The

Communication Complexity

of Equality

OUR PROBLEM- EQ

OUR PROBLEM- EQ

1. Alice has x, Bob has y, both of length n.

OUR PROBLEM- EQ

1. Alice has x, Bob has y, both of length n.
2. They want to see if $x=y$ communicating as few bits as possible.

OUR PROBLEM- EQ

1. Alice has x, Bob has y, both of length n.
2. They want to see if $x=y$ communicating as few bits as possible.
3. We call this problem EQ.

OBVIOUS PROTOCOL

OBVIOUS PROTOCOL

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.

OBVIOUS PROTOCOL

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice sends $a_{1} \cdots a_{n}$ to Bob (n bits).

OBVIOUS PROTOCOL

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice sends $a_{1} \cdots a_{n}$ to Bob (n bits).
3. Bob compares $a_{1} \cdots a_{n}$ to $b_{1} \cdots b_{n}$. If equal send 1 , else send 0 . (1 bit.)

OBVIOUS PROTOCOL

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice sends $a_{1} \cdots a_{n}$ to Bob (n bits).
3. Bob compares $a_{1} \cdots a_{n}$ to $b_{1} \cdots b_{n}$. If equal send 1 , else send 0 . (1 bit.)

So EQ can be solved with $n+1$ bits.

VOTE！
«ロ〉4岛〉4 三〉

VOTE!

1. EQ requires $\sim \boldsymbol{n}$ bits.

VOTE!

1. EQ requires $\sim \boldsymbol{n}$ bits.
2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.

VOTE!

1. EQ requires $\sim \boldsymbol{n}$ bits.
2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.
3. Can do EQ with $\sim \boldsymbol{\operatorname { l o g }} \mathbf{n}$ bits, but no better.

VOTE!

1. EQ requires $\sim \boldsymbol{n}$ bits.
2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.
3. Can do EQ with $\sim \boldsymbol{\operatorname { l o g }} \mathbf{n}$ bits, but no better.
4. UNKNOWN TO BILL!

BAD NEWS

BAD NEWS

EQ requires $\mathbf{n}+\mathbf{1}$ bits.

BAD NEWS

EQ requires $\mathbf{n}+\mathbf{1}$ bits.
So, for Alice and Bob to determine if two n-bit strings are equal requires
$\mathrm{n}+1$ bits.

BAD NEWS

EQ requires $\mathbf{n}+\mathbf{1}$ bits.
So, for Alice and Bob to determine if two n-bit strings are equal requires $\mathrm{n}+1$ bits.
(Proven by Andrew Yao in 1979.)

ALLOW ERROR

What if we

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and
2. allow a probability of error $\leq \frac{1}{n}$.

NAIVE IDEA

NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.

NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice picks random $S \subseteq\{1, \ldots, n\},|S|=10$.

NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice picks random $S \subseteq\{1, \ldots, n\},|S|=10$.
3. For $i \in S$ Alice sends $\left(i, a_{i}\right) .10 \log n$ bits.

NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice picks random $S \subseteq\{1, \ldots, n\},|S|=10$.
3. For $i \in S$ Alice sends $\left(i, a_{i}\right) .10 \log n$ bits.
4. For each $\left(i, a_{i}\right)$ that Bob checks " $a_{i}=b_{i}$?" .

NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice picks random $S \subseteq\{1, \ldots, n\},|S|=10$.
3. For $i \in S$ Alice sends $\left(i, a_{i}\right) .10 \log n$ bits.
4. For each $\left(i, a_{i}\right)$ that Bob checks " $a_{i}=b_{i}$?".
5. If always YES, Bob sends 1 , else sends 0 .

GOOD AND BAD

GOOD AND BAD

1. Protocol is $\sim \log n$ bits. GOOD!

GOOD AND BAD

1. Protocol is $\sim \log n$ bits. GOOD!
2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. BAD!

GOOD AND BAD

1. Protocol is $\sim \log n$ bits. GOOD!
2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. BAD!
3. Does well if input is unif chosen. GOOD!

GOOD AND BAD

1. Protocol is $\sim \log n$ bits. GOOD!
2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. BAD!
3. Does well if input is unif chosen. GOOD!
4. Not really what we want. BAD!

GOOD AND BAD

1. Protocol is $\sim \log n$ bits. GOOD!
2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. BAD!
3. Does well if input is unif chosen. GOOD!
4. Not really what we want. BAD!
5. KEY PROBLEM Protocol too local.

LESS NAIVE IDEA

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$.

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$.

Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=1$ if sum is Odd

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$.

Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=1$ if sum is Odd Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=0$ if sum is Even.

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$. Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=1$ if sum is Odd Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=0$ if sum is Even.
3. Bob computes $\operatorname{PAR}\left(b_{1}+\cdots+b_{n}\right)$.

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$. Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=1$ if sum is Odd Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=0$ if sum is Even.
3. Bob computes $\operatorname{PAR}\left(b_{1}+\cdots+b_{n}\right)$. $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=\operatorname{PAR}\left(b_{1}+\cdots+b_{n}\right)$ then $1(x=y)$

LESS NAIVE IDEA

1. Alice has $a_{1} \cdots a_{n}$. Bob has $b_{1} \cdots b_{n}$.
2. Alice computes $a_{1}+\cdots+a_{n}$.

Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=1$ if sum is Odd Sends $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=0$ if sum is Even.
3. Bob computes $\operatorname{PAR}\left(b_{1}+\cdots+b_{n}\right)$. $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right)=\operatorname{PAR}\left(b_{1}+\cdots+b_{n}\right)$ then $1(x=y)$ $\operatorname{PAR}\left(a_{1}+\cdots+a_{n}\right) \neq \operatorname{PAR}\left(b_{1}+\cdots+b_{n}\right)$ then $0(x \neq y)$

GOOD AND BAD

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.
4. Speculation: Use

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.
4. Speculation: Use
$a_{n}+\cdots+a_{1}(\bmod 3)$

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.
4. Speculation: Use

$$
\begin{aligned}
& a_{n}+\cdots+a_{1}(\bmod 3) \\
& a_{n}+\cdots+a_{1}(\bmod p)
\end{aligned}
$$

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.
4. Speculation: Use
$a_{n}+\cdots+a_{1}(\bmod 3)$
$a_{n}+\cdots+a_{1}(\bmod p)$
more?

GOOD AND BAD

1. Only send ~ 1 bit. GOOD.
2. Bit used ALL of $a_{1} \cdots a_{n}$. GOOD.
3. Protocol will be wrong alot. BAD.
4. Speculation: Use
$a_{n}+\cdots+a_{1}(\bmod 3)$
$a_{n}+\cdots+a_{1}(\bmod p)$
more?
We won't be doing that but we will be using mods.

NEED A THEOREM

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then f has at most d roots.
2. If f is a polynomial over the complex numbers of degree d

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then f has at most d roots.
2. If f is a polynomial over the complex numbers of degree d then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then f has at most d roots.
2. If f is a polynomial over the complex numbers of degree d then f has at most d roots.
3. Let p be a prime. If f is a polynomial over Z_{p} of degree d

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then f has at most d roots.
2. If f is a polynomial over the complex numbers of degree d then f has at most d roots.
3. Let p be a prime. If f is a polynomial over Z_{p} of degree d then f has at most d roots.

RANDOMIZED PROTOCOL

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
3. Alice picks $z \in\{1, \ldots, p-1\}$ Randomly.

Alice computes, $\bmod p$,

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
3. Alice picks $z \in\{1, \ldots, p-1\}$ Randomly.

Alice computes, $\bmod p$,

$$
y=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}
$$

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
3. Alice picks $z \in\{1, \ldots, p-1\}$ Randomly.

Alice computes, $\bmod p$,
$y=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}$
Alice sends (z, y) to Bob.

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
3. Alice picks $z \in\{1, \ldots, p-1\}$ Randomly.

Alice computes, $\bmod p$,
$y=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}$
Alice sends (z, y) to Bob.
4. Bob computes, $\bmod p$,

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
3. Alice picks $z \in\{1, \ldots, p-1\}$ Randomly.

Alice computes, $\bmod p$,
$y=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}$
Alice sends (z, y) to Bob.
4. Bob computes, $\bmod p$, $y^{\prime}=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}$

RANDOMIZED PROTOCOL

1. Alice has $a_{0} a_{1} \cdots a_{n-1}$. Bob has $b_{0} b_{1} \cdots b_{n-1}$.
2. Alice sends Bob a prime $p, n^{2} \leq p \leq 2 n^{2}$.
3. Alice picks $z \in\{1, \ldots, p-1\}$ Randomly.

Alice computes, $\bmod p$,
$y=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n-1} z^{n-1}$
Alice sends (z, y) to Bob.
4. Bob computes, $\bmod p$,
$y^{\prime}=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n-1} z^{n-1}$
If $y=y^{\prime}$ then send 1 , else send 0 .

GOOD!

GOOD!

1. Protocol exchanges $\sim \log n$ bits.

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$.

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$. WHY

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$. WHY
If there is an error then z is a root of the poly $a(x)-b(x)$

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$. WHY
If there is an error then z is a root of the poly $a(x)-b(x)$
There are only n such roots so the probability of this is very low:

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$. WHY
If there is an error then z is a root of the poly $a(x)-b(x)$
There are only n such roots so the probability of this is very low:
There are n roots and there are $p \geq n^{2}$ elements to pick from.

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$. WHY
If there is an error then z is a root of the poly $a(x)-b(x)$
There are only n such roots so the probability of this is very low:
There are n roots and there are $p \geq n^{2}$ elements to pick from.
Prob of getting a root is $\leq \frac{n}{n^{2}}=\frac{1}{n}$.

GOOD!

1. Protocol exchanges $\sim \log n$ bits.
2. Prob of error is $\leq \frac{1}{n}$.

WHY

If there is an error then z is a root of the poly $a(x)-b(x)$
There are only n such roots so the probability of this is very low:
There are n roots and there are $p \geq n^{2}$ elements to pick from.
Prob of getting a root is $\leq \frac{n}{n^{2}}=\frac{1}{n}$.
3. This protocol is due to Melhorn and Schmidt, 1982.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY
by Kushilevitz and Nisan.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY
by Kushilevitz and Nisan.
COMMUNICATION COMPLEXITY AND APPLICATIONS by Rao and Yehudayoff.

