$.
- 9 :

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5: $x \equiv 0(\bmod 5)$ iff $x_{0} \equiv 0(\bmod 5)$.
- 9: $x \equiv 0(\bmod 9)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 9)$.

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5: $x \equiv 0(\bmod 5)$ iff $x_{0} \equiv 0(\bmod 5)$.
- 9: $x \equiv 0(\bmod 9)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 9)$.
- 10 :

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5: $x \equiv 0(\bmod 5)$ iff $x_{0} \equiv 0(\bmod 5)$.
- 9: $x \equiv 0(\bmod 9)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 9)$.
- 10: $x \equiv 0(\bmod 10)$ iff $x_{0} \equiv 0(\bmod 10)$.

What I Learned in Junior High School

Divisibility tricks for 2,3,5,9,10.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv 0(\bmod 2)$ iff $x_{0} \equiv 0(\bmod 2)$.
- 3: $x \equiv 0(\bmod 3)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 3)$.
- 5: $x \equiv 0(\bmod 5)$ iff $x_{0} \equiv 0(\bmod 5)$.
- 9: $x \equiv 0(\bmod 9)$ iff is $\sum_{i=0}^{n} x_{i} \equiv 0(\bmod 9)$.
- 10: $x \equiv 0(\bmod 10)$ iff $x_{0} \equiv 0(\bmod 10)$.

What is a trick? We come back to that later.

What I Didn't Learned in Junior High School

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2 :

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3 :

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5 :

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$
- 9 :

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$
- 9: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 9)$

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$
- 9: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 9)$
- 10 :

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$
- 9: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 9)$
- 10: $x \equiv x_{0}(\bmod 10)$

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$
- 9: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 9)$
- 10: $x \equiv x_{0}(\bmod 10)$

1) We don't just get divisibility, we get mod.

What I Didn't Learned in Junior High School

We don't just learn divisibility.
Let $x=x_{n} \cdots x_{0}$.

- 2: $x \equiv x_{0}(\bmod 2)$
- 3: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 3)$
- 5: $x \equiv x_{0}(\bmod 5)$
- 9: $x \equiv \sum_{i=0}^{n} x_{i}(\bmod 9)$
- 10: $x \equiv x_{0}(\bmod 10)$

1) We don't just get divisibility, we get mod.
2) Still have not defined trick carefully.

Notation For this Slide Packet

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.

Notation For this Slide Packet

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.
Strings are numbers in base 10 .

Notation For this Slide Packet

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.
Strings are numbers in base 10 .
The string

$$
d_{n-1} \cdots d_{0}
$$

Notation For this Slide Packet

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.
Strings are numbers in base 10 .
The string

$$
d_{n-1} \cdots d_{0}
$$

is the number

$$
d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10^{1}+d_{0} \times 10^{0}
$$

Notation For this Slide Packet

For this Slide Packet $\Sigma=\{0, \ldots, 9\}$.
Strings are numbers in base 10 .
The string

$$
d_{n-1} \cdots d_{0}
$$

is the number

$$
d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10^{1}+d_{0} \times 10^{0}
$$

We feed a number into a DFA right-to-left: d_{0}, then d_{1} then d_{2} then \ldots

Proof of Trick for Mod. All \equiv are $\bmod 2$.

Proof of Trick for Mod. All \equiv are $\bmod 2$.

Thm $d_{n-1} \cdots d_{0} \equiv d_{0}$.

Proof of Trick for Mod. All \equiv are $\bmod 2$.

Thm $d_{n-1} \cdots d_{0} \equiv d_{0}$.
Pf

$$
d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0}
$$

Proof of Trick for Mod. All \equiv are $\bmod 2$.

Thm $d_{n-1} \cdots d_{0} \equiv d_{0}$.
Pf

$$
\begin{aligned}
& d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \\
= & 10\left(d_{n-1} \times 10^{n-2}+\cdots+d_{1}\right)+d_{0}
\end{aligned}
$$

Proof of Trick for Mod. All \equiv are $\bmod 2$.

Thm $d_{n-1} \cdots d_{0} \equiv d_{0}$.
Pf

$$
\begin{aligned}
& d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \\
= & 10\left(d_{n-1} \times 10^{n-2}+\cdots+d_{1}\right)+d_{0} \\
\equiv & d_{0}
\end{aligned}
$$

DFA for Mod 2

4ロ〉4岛 1 三

DFA for Mod 2

Proof of Trick for Mod 3. All \equiv are mod 3.

Thm $d_{n-1} \cdots d_{0} \equiv d_{n-1}+\cdots+d_{0}$.

Proof of Trick for Mod 3. All \equiv are mod 3.

Thm $d_{n-1} \cdots d_{0} \equiv d_{n-1}+\cdots+d_{0}$.

Proof of Trick for Mod 3. All \equiv are mod 3.

Thm $d_{n-1} \cdots d_{0} \equiv d_{n-1}+\cdots+d_{0}$. Pf

$$
d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \times 10^{0}
$$

Proof of Trick for Mod 3. All \equiv are mod 3.

Thm $d_{n-1} \cdots d_{0} \equiv d_{n-1}+\cdots+d_{0}$. Pf

$$
\begin{aligned}
& d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \times 10^{0} \\
\equiv & d_{n-1} \times 1+\cdots+d_{1} \times 1+d_{0} \times 1
\end{aligned}
$$

Proof of Trick for Mod 3. All \equiv are $\bmod 3$.

Thm $d_{n-1} \cdots d_{0} \equiv d_{n-1}+\cdots+d_{0}$. Pf

$$
\begin{aligned}
& d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \times 10^{0} \\
\equiv & d_{n-1} \times 1+\cdots+d_{1} \times 1+d_{0} \times 1 \\
\equiv & d_{n-1}+\cdots+d_{1}+d_{0}
\end{aligned}
$$

DFA for Mod 3

4ロ〉4句 1 三

DFA for Mod 3

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick??

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick??
$n \equiv 0$ iff

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick?? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick??
$n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n-1} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick??
$n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n-1} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.
Pf

$$
d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0}
$$

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick??
$n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n-1} \cdots d_{0} \equiv 2 d_{1}+d_{0}$.
Pf

$$
\begin{aligned}
& d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \\
\equiv & d_{1} \times 10+d_{0}
\end{aligned}
$$

Trick for Mod 4. All \equiv are Mod 4

Do you know the Mod 4 trick?? $n \equiv 0$ iff last 2 digits are a number $\equiv 0$.
Thm $d_{n-1} \cdots d_{0} \equiv 2 d_{1}+d_{0}$. Pf

$$
\begin{aligned}
& d_{n-1} \times 10^{n-1}+\cdots+d_{1} \times 10+d_{0} \\
\equiv & d_{1} \times 10+d_{0} \\
\equiv & 2 d_{1}+d_{0}
\end{aligned}
$$

DFA for Mod 4
4ロ〉4司〉4 三〉4 三

DFA for Mod 4

Key to all of these Problems

For all of these problems we need to find a pattern of 10^{n} $(\bmod a)$.

Key to all of these Problems

For all of these problems we need to find a pattern of 10^{n} $(\bmod a)$.
Mod 2: Pattern is $1,0,0,0, \ldots$, DFA cared about first digit.

Key to all of these Problems

For all of these problems we need to find a pattern of 10^{n} $(\bmod a)$.
Mod 2: Pattern is $1,0,0,0, \ldots$, DFA cared about first digit. Mod 3: Pattern is $1,1,1,1, \ldots$, DFA tracked sum mod 3.

Key to all of these Problems

For all of these problems we need to find a pattern of 10^{n} $(\bmod a)$.
Mod 2: Pattern is $1,0,0,0, \ldots$, DFA cared about first digit. Mod 3: Pattern is $1,1,1,1, \ldots$, DFA tracked sum mod 3. Mod 4: Pattern is $1,2,0,0,0, \ldots$, DFA cared about first 2 digits.

Proof of Tricks for Mod 5,9,10 and Trick for Mod 6

These may be on a HW.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11?

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.
$10^{3} \equiv 10^{2} \times 10 \equiv 1 \times-1 \equiv-1$.
Pattern is $1,-1,1,-1, \ldots$

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.
$10^{3} \equiv 10^{2} \times 10 \equiv 1 \times-1 \equiv-1$.
Pattern is $1,-1,1,-1, \ldots$
Thm $d_{n} \cdots d_{0} \equiv d_{0}-d_{1}+d_{2}-\cdots \pm d_{n}$.

Trick for Mod 11. All \equiv are Mod 11

Is there a trick for mod 11 ?
We derive it together!
$10^{0} \equiv 1$
$10^{1} \equiv 10 \equiv-1$
$10^{2} \equiv 10 \equiv 10 \equiv-1 \times-1 \equiv 1$.
$10^{3} \equiv 10^{2} \times 10 \equiv 1 \times-1 \equiv-1$.
Pattern is $1,-1,1,-1, \ldots$
Thm $d_{n} \cdots d_{0} \equiv d_{0}-d_{1}+d_{2}-\cdots \pm d_{n}$.
Proof may be on HW or Midterm or Final or some combination.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2.
22 states.

DFA for Mod 11

Need to keep track of both the running weighted sum mod 11 and if you are reading an even or odd place.
$Q=\{0, \ldots, 10\} \times\{0,1\}$
$s=(0,0)$.
Final state: Not going to have these, this is DFA-classifier.

$$
\delta((i, j), \sigma)\left\{\begin{array}{ll}
(i+\sigma & (\bmod 11), j+1 \tag{1}
\end{array}(\bmod 2)\right) \text { if } j=0
$$

We keep track of a running weighted sum mod 11 and position of the symbol mod 2.
22 states.
Classifier If end in $(i, 0)$ or $(i, 1)$ then number is $\equiv i$.

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for $\bmod 7$?

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$
$10^{6} \equiv 10^{5} \times 10 \equiv 5 \times 3 \equiv 15 \equiv 1$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$
$10^{6} \equiv 10^{5} \times 10 \equiv 5 \times 3 \equiv 15 \equiv 1$
Pattern is $1,3,2,6,4,5,1,3,2,6,4,5,1, \ldots$

Is There a Trick for Mod 7? All \equiv are Mod 7

Is there a trick for mod 7?
Answer Depends what you call a trick.
We need to spot a pattern.
$10^{0} \equiv 1$
$10^{1} \equiv 3$
$10^{2} \equiv 10 \times 10 \equiv 3 \times 3 \equiv 9 \equiv 2$
$10^{3} \equiv 10^{2} \times 10 \equiv 2 \times 3 \equiv 6$
$10^{4} \equiv 10^{3} \times 10 \equiv 6 \times 3 \equiv 18 \equiv 4$
$10^{5} \equiv 10^{4} \times 10 \equiv 4 \times 3 \equiv 12 \equiv 5$
$10^{6} \equiv 10^{5} \times 10 \equiv 5 \times 3 \equiv 15 \equiv 1$
Pattern is $1,3,2,6,4,5,1,3,2,6,4,5,1, \ldots$
Can we use this?

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7.

Using the Divide by 7 Trick

Want to know what 3876554 is $\bmod 7$.

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4
\end{aligned}
$$

Using the Divide by 7 Trick

Want to know what 3876554 is $\bmod 7$.

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7)
\end{aligned}
$$

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 .

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7)
\end{aligned}
$$

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 .

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3+5+0-6-4-6+4 \quad(\bmod 7)
\end{aligned}
$$

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 .

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3+5+0-6-4-6+4 \quad(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 .

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3+5+0-6-4-6+4 \quad(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

DFA States will keep track of

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 .

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3+5+0-6-4-6+4 \quad(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

DFA States will keep track of
Running weighted sum mod 7

Using the Divide by 7 Trick

Want to know what 3876554 is $\bmod 7$.

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3+5+0-6-4-6+4 \quad(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

DFA States will keep track of
Running weighted sum mod 7
Position of digit mod 6 so know which weights to use.

Using the Divide by 7 Trick

Want to know what 3876554 is mod 7 .

$$
\begin{aligned}
& 3876554 \\
= & 3 \cdot 10^{6}+8 \cdot 10^{5}+7 \cdot 10^{4}+6 \cdot 10^{3}+5 \cdot 10^{2}+5 \cdot 10+4 \\
\equiv & 3 \cdot 1+8 \cdot 5+7 \cdot 4+6 \cdot 6+5 \cdot 2+5 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3 \cdot 1+1 \cdot 5+0 \cdot 4+-1 \cdot 6+-2 \cdot 2+-2 \cdot 3+4 \quad(\bmod 7) \\
\equiv & 3+5+0-6-4-6+4 \quad(\bmod 7) \\
\equiv & 3(\bmod 7)
\end{aligned}
$$

DFA States will keep track of
Running weighted sum mod 7
Position of digit mod 6 so know which weights to use.
So there are $7 \times 6=42$ states.

Is the Method a Trick?

Is the Method a Trick?

YES A DFA can do it.

Is the Method a Trick?

YES A DFA can do it.
NO A human cannot do it easily. (The pattern is not like $1,1,1, \ldots$ or mostly 0 's.)

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

[^0]
The DFA for $\{n: n \equiv 0(\bmod 7)\}$

Too hard for me

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

Too hard for me
... but not for you.

The DFA for $\{n: n \equiv 0(\bmod 7)\}$

Too hard for me
... but not for you.
Might make it a HW to do as a table.

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$? Method One Divide and take remainder.

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.
Method Two Use the DFA.

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.
Method Two Use the DFA.
Question Which is faster?

Possible Research Question

What is the fastest way to determine $n(\bmod 7)$?
Method One Divide and take remainder.
Method Two Use the DFA.
Question Which is faster?
Might be hard to tell because today's computers are so fast!

[^0]: aracter yac

