The Communication Complexity of Equality

ヘロト 人間 トメヨト メヨト 三国

(イロト (部) (注) (注) (注)

1. Alice has x, Bob has y, both of length n.

- 1. Alice has x, Bob has y, both of length n.
- 2. They want to see if x = y communicating as few bits as possible.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- 1. Alice has x, Bob has y, both of length n.
- 2. They want to see if x = y communicating as few bits as possible.
- 3. We call this problem EQ.

1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice sends $a_1 \cdots a_n$ to Bob (n bits).

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice sends $a_1 \cdots a_n$ to Bob (n bits).
- 3. Bob compares $a_1 \cdots a_n$ to $b_1 \cdots b_n$. If equal send 1, else send 0. (1 bit.)

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice sends $a_1 \cdots a_n$ to Bob (n bits).
- 3. Bob compares $a_1 \cdots a_n$ to $b_1 \cdots b_n$. If equal send 1, else send 0. (1 bit.)

So EQ can be solved with n + 1 bits.

VOTE!

イロト イロト イヨト イヨト 三日

1. EQ requires $\sim n$ bits.

- 1. EQ requires $\sim n$ bits.
- 2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.

- 1. EQ requires $\sim n$ bits.
- 2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.
- 3. Can do EQ with $\sim \log n$ bits, but no better.

VOTE!

- 1. EQ requires $\sim n$ bits.
- 2. Can do EQ with $\sim \sqrt{n}$ bits, but no better.
- 3. Can do EQ with $\sim \log n$ bits, but no better.
- 4. UNKNOWN TO BILL!

BAD NEWS

EQ requires n + 1 bits.

EQ requires n + 1 bits.

So, for Alice and Bob to determine if two *n*-bit strings are equal requires n + 1 bits.

EQ requires n + 1 bits.

So, for Alice and Bob to determine if two *n*-bit strings are equal requires n + 1 bits.

(Proven by Andrew Yao in 1979.)

ALLOW ERROR

What if we

イロト イポト イヨト イヨト 二日

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and

ALLOW ERROR

What if we

1. Allow Alice and Bob to flip coins, and

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. allow a probability of error $\leq \frac{1}{n}$.

イロト イロト イヨト イヨト 三日

1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice picks random $S \subseteq \{1, \ldots, n\}$, |S| = 10.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice picks random $S \subseteq \{1, \ldots, n\}$, |S| = 10.
- **3**. For $i \in S$ Alice sends (i, a_i) . 10 log *n* bits.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice picks random $S \subseteq \{1, \ldots, n\}$, |S| = 10.
- **3**. For $i \in S$ Alice sends (i, a_i) . 10 log *n* bits.
- 4. For each (i, a_i) that Bob checks " $a_i = b_i$?".

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice picks random $S \subseteq \{1, \ldots, n\}$, |S| = 10.
- 3. For $i \in S$ Alice sends (i, a_i) . 10 log *n* bits.
- 4. For each (i, a_i) that Bob checks " $a_i = b_i$?".

・ロト ・四ト ・ヨト ・ヨト ・ヨ

5. If always YES, Bob sends 1, else sends 0.

1. Protocol is $\sim \log n$ bits. **GOOD!**

- 1. Protocol is $\sim \log n$ bits. **GOOD!**
- 2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. **BAD!**

- 1. Protocol is $\sim \log n$ bits. **GOOD!**
- 2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. **BAD!**
- 3. Does well if input is unif chosen. GOOD!

ヘロト 人間 トメヨト メヨト 三国

- 1. Protocol is $\sim \log n$ bits. **GOOD!**
- 2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. **BAD!**
- 3. Does well if input is unif chosen. GOOD!
- 4. Not really what we want. BAD!

- 1. Protocol is $\sim \log n$ bits. **GOOD!**
- 2. Prob of error $\rightarrow 1$ as $n \rightarrow \infty$. **BAD!**
- 3. Does well if input is unif chosen. GOOD!

イロト 不得 トイヨト イヨト ニヨ

- 4. Not really what we want. BAD!
- 5. **KEY PROBLEM** Protocol too local.

LESS NAIVE IDEA

・ ロ ト ・ 御 ト ・ 国 ト ・ 国 ト ・ 国

LESS NAIVE IDEA

1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$. Sends $PAR(a_1 + \cdots + a_n) = 1$ if sum is Odd

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$. Sends $PAR(a_1 + \cdots + a_n) = 1$ if sum is Odd Sends $PAR(a_1 + \cdots + a_n) = 0$ if sum is **Even**.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$. Sends $PAR(a_1 + \cdots + a_n) = 1$ if sum is Odd Sends $PAR(a_1 + \cdots + a_n) = 0$ if sum is **Even**.

3. Bob computes $PAR(b_1 + \cdots + b_n)$.

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$. Sends $PAR(a_1 + \cdots + a_n) = 1$ if sum is Odd Sends $PAR(a_1 + \cdots + a_n) = 0$ if sum is Even.
- 3. Bob computes $PAR(b_1 + \cdots + b_n)$. $PAR(a_1 + \cdots + a_n) = PAR(b_1 + \cdots + b_n)$ then 1 (x = y)

- 1. Alice has $a_1 \cdots a_n$. Bob has $b_1 \cdots b_n$.
- 2. Alice computes $a_1 + \cdots + a_n$. Sends $PAR(a_1 + \cdots + a_n) = 1$ if sum is Odd Sends $PAR(a_1 + \cdots + a_n) = 0$ if sum is **Even**.
- 3. Bob computes $PAR(b_1 + \dots + b_n)$. $PAR(a_1 + \dots + a_n) = PAR(b_1 + \dots + b_n)$ then 1 (x = y) $PAR(a_1 + \dots + a_n) \neq PAR(b_1 + \dots + b_n)$ then 0 $(x \neq y)$

1. Only send ~ 1 bit. GOOD.

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**
- 3. Protocol will be wrong alot. BAD.

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**
- 3. Protocol will be wrong alot. BAD.
- 4. Speculation: Use

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**
- 3. Protocol will be wrong alot. BAD.
- 4. Speculation: Use

 $a_n + \cdots + a_1 \pmod{3}$

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**
- 3. Protocol will be wrong alot. BAD.
- 4. Speculation: Use

 $a_n + \cdots + a_1 \pmod{3}$ $a_n + \cdots + a_1 \pmod{p}$

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD.**
- 3. Protocol will be wrong alot. BAD.
- 4. Speculation: Use

 $a_n + \cdots + a_1 \pmod{3}$ $a_n + \cdots + a_1 \pmod{p}$ more?

- 1. Only send ~ 1 bit. GOOD.
- 2. Bit used ALL of $a_1 \cdots a_n$. **GOOD**.
- 3. Protocol will be wrong alot. BAD.
- 4. Speculation: Use

 $a_n + \cdots + a_1 \pmod{3}$ $a_n + \cdots + a_1 \pmod{p}$ more?

more?

We won't be doing that but we will be using mods.

ヘロト 人間 トメヨト メヨト 三国

・ ロ ト ・ 御 ト ・ 注 ト ・ 注 ト … 注

1. If f is a polynomial over the reals of degree d then

1. If *f* is a polynomial **over the reals** of degree *d* then *f* has at most *d* roots.

- 1. If *f* is a polynomial **over the reals** of degree *d* then *f* has at most *d* roots.
- 2. If f is a polynomial over the complex numbers of degree d

- 1. If *f* is a polynomial **over the reals** of degree *d* then *f* has at most *d* roots.
- 2. If f is a polynomial **over the complex numbers** of degree d then f has at most d roots.

- 1. If f is a polynomial **over the reals** of degree d then f has at most d roots.
- 2. If f is a polynomial **over the complex numbers** of degree d then f has at most d roots.
- 3. Let p be a prime. If f is a polynomial over Z_p of degree d

- 1. If f is a polynomial **over the reals** of degree d then f has at most d roots.
- 2. If f is a polynomial **over the complex numbers** of degree d then f has at most d roots.
- 3. Let p be a prime. If f is a polynomial **over** Z_p of degree d then f has at most d roots.

イロト 不聞 とくほど 不良とう 調

1. Alice has $a_0a_1 \cdots a_{n-1}$. Bob has $b_0b_1 \cdots b_{n-1}$.

- 1. Alice has $a_0a_1 \cdots a_{n-1}$. Bob has $b_0b_1 \cdots b_{n-1}$.
- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.

- 1. Alice has $a_0a_1\cdots a_{n-1}$. Bob has $b_0b_1\cdots b_{n-1}$.
- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 3. Alice picks $z \in \{1, ..., p-1\}$ Randomly. Alice computes, mod p,

1. Alice has $a_0a_1\cdots a_{n-1}$. Bob has $b_0b_1\cdots b_{n-1}$.

イロト 不得 トイヨト イヨト ニヨ

- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 3. Alice picks $z \in \{1, ..., p-1\}$ Randomly. Alice computes, mod p,
 - $y = a_0 + a_1 z + a_2 z^2 + \dots + a_{n-1} z^{n-1}$

- 1. Alice has $a_0a_1\cdots a_{n-1}$. Bob has $b_0b_1\cdots b_{n-1}$.
- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 3. Alice picks $z \in \{1, ..., p-1\}$ Randomly. Alice computes, mod p, $y = a_0 + a_1 z + a_2 z^2 + \cdots + a_{n-1} z^{n-1}$ Alice sends (z, y) to Bob.

1. Alice has $a_0a_1\cdots a_{n-1}$. Bob has $b_0b_1\cdots b_{n-1}$.

イロト 不得 トイヨト イヨト ニヨ

- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 3. Alice picks $z \in \{1, ..., p-1\}$ Randomly. Alice computes, mod p, $y = a_0 + a_1z + a_2z^2 + \cdots + a_{n-1}z^{n-1}$ Alice sends (z, y) to Bob.
- 4. Bob computes, mod *p*,

- 1. Alice has $a_0a_1\cdots a_{n-1}$. Bob has $b_0b_1\cdots b_{n-1}$.
- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 3. Alice picks $z \in \{1, ..., p-1\}$ Randomly. Alice computes, mod p, $y = a_0 + a_1 z + a_2 z^2 + \cdots + a_{n-1} z^{n-1}$ Alice sends (z, y) to Bob.
- 4. Bob computes, mod p, $y' = b_0 + b_1 z + b_2 z^2 + \dots + b_{n-1} z^{n-1}$

イロト 不得 トイヨト イヨト 二日

- 1. Alice has $a_0a_1\cdots a_{n-1}$. Bob has $b_0b_1\cdots b_{n-1}$.
- 2. Alice sends Bob a prime p, $n^2 \le p \le 2n^2$.
- 3. Alice picks $z \in \{1, ..., p-1\}$ Randomly. Alice computes, mod p, $y = a_0 + a_1 z + a_2 z^2 + \cdots + a_{n-1} z^{n-1}$ Alice sends (z, y) to Bob.
- 4. Bob computes, mod p, $y' = b_0 + b_1 z + b_2 z^2 + \dots + b_{n-1} z^{n-1}$ If y = y' then send 1, else send 0.

- 白 ト - (同 ト - 3 下 - 4 回 ト - 3

イロト イタト イヨト イヨト 三国

1. Protocol exchanges $\sim \log n$ bits.

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$.

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. WHY

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. WHY

If there is an error then z is a root of the poly a(x) - b(x)

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. WHY

If there is an error then z is a root of the poly a(x) - b(x)There are only n such roots so the probability of this is very low:

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. WHY

If there is an error then z is a root of the poly a(x) - b(x)There are only n such roots so the probability of this is very low: There are n roots and there are $p \ge n^2$ elements to pick from.

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. WHY

If there is an error then z is a root of the poly a(x) - b(x)There are only n such roots so the probability of this is very low: There are n roots and there are $p \ge n^2$ elements to pick from. Prob of getting a root is $\le \frac{n}{n^2} = \frac{1}{n}$.

- 1. Protocol exchanges $\sim \log n$ bits.
- 2. Prob of error is $\leq \frac{1}{n}$. WHY

If there is an error then z is a root of the poly a(x) - b(x)There are only n such roots so the probability of this is very low: There are n roots and there are $p \ge n^2$ elements to pick from. Prob of getting a root is $\le \frac{n}{n^2} = \frac{1}{n}$.

3. This protocol is due to Melhorn and Schmidt, 1982.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY

by Kushilevitz and Nisan.

FOR MORE INFORMATION

COMMUNICATION COMPLEXITY

by Kushilevitz and Nisan. **COMMUNICATION COMPLEXITY AND APPLICATIONS**

by Rao and Yehudayoff.