
The
Communication Complexity

of Equality

OUR PROBLEM- EQ

1. Alice has x , Bob has y , both of length n.

2. They want to see if x = y communicating as few bits as possible.

3. We call this problem EQ.

OUR PROBLEM- EQ

1. Alice has x , Bob has y , both of length n.

2. They want to see if x = y communicating as few bits as possible.

3. We call this problem EQ.

OUR PROBLEM- EQ

1. Alice has x , Bob has y , both of length n.

2. They want to see if x = y communicating as few bits as possible.

3. We call this problem EQ.

OUR PROBLEM- EQ

1. Alice has x , Bob has y , both of length n.

2. They want to see if x = y communicating as few bits as possible.

3. We call this problem EQ.

OBVIOUS PROTOCOL

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice sends a1 · · · an to Bob (n bits).

3. Bob compares a1 · · · an to b1 · · · bn.
If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

OBVIOUS PROTOCOL

1. Alice has a1 · · · an. Bob has b1 · · · bn.

2. Alice sends a1 · · · an to Bob (n bits).

3. Bob compares a1 · · · an to b1 · · · bn.
If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

OBVIOUS PROTOCOL

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice sends a1 · · · an to Bob (n bits).

3. Bob compares a1 · · · an to b1 · · · bn.
If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

OBVIOUS PROTOCOL

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice sends a1 · · · an to Bob (n bits).

3. Bob compares a1 · · · an to b1 · · · bn.
If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

OBVIOUS PROTOCOL

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice sends a1 · · · an to Bob (n bits).

3. Bob compares a1 · · · an to b1 · · · bn.
If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

VOTE!

1. EQ requires ∼ n bits.

2. Can do EQ with ∼
√

n bits, but no better.

3. Can do EQ with ∼ log n bits, but no better.

4. UNKNOWN TO BILL!

VOTE!

1. EQ requires ∼ n bits.

2. Can do EQ with ∼
√

n bits, but no better.

3. Can do EQ with ∼ log n bits, but no better.

4. UNKNOWN TO BILL!

VOTE!

1. EQ requires ∼ n bits.

2. Can do EQ with ∼
√

n bits, but no better.

3. Can do EQ with ∼ log n bits, but no better.

4. UNKNOWN TO BILL!

VOTE!

1. EQ requires ∼ n bits.

2. Can do EQ with ∼
√

n bits, but no better.

3. Can do EQ with ∼ log n bits, but no better.

4. UNKNOWN TO BILL!

VOTE!

1. EQ requires ∼ n bits.

2. Can do EQ with ∼
√

n bits, but no better.

3. Can do EQ with ∼ log n bits, but no better.

4. UNKNOWN TO BILL!

BAD NEWS

EQ requires n + 1 bits.

So, for Alice and Bob to determine if two n-bit strings are equal requires
n + 1 bits.

(Proven by Andrew Yao in 1979.)

BAD NEWS

EQ requires n + 1 bits.

So, for Alice and Bob to determine if two n-bit strings are equal requires
n + 1 bits.

(Proven by Andrew Yao in 1979.)

BAD NEWS

EQ requires n + 1 bits.

So, for Alice and Bob to determine if two n-bit strings are equal requires
n + 1 bits.

(Proven by Andrew Yao in 1979.)

BAD NEWS

EQ requires n + 1 bits.

So, for Alice and Bob to determine if two n-bit strings are equal requires
n + 1 bits.

(Proven by Andrew Yao in 1979.)

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and

2. allow a probability of error ≤ 1
n .

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and

2. allow a probability of error ≤ 1
n .

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and

2. allow a probability of error ≤ 1
n .

NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice picks random S ⊆ {1, . . . , n}, |S | = 10.

3. For i ∈ S Alice sends (i , ai). 10 log n bits.

4. For each (i , ai) that Bob checks “ai = bi?”.

5. If always YES, Bob sends 1, else sends 0.

NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.

2. Alice picks random S ⊆ {1, . . . , n}, |S | = 10.

3. For i ∈ S Alice sends (i , ai). 10 log n bits.

4. For each (i , ai) that Bob checks “ai = bi?”.

5. If always YES, Bob sends 1, else sends 0.

NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice picks random S ⊆ {1, . . . , n}, |S | = 10.

3. For i ∈ S Alice sends (i , ai). 10 log n bits.

4. For each (i , ai) that Bob checks “ai = bi?”.

5. If always YES, Bob sends 1, else sends 0.

NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice picks random S ⊆ {1, . . . , n}, |S | = 10.

3. For i ∈ S Alice sends (i , ai). 10 log n bits.

4. For each (i , ai) that Bob checks “ai = bi?”.

5. If always YES, Bob sends 1, else sends 0.

NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice picks random S ⊆ {1, . . . , n}, |S | = 10.

3. For i ∈ S Alice sends (i , ai). 10 log n bits.

4. For each (i , ai) that Bob checks “ai = bi?”.

5. If always YES, Bob sends 1, else sends 0.

NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice picks random S ⊆ {1, . . . , n}, |S | = 10.

3. For i ∈ S Alice sends (i , ai). 10 log n bits.

4. For each (i , ai) that Bob checks “ai = bi?”.

5. If always YES, Bob sends 1, else sends 0.

GOOD AND BAD

1. Protocol is ∼ log n bits. GOOD!

2. Prob of error → 1 as n → ∞. BAD!

3. Does well if input is unif chosen. GOOD!

4. Not really what we want. BAD!

5. KEY PROBLEM Protocol too local.

GOOD AND BAD

1. Protocol is ∼ log n bits. GOOD!

2. Prob of error → 1 as n → ∞. BAD!

3. Does well if input is unif chosen. GOOD!

4. Not really what we want. BAD!

5. KEY PROBLEM Protocol too local.

GOOD AND BAD

1. Protocol is ∼ log n bits. GOOD!

2. Prob of error → 1 as n → ∞. BAD!

3. Does well if input is unif chosen. GOOD!

4. Not really what we want. BAD!

5. KEY PROBLEM Protocol too local.

GOOD AND BAD

1. Protocol is ∼ log n bits. GOOD!

2. Prob of error → 1 as n → ∞. BAD!

3. Does well if input is unif chosen. GOOD!

4. Not really what we want. BAD!

5. KEY PROBLEM Protocol too local.

GOOD AND BAD

1. Protocol is ∼ log n bits. GOOD!

2. Prob of error → 1 as n → ∞. BAD!

3. Does well if input is unif chosen. GOOD!

4. Not really what we want. BAD!

5. KEY PROBLEM Protocol too local.

GOOD AND BAD

1. Protocol is ∼ log n bits. GOOD!

2. Prob of error → 1 as n → ∞. BAD!

3. Does well if input is unif chosen. GOOD!

4. Not really what we want. BAD!

5. KEY PROBLEM Protocol too local.

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.

2. Alice computes a1 + · · ·+ an.
Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd

Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).

PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)

PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

LESS NAIVE IDEA

1. Alice has a1 · · · an. Bob has b1 · · · bn.
2. Alice computes a1 + · · ·+ an.

Sends PAR(a1 + · · ·+ an) = 1 if sum is Odd
Sends PAR(a1 + · · ·+ an) = 0 if sum is Even.

3. Bob computes PAR(b1 + · · ·+ bn).
PAR(a1 + · · ·+ an) = PAR(b1 + · · ·+ bn) then 1 (x = y)
PAR(a1 + · · ·+ an) ̸= PAR(b1 + · · ·+ bn) then 0 (x ̸= y)

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use

an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)

an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)

more?
We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?

We won’t be doing that but we will be using mods.

GOOD AND BAD

1. Only send ∼ 1 bit. GOOD.

2. Bit used ALL of a1 · · · an. GOOD.

3. Protocol will be wrong alot. BAD.

4. Speculation: Use
an + · · ·+ a1 (mod 3)
an + · · ·+ a1 (mod p)
more?
We won’t be doing that but we will be using mods.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then
f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d
then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d
then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then

f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d
then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d
then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then
f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d
then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d
then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then
f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d

then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d
then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then
f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d
then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d
then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then
f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d
then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d

then f has at most d roots.

NEED A THEOREM

1. If f is a polynomial over the reals of degree d then
f has at most d roots.

2. If f is a polynomial over the complex numbers of degree d
then f has at most d roots.

3. Let p be a prime. If f is a polynomial over Zp of degree d
then f has at most d roots.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,

y = a0 + a1z + a2z
2 + · · ·+ an−1z

n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,

y ′ = b0 + b1z + b2z
2 + · · ·+ bn−1z

n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

RANDOMIZED PROTOCOL

1. Alice has a0a1 · · · an−1. Bob has b0b1 · · · bn−1.

2. Alice sends Bob a prime p, n2 ≤ p ≤ 2n2.

3. Alice picks z ∈ {1, . . . , p − 1} Randomly.
Alice computes, mod p,
y = a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

Alice sends (z , y) to Bob.

4. Bob computes, mod p,
y ′ = b0 + b1z + b2z

2 + · · ·+ bn−1z
n−1

If y = y ′ then send 1, else send 0.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY

If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)

There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:

There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.

Prob of getting a root is ≤ n
n2

= 1
n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

GOOD!

1. Protocol exchanges ∼ log n bits.

2. Prob of error is ≤ 1
n .

WHY
If there is an error then z is a root of the poly a(x)− b(x)
There are only n such roots so the probability of this is very low:
There are n roots and there are p ≥ n2 elements to pick from.
Prob of getting a root is ≤ n

n2
= 1

n .

3. This protocol is due to Melhorn and Schmidt, 1982.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY
by Kushilevitz and Nisan.

COMMUNICATION COMPLEXITY AND APPLICATIONS
by Rao and Yehudayoff.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY
by Kushilevitz and Nisan.
COMMUNICATION COMPLEXITY AND APPLICATIONS
by Rao and Yehudayoff.

